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ON k-RESTRICTED OVERPARTITIONS
UHA ISNAINI

ABSTRACT. We introduce k-restricted overpartitions,
which are generalizations of overpartitions. In such parti-
tions, among those parts of the same magnitude, one of the
first k occurrences may be overlined. We first give the gener-
ating function and establish the 5-dissections of k-restricted
overpartitions. Then we provide a combinatorial interpre-
tation for certain Ramanujan type congruences modulo 5.
Finally, we pose some problems for future work.

1. Introduction. The object in this study is the idea of a k-
restricted overpartition. A k-restricted overpartition of n is a partition
of n in which one of the first k occurrences of a part may be overlined.
For example, all 2-restricted overpartitions of 4 are

4, 4, 3+1, 3+1, 341, 3+1, 242, 2+2, 2+2,
24141, 24141, 24141, 24141, 24141, 24141,
1+1+1+1, 14+141+1, 1+1+1+1.

The total number of k-restricted overpartitions of n is denoted by pg(n).
Hence, p2(4) = 18. We note that when k = 1, we have ordinary
overpartitions [4] denoted by p(n). Thus, p1(n) = p(n). While these

objects have not appeared in the literature before, they are related to
ordered pairs of partitions [5].

We adopt the standard notation

(1) (@; @)oo = [ J (1 = ag™),
n=0
(2) (a1,a2,...,0n59) 00 :=(01:9) 00 (a2: @)oo =+ * (An3 @)oo,
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a1,a9,...,0n (alaa2a-~-aan;Q>oo
3 s 2, ) : ) : ]
3) <b17b27~~7bm U oo (b1, bay - b @)oe

Suppose p_x(n) enumerates the coefficient of ¢" in (q; q)* for fixed k.
It is well-known that

(4) p—2(5n+a)=0 (mod5), a=2,3,4,

and a combinatorial interpretation for (4) is given in [5]. This motivates
us to find all Ramanujan type congruences modulo 5 for k-restricted
overpartitions and their combinatorial interpretations.

Our article is structured as follows. In the next section, we recall
some preliminary results. In Section 3, we show that for every positive

integer k the generating function for k-restricted overpartitions is given
by

(5) S () = 4
n=0

(9%

k+1. k+1)
’ 00

We also prove 5-dissections for every positive integer k. The desired
5-dissections are stated in the following five theorems.

Theorem 1.1. For every positive integer k,
ShtL, gohe1)

o0 ~ (q
6 E Psi(5n)q" =
) =7 o (4, 9%5 4%)oo (gPFF1, g1 BRF1); gP(BRF1))

5 (mod 5),
o0
Sk+1.

(" g

e 5k+1)
e n — oo
@) ;p%(% T =2 (4% %5 G°) oo (qPF+1, g OR+1); g5(Ok+1))

2
59

5(5k+1). 5(5k+1)
k (q ' q )oo
i (4,4% ¢%) oo (mod5),
o0
~ (q5(5k+1); q5(5k+1))oo
8 D5k (bn+2)q" = 3qk -
® 2 ) @)
5k+1. 5k+1
ok (" ¢*" ) o
i (4 0% 4% ) oo (qPORHD) | g3ORF1); g5 (Bk+1))2 (mod 5),
9 > psr(5n+3)g"
n=0 5k+1. . 5k+1
:3 2k (q yq )oo (HlOd 5)7

=99 (2, 03 @)oo (q2BBFFD)  q3GE+1); g5(5K+1))

2
00
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(10) Y pse(5n+4)g" =0 (mod 5).

n=0

Theorem 1.2. For every positive integer k,

(11) Y psk—1(5n)q"
n=0

1 (@™ ¢°")
= <(q5k7 +4¢"(@°P; ")

(4,94% ¢°) o q*Ok); g50R))2
5k. bk
ok (" ¢°%) oo
+4 (q2(5’“),q3(5’“);q5(5’“))§0) (mod 5),
(12) Y pse-1(5n+1)q"
=0 2 (¢°%; ¢"") o S CORICON
—(qz’q3;q5)oo (qsk,q4(5k);q5(5k))go 79 14 Rl
5k. 5k
ok (" 0°") o
+4 (q2(5’“),q3(5’“);q5(5’“))%o) (mod 5),

(13) > psk—1(bn+a)g" =0 (mod5), a=2,3,4.

n=0

Theorem 1.3. For every positive integer k,

oo (q5k—1. q5k:—1)
14 Dsk—2(5n)q" = : =
14) ;::0 (6n) (4, 0% 4% ) oo (qPF =1, g Ok =1); g5 GR=1))2
L (qPOR=1); d(k=1))

(@%,¢% %)

+3q = (mod 5),

(15) Z Psk—2(5n+1)q"
n=0 _ (@1 )
=? (C]2, 7> q5)oo(q5k—1, q4(57€—1); q5(5k—1))go (mOd 5),

(16) Y Psk—2(5n+2)g" =0 (mod 5),

n=0
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(17) ) psk—2(5n+3)q"

— o (1 o1
=4q (@ 4% ) oo (2OF—D), 3GR—1), g5(5k—1))2 (mod 5),
> (7R 1), g3(5k-1))__
(18) Psk_2(bn +4)¢" = 4¢"
,;) (¢,0%¢°)oc
5k—1. 5k—1
2%k (@ " e
+3q (@, 031 ) oo (20D, 3(5k—1); ¢5(5h—1) )2 (mod 5).
Theorem 1.4. For every positive integer k,
19 psi—3(5n)g"
(19) ;p% s(5n)q (752 %)
= (005 oo (@2, g2, 53R 2] )2 (mod 5),
(52, ¢5F2)

(20) 255’“—3(5”"_1)‘1 E2(6127(]3;q5)oo(q5’“_2,q4(5k_2);q5(5k_2))go

n=0
5k—2. 5k—2
2k (q 5 q )oo
+4q (@ 45 ©) oo (2OF—D), BOR—2),; g5 (5E—2))2_ (mod 5),
(21) > Psr-s(5n+2)q"
n=0 (¢°F2; ¢ 2)
— 2k q % 00
= (02, 6% 4°) oo (qP(5F—2), 3k =2); q5(5k=2))2 (mod ),
> (gPBR2); 5 R=2))
22 Psi—s(5n +3)q" = 4¢* mod 5),
2 ;0 ool : (¢:4%0%)o ( )
o0 5(5k—2). /5(5k—2)
(23) > Psn—s(bn+4)g" = 34" 4 4 ) (mod 5).

(@, ¢%4°)

n=0

Theorem 1.5. For every positive integer k,

5k—3. 5k—3)
) 00

> (q q
24 P5k—4 m qn = >
(24 nz::o k-4 (5m) (4, 4% q°) oo (PR3, q*(3F=3); ¢5(5k=3))2

(q5k73; q5k73)oo

(42, 4% %) oo (2 OF=3)  g3(5k=3); ¢5(5k=3))

+3¢%F (mod 5),

2
00
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(25) ) Psk—a(5n+1)q"
o (=3 —3)

=2 (42, 4% @)oo (¢F 3, qA(5R—8); g5 (5k—3))2_ (mod 5),
e ~ N (q5(5k73);q5(5k73))oo
(26) Z Psk—a(5n+2)q" = 4¢" @) (mod 5),
n=0 'y 4 0o
> . (PF=3); 55k =3))
(27) Z Psk—a(5n+3)¢" = 3¢" ) (mod 5),
n=0 ’ ’
(28) Z Dsk—a(dn+4)g"
n=0 5k—3. 5k—3
= 4q4°F Vil o (mod 5).

2
oo

(¢, 4% ¢F) oo (q20OK—3) | q3(5K=3); (5(5k—3))

We remark that (10), (13) and (16) are Ramanujan type congruences
and (13) is a trivial consequence of (4).

In Section 4, we give some additional congruences modulo 5. The
combinatorial interpretations for (10), (13) and (16) are provided in
Section 5. Finally, we pose some problems for future work in Section 6.

2. Preliminary results. In this section, we recall some results from
the literature. Since the results are well-known, for convenience we give
references in [8].

Theorem 2.1 (Euler [8, (1.6.2)]). The following identity holds:

oo

(q;Q)oo _ Z (_1)nqn(3n71)/2.

n=—oo

Theorem 2.2 (Jacobi [8, (1.7.1)]). The following identity holds:

o0

(@:0)% =D (~1)"(2n+ 1) +m/2,

n=0

The following lemma was stated by Ramanujan [2, Entry 25, p. 40].
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Lemma 2.3. The following 2-dissections hold:

(20) [ (@%:4°)% MURT DT IDrS
(0% (¢%4%)2% (¢ ¢"0)% (0% 4%)3%.(% ¥
(30) 1 (dhd)s (a%:9")3. (0% ¢°)5

+4q
(:0)5  (a%¢*)5(¢® ¢®)% (4% 4%)8

We note that (29) and (30) are essentially the 2-dissections of ¢(q)
and ¢(q)? in [8, (1.9.4)] and [8, (1.10.1)], respectively.

The following lemma was proved by Hirschhorn and Sellers [7].

Lemma 2.4. The following 2-dissection holds:
_ 2075 | (0"50%)%(@"%4") (6" 4")

(0°:0°)00 _ (4%4%)(q
+q
(G (6%6¢*)% (6% ¢*%) (@%:6%)2. (0% ¢®) 00 (6% ¢*°) o

The next lemma can be obtained from the quintuple product identity;
see [2, p. 80], [3], [6] or 8, (8.1.1)].

Lemma 2.5. We have

(D)oo = (6°°; )0 (R(¢°) "' =g — ¢ R(¢")),

where 5 20
R = 17 _. 25) .
(q°) (q107q15;q 5

The following lemma can also be found in [8, (3.6.4)].

Lemma 2.6 (Atkin and Swinnerton-Dyer [1]). We have

(¢; )% = F(¢°) — 3¢G(q°) (mod 5),

where
oo

2
F(qS) _ Z (_1)kq(25k —5k)/2 _ (qlo,qlf)’ q25; q25)007

k=—o0
oo

G(q5) _ Z (_1)kq(25k2—15k)/2 _ (q5,q20,q25;q25)90.

k=—o0
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Finally, the lemma below is derived from [8, (12.3.1) and (12.3.3)].

Lemma 2.7. Suppose C is a 5th root of unity other than 1. Then

1 1 N C+¢t
- = q
€ Dx(C G0 (@°,¢%5¢%)e (419,41 ¢%°) o

We also use the following consequence of the binomial theorem. For
any positive integer k and prime p,

(31) (4" %)% = (¢"";¢"") (mod p).

3. The generating function and proofs of Theorems 1.1-1.5.
In this section, we show that the generating function of k-restricted
overpartitions is given by (5).

Theorem 3.1. We have

k+1. k+1)

> pr(n)g" = il o

= (4:9)%
Proof. We see immediately that

Yoo =[] 1+20" + 3¢ +-- -+ (k4 1)g"" + (k+1)g " 4

n=1
LS 00
n=1 =
0 1 +q" + q2n + 4 qkn 0 (k+1)n>
it St
_ (q’““,qk“)
(9%
as claimed. O

Now we prove Theorems 1.1-1.5.
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Proofs of Theorems 1.1-1.5. From (31), Lemma 2.5 and Lemma 2.6,

(qm’qm)oo o . 3 m. . m 1
(¢:9)% =@ 9x(a"ia )Oo(q;q)io
(

= (F(¢) ~34G(a") ) (R(@™) " = ¢ = ¢*" R(¢™™))

(q25m; q25m)oo
X ~——"——2= (mod 5
(4% 6°) oo ( )

= (F(CJS)R(<J5"’)‘1 —q"F(¢°) = ¢ F(¢°)R(¢"™)
—3qG(q5)R(q5m)‘1+3qm+1G(q5)+3q2m“G(q5)R(q5m))
(q25m; q25m)

The desired results can be obtained by substituting m =5k+a, 0 <a <4.
As an illustration, we give one example for m =5k + 1. We get

= 2(5k+1) 3(5k+1)
> psu(5n)q" = (0%,4%. 4% ¢°) <qq5k+1 FAEk+1) ;QS(SHI))
n=0 i IS
5(5k+1). ,5(5k+1)
« D )% (1m0 5),

o0
Z Psk(dn+1)g"
n=0
= (—q"(QQ,q3,q5;q5)m -3(¢,4%, ¢ ¢")

<q2(5k+1) palag)) 5(5k+1)> )(q5(5k+1);q5(5k+1))oo

’ i q mod 5),
q5k+1,q4(5k+1) (q’ q)oo ( )

Z Dsk(5n+2)q"

n=0 Sk+1 gd4(5k+1)
)

_ 2k(,2 3 5.5 q . 5(5k+1
= (_q (q 4,954 )oo( 2(5k+1)  3(5k+1)7 4 (Sk-+ )>
q »d 0

(q5(5k+1); q5(5k+1))oo

(¢ 9) o

+3qk(q,q4,q5;q5)oo> (mod 5),
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oo 5k+1 4(5k+1)

_ n q

> Bsi(5n+3)q" =3¢%*(q.4",¢°1 ") (q i) gL oG ’““’)

n=0 o'}
(gPORHD); gB(5R 1))

X = (mod 5),
(45 9)oc ( )
Z Psk(5n+4)¢" =0 (mod 5).
n=0
After some simplification, we arrive at Theorem 1.1. O

4. Other congruences modulo 5. In this section, we provide some
congruences modulo 5 satisfied by pg(n).

Theorem 4.1. For every positive integer m, if 8m+1 is not a square

th
o Pa(m) =0 (mod 5).

Proof. From Theorem 2.2 and (31), we have

Zp4 n_qq)

(7 9)3%
(¢;)3, (mod 5)

_Z F(2k+1)q (K*+k)/2 (mod 5)

_Z k(2% + 1)g(@FHD*=1/8 (1104 5).

Equating the coefficients of ¢"™ where 8m + 1 is not a square gives us
the desired result. O

Theorem 4.2. We have

(32) Po(4n+2) =0 (mod 5),
(33) Po(4n+3) =0 (mod 5).
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Proof. From (29), we get

oo 10. ,10
_ n q 759 )oo
E DP9 (n)q = 7( )

o (¢ 9)%
8. ,.8\5 10. 10 4. 4\2 10. 10 16. ,16\2
:(q;qggxagqu3?+aq@,q)uiq;g ng 19)5
(9% ¢*)5(q"%: ¢'%)3 (4% 6%)3 (4% ¢%) o
This yields
o0
_ (¢*9")3%(d° ¢°)

34 Po(2n)q" = &=
(34 2 P2 = T,
and

e 2. ,.,2\2 5.,.5 8. .,8\2
(35) E:ﬁd%%%”¢K:2m,q)mw,q)m@,q)m.

(4 9)3.(¢% 4%) oo

n=0

Applying Lemma 2.4 and (30) to (34) gives

o 4. 4 .
Z;ﬁg(Qn)q” = (((18?‘18)%)( .1 4 )<(q5jq5)oo>
= (¢%¢%)3 ) \ (¢ 9)% (¢ @)oo
(% 9M)8(a*5 ¢*°)%
(@%502)18(6% 48)% (095 ¢10) oo
q(q4’ (Jél)gg(ql()7 qlo)oo(q40; q40)oo
(4% 6%) (¢35 ¢®) % (4195 ¢'0) o
(¢* a7 (6% ¢®)2. (6% ¢**)2
(4% 6%)%. ("% ¢')2%. (4% ¢*%)
2 (0% 482" ¢") 00 (6% ¢*%) o
(4%:4%)53(¢%% ¢*) o
(0% 448 (% )3
(4% 6%) o0 (¢"%;¢"0)3, (g5 ¢*0)%
2 (0% M)A (6% )% (% ¢") s
(4%:6%)3.(¢"% ¢") o
where the last congruence comes from (31). Equating coefficients of

¢*" ! provides us (32). Similarly, applying Lemma 2.4, (30) and (31)
to (35) gives:

+4q

+4q

+4q

(mod 5),
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§2m0n+nwzﬁ<@5fkv<('l )(@%fﬁ&fﬂ%i)

(¢ 9) o T 9)% (7% ¢*)oo
(¢*q" 3¢ %)%

(q% ¢*) (4% ¢®) o0 (6% ¢%0) o
(%4250 ¢"°) 0o (6% ") o
(4% ¢*)83(a% ¢®)2.(¢%°; ¢*°) o

(0% 4" oo (@®: ¢*) 7 (¢ 2%

(g% *)32(4*%5 ¢*) o

2 (0% 4M)5 (6% ¢%)3 (0" 4" ) 0 (0% ¢*)

(¢%:6%) % (%% ¢%) o
(¢* 42, (¢*; ¢*0)%

(4% 6%)% (6% ¢®) o0 (4125 ¢') 2 (45 ¢%0) o

(0% 44 (6% 62 (6% ¢**) o

(42 4%) 00 (0% 4°) 00 (423 ¢%°) o

nt1 proves (33). O

+ 2q

+ 8¢q

+ 8¢

2

+3¢>

(mod 5).
Extracting terms involving g

5. Combinatorial interpretations. In this section, we provide
combinatorial interpretations for (10), (13) and (16). We start with the
following theorem.

Theorem 5.1. There is a bijection § between the set of k-restricted over-
partitions of n and the set of pairs of partitions (o, 8) with |a|+|8| =n,
where o is an ordinary partition and B is a partition with no parts
divisible by k+ 1.

Proof. Let A be a k-restricted overpartition of n. We wish to construct
a pair of partitions («, 8) = §()) such that |a|+ |8] =n, where « is an
ordinary partition and S is a partition with no parts divisible by &+ 1.
Suppose that ¢ is a part of A\ and ¢t appears m; times with the i-th part
being overlined (the Oth part being overlined means no overlined part).
We use the following procedure.

e Move (m; — i) parts equal to ¢ in A to a.

e Split each of the remaining ¢ parts equal to ¢ in A into k+ 1
equal parts. Repeat until no parts are divisible by k + 1.

e Move the results into .
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The above procedure is reversible. Hence 0 is a bijection. This completes
the proof. O

As an example, we have that 94+9+3+3 is a 2-restricted overpartition
of 24. We have the following procedure:

94+9+434+3—(9,9+3+3)—~ (9,3+3+3+1+---+1)—(9,1+---+1),
—_—— —_——
6-times 15-times
where we split every part divisible by 3 in 8. The inverse is given by
(9,1+--4+1)—(9,3+3+3+3+3)—~(9,94+3+3)—9+9+3+3,
——— ——
15-times merge them
where we merge every three equal parts in 3.

Now we introduce a birank of a k-restricted overpartition.

Definition 5.2. Let A be a k-restricted overpartition and («, 8) = 6(A).
Then the birank of A, denoted r(A), is defined by

rk(A) = #(a) = #(8),

where #(«) is the number of parts of o and #() is the number of parts
of 8. For examples, see Table 1.

We define Ry (m,n) to be the number of k-restricted overpartitions
of n having birank m, and Ry(r, m,n) to be the number of k-restricted
overpartitions of n having birank congruent to » mod m.

The following theorem is a direct consequence of Theorem 2.1 in [5].

Theorem 5.3. We have

Rsp—1(0,5,5n+j) = R5—1(1,5, 5n+j) = Rsp—1(2,5,5n+j), j=2,3,4.
(We are unable to find the relations between Rsx_1(a, 5, 5n+b) where

a=0,1,2and b=0,1.)

Theorem 5.4. We have

(36) R5k_2(0, 5,on + 2) = R5k_2(1, 5,on + 2) = R5k_2(2, 5,on + 2),
(37) R5k(05 57 5n + 4) = R5k(17 57 on + 4) = R5k(2a 57 5n + 4)
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TABLE 1. The case for k=5 and n = 4.

A (a, B) =6(N) r5(A) (mod 5)
4 (4,2) 1
4 (2,4) 4
3+1 (3+1,2) 2
3+1 (3,1) 0
3+1 (1,3) 0
3+1 (2,3+1) 3
2+2 (2+2,9) 2
2+2 (2,2+2) 3
2+2 (2,2) 0
2+1+1 (2+1+1,2) 3
2+1+1 (2,1+1) 4
2+1+1 (2+1,1) 1
2+1+1 (1+1,2) 1
2+1+1 (@,2+1+1) 2
2+1+1 (1,241) 4
1+1+141 (1+1+1+1,9) 4
I1+1+1+1 (9,1+1+1+1) 1
1+1+1+1 (1,14+1+1) 3
1+1+1+1 (1+1,1+1) 0
T+14+14+1 (1+141,1) 2

Proof. We can see that the generating function for Ry (m,n) is given
by

oo S} (qk+1;qk+1)oo
ag R m,n qun — .
(38) Z Z K ) (2¢; Q) oo (27145 @) oo

m=—oo n=0
Applying Lemma 2.7 by substituting z = ¢ = €7/ to (38) gives

’ ’ (q5’q20;q25)00 (q107q15§q25>oo

m=—oo0 n=0

To simplify notation, we define

R, = Z R(x,5,n)q".
n=0
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We have

> > Ri(mn)("q" = Ro+CRi+(*Ro+ PRy + (" Ry,

m=—oo n=0

Since (2 =1-(—-¢>—(* Ry = Ry and Ry = R3, we get

(39) Ro—Ro+ ((+ (") (R1— Ro)

(¢ ¢ o (€@ 4o
(65,429 %) (q19, q%5; ¢25) o

For some non-negative integer k', (36) and (37) are the cases when

k=5k'+3 and k =5k’, respectively. Using Theorem 2.1 and substituting
k =5k’ + 3, the right-hand side of (39) becomes

o0

(40) Z (_l)nq(5k’+4)(3n2—n)/2
n=-—oo 1 1 q
) ((q57q20;q25)oo Tl )(qlo,ql"’;q%)oo)’

Note that all possibilities of (5%’ + 1)(3n% —n)/2 are 0,3,4 (mod 5).
Substituting k = 5k" + 3 to the left-hand side of (39) then extracting
coefficients of ¢°™*2 in (40) gives us (36). With a similar argument, we
get (37). This completes the proof. O

6. Closing remarks. By analyzing some values of pi(n) via Maple,
we find a Ramanujan type congruence modulo 7 for py(n).

Conjecture 6.1. The following congruence holds:

P4(Tn+6) =0 (mod 7).

Thus, it will be interesting to introduce a new birank that could
provide a combinatorial interpretation of ps(7n+6) =0 (mod 7).
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