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SOLVABILITY OF THE MIXED PROBLEM
OF A HIGH-ORDER PDE WITH FRACTIONAL TIME

DERIVATIVES, STURM-LIOUVILLE OPERATORS
ON SPATIAL VARIABLES AND NON-LOCAL

BOUNDARY CONDITIONS

ONUR ALP İLHAN, SHAKIRBAY G. KASIMOV, UMRBEK S. MADRAXIMOV
AND HACI M. BASKONUS

ABSTRACT. In this paper, we study the solvability of
a mixed problem of a partial differential equation of high
order with fractional derivatives with respect to time and
with Sturm-Liouville operators with spatial variables and
non-local boundary conditions; the solution is found as a
series of eigenfunctions of the Sturm-Liouville operator with
non-local boundary conditions.

1. Introduction. The spectral theory of operators finds numerous
applications in various fields of mathematics and its applications.

An important part of the spectral theory of differential operators is
the distribution of their eigenvalues. This classical question was studied
for a second-order operator on a finite interval by Liouville and Sturm.
Later, G.D. Birkhoff [2, 3, 4] studied the distribution of eigenvalues for
an ordinary differential operator of arbitrary order on a finite interval
with regular boundary conditions.

For quantum mechanics, it is especially interesting to distribute the
eigenvalues of operators defined throughout the space and having a
discrete spectrum. E.C. Titchmarsh [16, 17, 18, 19, 20] was the first
to rigorously establish the formula for the distribution of the number of
eigenvalues for a one-dimensional Sturm-Liouville operator on the whole
axis with a potential growing at infinity. He also first strictly established
the distribution formula for the Schrödinger operator. B.M. Levitan
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[9, 10, 11] deserves much credit for the improvement of the method of
E.C. Titchmarsh.

In solving many problems of mathematical physics, there arises the
need for the expansion of an arbitrary function in a Fourier series with
respect to the Sturm-Liouville eigenvalues. The so-called regular case
of the Sturm-Liouville problem corresponding to a finite interval and a
continuous coefficient of the equation has been studied for a relatively
long time and is usually described in detail in the manuals on the
equations of mathematical physics and integral equations.

The Sturm-Liouville problem for the so-called singular case, as well
as with non-local boundary conditions, is much less known.

As it is known, so-called fractal media are studied in solid state
physics, in particular, the diffusion phenomena in them. In one of the
models, the diffusion in a strongly porous medium is described by the
heat conduction equation, but with a fractional derivative with respect
to the time coordinate. In recent years, many authors have studied on
fractional differential equations in [5, 1, 15, 7]

2. Formulation of the problem. In this work, we consider the
equation of the form

(2.1) Dα
0tu(x, t) +

(
− ∂2

∂x2
+ q(x)

)m
u(x, t) = f(x, t),

p− 1< α≤ p, p,m ∈N,

with the initial conditions

(2.2) lim
t→0

Dα−k
0t u(x, t) = ϕk(x), k = 1, 2, . . . , p

and the boundary conditions

(2.3) α
∂2iu(0, t)

∂x2i
+β

∂2iu(π, t)

∂x2i
= 0,

β
∂2i+1u(0, t)

∂x2i+1
+α

∂2i+1u(π, t)

∂x2i+1
= 0, i= 0, 1, . . . ,m− 1,

where the functions f(x, t), ϕk(x), k = 1, 2, . . . , p are functions that can
be expanded in terms of the system of eigenfunctions {yn(x), n ∈ Z} of
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the spectral problem

−y′′(x) + q(x)y(x) = λy(x),(2.4)

αy(0) +βy(π) = 0, βy′(0) +αy′(π) = 0.(2.5)

Here for α < 0, the fractional integral Dα has the form

Dα
atu(x, t) =

sign(t− a)

Γ(−α)

∫ t

a

u(x, τ) · dτ
|t− τ |α+1 ,

Dα
atu(x, t) = u(x, t) for α= 0, and for p−1<α≤ p, p∈N , the fractional

derivative has the form

Dα
atu(x, t) = signp(t− a)

dp

dtp
Dα−p
at u(x, t)

=
signp+1(t− a)

Γ(p−α)

dp

dtp

∫ t

a

u(x, τ) · dτ
|t− τ |α−p+1 .

We assume that q(x) is sufficiently smooth on the segment [0, π] and
q(x)≥ 0.

In [7], the problem (2.1), (2.2), (2.3) in case m= 1 were considered.

3. Preliminaries. The spectral problem (2.4) and (2.5) was studied
by many authors in the case of |α|= |β| (see, for example, [12, 14, 13,
8]). In order to simplify calculations, we confine ourselves to the case
of |α| 6= |β|, α 6= 0, β 6= 0.

Theorem 3.1. Let α 6= 0, β 6= 0, |α| 6= |β| be real numbers, and

ρ=

√
θ2 + 2(θ/

√
2 + (ϕ+ 1)s− 1)2 ·σ(s)< 1,

where σ(0) = 1/
√

2, σ(s) = 1 for s > 0,

θ =
√

2 · max
x∈[0,π]

|eiϕx− 1|, λn = s2n, sn = 2n+ εn ·ϕ,

ϕ=
1

π
arccos

−2αβ

α2 +β2
, εn = ε−n =±1,

for n ∈ Z. Then the system of eigenfunctions

yn(x) =

√
2

π
· β cos snx+ εn · sign(β2−α2) ·α sin snx√

α2 +β2 ·
√

1 + |sn|2s
, n ∈ Z,



1194 İLHAN, KASIMOV, MADRAXIMOV AND BASKONUS

of the spectral problem (2.4) and (2.5) forms at q(x) = 0 the complete
system in the Sobolev classes W s

2 (0, π).

Theorem (3.1) is proved in [6].

Lemma 3.2. The operator

Ly =−y′′+ q(x)y

with the domain

D(L) =
{
y(x) : y(x) ∈ C2(0, π)∩C1[0, π],

y′′ ∈ L2[0, π], αy(0) +βy(π) = 0, βy′(0) +αy′(π) = 0
}

is a symmetric operator in the classes L2(0, π).

Proof. In fact, since f and g belong to D(L), we obtain Lf ∈L2(0, π),
Lg = Lg ∈ L2(0, π), and the second Green formula∫

G

(Lu · v−u ·Lv) dx=−
∫
∂G

(
∂u

∂n
· v−u · ∂v

∂n

)
ds

at u= f and v = g takes the form∫ π

0

(Lf(x)g(x)− f(x)Lg) dx=−(f ′(x)g(x)− f(x)g′(x))
∣∣π
0
.

Further, functions f and g satisfy the boundary conditions as follows:

αf(0) +βf(π) = 0, βf ′(0) +αf ′(π) = 0,

αg(0) +βg(π) = 0, βg′(0) +αg′(π) = 0.

By assumption, α 6= 0 and β 6= 0. Therefore

f(0) · g(π)− f(π) · g(0) = 0

and
f ′(0) · g′(π)− f ′(π) · g′(0) = 0,

i.e., f(0) · g(π) = f(π) · g(0) and f ′(0) · g′(π) = f ′(π) · g′(0). Thus,

f(π)

f(0)
=
g(π)

g(0)
= k0 =−α

β
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and
f ′(π)

f ′(0)
=
g′(π)

g′(0)
= k1 =−β

α
, k0 · k1 = 1.

So f(π) =k0 ·f(0), g(π) =k0 ·g(0), and f ′(π) =k1 ·f ′(0), g′(π) =k1 ·g′(0).
Thus,∫ π

0

(Lf(x)g(x)− f(x)Lg) dx

=−(f ′(x) · g(x)− f(x) · g′(x))
∣∣π
0

=−(f ′(π) · g(π)− f(π) · g′(π)) + (f ′(0) · g(0)− f(0) · g′(0))

=−(f ′(0) · g(0)− f(0) · g′(0)) + (f ′(0) · g(0)− f(0) · g′(0)) = 0.

So, (Lf, g) = (f, Lg) for any f, g ∈D(L). �

Lemma 3.3. The eigenfunctions y(x) and z(x) of the operator L
corresponding to eigenvalues λ and µ are orthogonal if λ 6= µ.

Proof. Let y(x) be an eigenfunction of L corresponding to λ, and
z(x) be an eigenfunction of L corresponding to µ. It means that

Ly = λy, Lz = µz.

We obtain from here

(Ly, z) = (λy, z) = λ(y, z),

(y, Lz) = (y, µz) = µ(y, z).

But (Ly, z) = (y, Lz). Particularly, (Ly, y) = (y, Ly) = (Ly, y). Hence,
(Ly, y) is a real number. That’s why all eigenvalues of the symmetric
operator L are real, and subtracting term by term previous two equalities,
we obtain

(λ−µ)(y, z) = 0, λ 6= µ,

and (y, z) = 0. �

Rewrite the equation (2.4) in the form

y′′+ s2ny = (s2n + q(x)−λ)y.
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If we denote f(x) = (s2n + q(x)−λ)y(x) where

sn = 2n+ εnϕ, ϕ=
1

π
arccos

−2αβ

α2 +β2
, εn =±1, ε−n = εn, n ∈ Z,

yn(x) =
1√
π

1√
α2 +β2

(β cos snx+ εnsign(β2−α2)α sin snx),

we obtain the boundary value problem

y′′+ s2ny = f(x),(3.1)

αy(0) +βy(π) = 0,

βy′(0) +αy′(π) = 0.
(3.2)

The general solution of the homogeneous equation corresponding to
(3.1) has the form

y = C1 cos snx+C2 sin snx.

We look for a solution of (3.1) in the form

(3.3) y = C1 cos snx+C2 sin snx,

where C1 = C1(x), C2 = C2(x) are still unknown functions of x. We
obtain the following system to determine them:

C ′1 cos snx+C ′2 sin snx= 0,

C ′1 sin snx−C ′2 cos snx=− 1

sn
f(x).

Solving the system with respect to C ′1(x), C ′2(x), we get

C ′1 =− 1

sn
f(x) sin snx, C ′2 =

1

sn
f(x) cos snx;

what follows is

C1 =A1−
1

sn

∫ x

0

f(τ) sin snτ dτ, C2 =A2 +
1

sn

∫ x

0

f(τ) cos snτ dτ,

where A1, A2 are arbitrary constants. Substituting the found values of
C1(x) and C2(x) in (3.3), we obtain the general solution of (3.1):

y(x) = yn(x) +A1 cos snx+A2 sin snx+
1

sn

∫ x

0

sin sn(x− τ)f(τ) dτ,

where A1, A2 are arbitrary constants.
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Since f(x) = (s2n + q(x)−λ)y(x), we obtain the integral equation

(3.4) y(x) = yn(x) +A1 cos snx+A2 sin snx

+
1

sn

∫ x

0

sin sn(x− τ)(s2n + q(τ)−λ)y(τ) dτ.

We get

y(0) = yn(0) +A1,

y(π) = yn(π) +A1 cosπsn +A2 sinπsn

+
1

sn

∫ π

0

sin sn(π− τ)(s2n + q(τ)−λ)y(τ) dτ,

y′(0) = y′n(0) + snA2,

y′(π) = y′n(π)− snA1 sinπsn + snA2 cosπsn

+

∫ π

0

cos sn(π− τ)(s2n + q(τ)−λ)y(τ) dτ.

Then the condition (3.2) takes the form

αy(0) +βy(π)

= αA1 +βA1 cosπsn +βA2 sinπsn

+
β

sn

∫ π

0

sin sn(π− τ)(s2n + q(τ)−λ)y(τ) dτ = 0,

βy′(0) +αy′(π)

= βsnA2−αsnA1 sinπsn +αsnA2 cosπsn

+α

∫ π

0

cos sn(π− τ)(s2n + q(τ)−λ)y(τ) dτ = 0,

i.e., we obtain the following system of non-homogeneous linear equations
for the determination of A1 and A2:

(3.5)

(α+β cosπsn)A1 +β sinπsnA2

=− β

sn

∫ π

0

sin sn(π− τ)(s2n + q(τ)−λ)y(τ) dτ,

−α sinπsnA1 + (β+α cosπsn)A2

=− α

sn

∫ π

0

cos sn(π− τ)(s2n + q(τ)−λ)y(τ) dτ.
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The determinants of this system are

∆ = 2αβ+ (α2 +β2) cosπsn = 0,

∆1 =
β

sn

∫ π

0

[α sin snτ −β sin sn(π− τ)](s2n + q(τ)−λ)y(τ) dτ,

∆2 =
−α
sn

∫ π

0

[β cos snτ +α cos sn(π− τ)](s2n + q(τ)−λ)y(τ) dτ.

In the case of q(x) = 0 the system of equations is homogeneous at
λn = s2n, and hence, non-trivial solutions of the problem (2.4), (2.5) are
possible only at

∆ = 2αβ+ (α2 +β2) cosπsn = 0.

Eigenvalues and eigenfunctions in this case were studied in [6].

When q(x) 6= 0, ∆ = 0, the system (3.5) is compatible, and hence,
non-trivial solutions of the problem (2.4), (2.5) are possible only at

∆1 =
β

sn

∫ π

0

[α sin snτ −β sin sn(π− τ)](s2n + q(τ)−λ)y(τ) dτ = 0,

∆2 =
−α
sn

∫ π

0

[β cos snτ +α cos sn(π− τ)](s2n + q(τ)−λ)y(τ) dτ = 0.

Therefore,

λn = s2n +

∫ π
0

(α sin snτ −β sin sn(π− τ))q(τ)yn(τ) dτ∫ π
0

(α sin snτ −β sin sn(π− τ))yn(τ) dτ
,

λn = s2n +

∫ π
0

(β cos snτ +α cos sn(π− τ))q(τ)yn(τ) dτ∫ π
0

(β cos snτ +α cos sn(π− τ))yn(τ) dτ
.

And the following relation is valid:∫ π
0

(α sin snτ −β sin sn(π− τ))q(τ)yn(τ) dτ∫ π
0

(α sin snτ −β sin sn(π− τ))yn(τ) dτ

=

∫ π
0

(β cos snτ +α cos sn(π− τ))q(τ)yn(τ) dτ∫ π
0

(β cos snτ +α cos sn(π− τ))yn(τ) dτ
.

Applying the Fredholm theory for integral equations with continuous
kernels, we obtain that the problem on eigenvalues (2.4),(2.5) has at
most a countable number of eigenvalues {λn}n∈Z that do not have
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a finite limit point. Further, similarly to the case of local boundary
conditions, one can obtain the following asymptotical formulas:√

λn = sn +
c0
sn

+
c1
s3n

+O

(
1

s4n

)
,

where c0, c1 are constants (see, for example in [12]). This implies that
there exists a constant M > 0 such that the inequalities

|λn− s2n| ≤M

hold. Since

A2 =
1

β sinπsn

×
[
− β

sn

∫ π

0

sin sn(π−τ)(s2n+q(τ)−λn)yn(τ) dτ−(α+β cosπsn)A1

]
,

A2 =
1

(β+α cosπsn)

×
[
− α

sn

∫ π

0

cos sn(π−τ)(s2n+q(τ)−λn)yn(τ) dτ+α sinπsnA1

]
,

we obtain the equation

[−(β+α cosπsn)(α+β cosπsn)−αβ sin 2πsn]A1

= β sinπsn

[
− α

sn

∫ π

0

cos sn(π− τ)(s2n + q(τ)−λn)yn(τ) dτ

]
+ (β+α cosπsn)

[
β

sn

∫ π

0

sin sn(π− τ)

× (s2n + q(τ)−λn)yn(τ) dτ

]
.

We have

A1 = β sinπsn

[
− α

sn

∫ π

0

cos sn(π− τ)(s2n + q(τ)−λn)yn(τ) dτ

]
+ (β+α cosπsn)

[
β

sn

∫ π

0

sin sn(π− τ)

×(s2n + q(τ)−λn)yn(τ) dτ

]
.
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Further, A1 is an arbitrary constant, and we have

β sinπsn

[
− α

sn

∫ π

0

cos sn(π− τ)(s2n + q(τ)−λn)yn(τ) dτ

]
+ (β+α cosπsn)

[
β

sn

∫ π

0

sin sn(π− τ)(s2n + q(τ)−λn)yn(τ) dτ

]
= 0.

Hence, we obtain from solutions (3.4),

yn(x) = yn(x) +A1[β sin sn(π−x)−α sin snx]
1

β sinπsn

− sin snx

sinπsn

∫ π

0

sin sn(π− τ)(s2n + q(τ)−λn)yn(τ) dτ

+
1

sn

∫ x

0

sin sn(x− τ)(s2n + q(τ)−λn)yn(τ) dτ.

We take A1 = 0. Then

(3.6) yn(x) = yn(x) +
1

sn

[∫ x

0

sin sn(x− τ)(s2n + q(τ)−λn)yn(τ) dτ

− sin snx

sinπsn

∫ π

0

sin sn(π− τ)(s2n + q(τ)−λn)yn(τ) dτ

]
.

Let σn = max0≤x≤π|yn(x)|. Then (3.6) implies

σn ≤ 2 +
σn
|sn|
·C ·

(
1 +

∫ π

0

|q(τ)| dτ
)
,

where C is a positive constant. There exists a number n0 such that

1− C

|sn|

(
1 +

∫ π

0

|q(τ)| dτ
)
> 0 for n≥ n0.

That’s why for n≥ n0, the inequalities

σn ≤
2

1−C/|sn|
(
1 +

∫ π
0
|q(τ)| dτ

) ≤ constant

are valid, i.e., |yn(x)|≤constant or yn(x)=O(1/n) at n→∞. Returning
again to (3.6), we obtain

|yn(x)− yn(x)| ≤ M1

sn
,

i.e., yn(x) = yn(x) +O(1/n) at n→∞.
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Theorem 3.4. Let α 6= 0, β 6= 0, |α| 6= |β| be real numbers, and

θ =
√

2 · max
x∈[0,π]

|eiϕx− 1|< 1, sn = 2n+ εn ·ϕ,

ϕ=
1

π
arccos

−2αβ

α2 +β2
, εn = ε−n =±1,

at n ∈ Z. Then the system of eigenfunctions

yn(x) =
1√
π
· β cos snx+ εn · sign(β2−α2) ·α sin snx√

α2 +β2
+O

(
1

n

)
, n∈Z,

of the spectral problem (2.4), (2.5) forms the complete orthogonal system
in classes L2(0, π).

Proof. Since the system of functions

yn(x) =
1√
π
· β cos snx+ εn · sign(β2−α2) ·α sin snx√

α2 +β2
, n ∈ Z,

forms the complete orthonormal system in the Hilbert space L2(0, π),
and the system of orthogonal eigenfunctions

yn(x) =
1√
π
· β cos snx+ εn · sign(β2−α2) ·α sin snx√

α2 +β2
+O

(
1

n

)
, n∈Z,

of the spectral problem (2.4), (2.5) is quadratically close to the system
{yn(x)}n∈Z in classes L2(0, π), what, according to N.K. Barry theorem,
implies that the system of eigenfunctions {yn(x)}n∈Z of the spectral
problem (2.4), (2.5) forms the Riesz basis in the class L2(0, π). Since
the system {yn(x)}n∈Z of the spectral problem (2.4), (2.5) is orthogonal,
we obtain orthogonality of this system in classes L2(0, π). �

4. Main results. In this section, we will give the most general case
of the works done in [7].

Theorem 4.1. Let α 6= 0, β 6= 0, |α| 6= |β| be real numbers, and

θ =
√

2 · max
x∈[0,π]

|eiϕx− 1|< 1, sn = 2n+ εn ·ϕ,

ϕ=
1

π
arccos

−2αβ

α2 +β2
, εn = ε−n =±1,
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at n ∈ Z. Then the solution of the problem (2.1), (2.2), (2.3) exists, it
is unique and is represented in the form of the series

(4.1) u(x, t) =

∞∑
n=−∞

[ p∑
k=1

ϕknt
α−kEα,α−k+1(−λn · tα)

+

∫ t

0

(t− τ)α−1 ·Eα,α[−λn(t− τ)α]fn(τ) dτ

]
· yn(x),

where the coefficients are determined by

Eα,α−k+1(−λn · tα) =

∞∑
j=0

(−λn · tα)j

Γ(αj+α− k+ 1)
,

Eα,α(−λn · (t− τ)α) =

∞∑
j=1

(−λn)j−1 · (t− τ)α(j−1)

Γ(α · j)
,

f(x, t) =

∞∑
n=−∞

fn(t) · yn(x),

ϕk(x) =

∞∑
n=−∞

ϕkn · yn(x), k = 1, 2, . . . , p.

Proof. Since the system of functions {yn(x)}n∈Z is a complete
orthogonal system in classes L2(0, π), any function from L2(0, π) can
be represented as a convergent Fourier series in this system. For any
t > 0, expand the solution u(x, t) of the problem (2.1), (2.2), (2.3) into
the Fourier series in eigenfunctions {yn(x)}n∈Z of the spectral problem
(2.4), (2.5):

(4.2) u(x, t) =

∞∑
n=−∞

Tn(t) · yn(x), Tn(t) = (u(x, t), yn(x)).

In view of (2.1) and (2.2), unknown functions Tn(t) must satisfy the
equation

(4.3) Dα
0tTn(t) +λnTn(t) = fn(t), p− 1< α≤ p, p ∈N,

with initial conditions

(4.4) lim
t→0

Dα−k
0t Tn(t) = ϕkn, k = 1, 2, . . . , p, n ∈ Z.
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The solution of the Cauchy problem (4.3), (4.4) has the form

(4.5) Tn(t) =

p∑
k=1

ϕknt
α−kEα,α−k+1(−λn · tα)

+

∫ t

0

(t− τ)α−1 ·Eα,α[−λn(t− τ)α]fn(τ) dτ,

where coefficients are determined by

Eα,α−k+1(−λn · tα) =

∞∑
j=0

(−λn · tα)j

Γ(αj+α− k+ 1)
,

Eα,α(−λn · (t− τ)α) =

∞∑
j=1

(−λn)j−1 · (t− τ)α(j−1)

Γ(α · j)
.

After substituting (4.5) into (4.2), we obtain the unique solution of the
problem (2.1), (2.2), (2.3) in the form of the series (4.1).

Let m > 1. Consider the mixed problem (2.1), (2.2), (2.3). If we
look for a solution u(x, t) to problem (2.1), (2.2), (2.3) in the form of a
Fourier series expansion:

u(x, t) =

∞∑
n=1

Tn(t) · vn(x),

where Tn(t)=(u(x, t), vn(x)) are the coefficients of the series, {vn(x)}∞n=1

is the system of eigenfunctions of the spectral problem(
− d2

dx2
+ q(x)

)m
v(x) = µv(x),(4.6)

α
∂2iv(0)

∂x2i
+β

∂2iv(π)

∂x2i
= 0,

β
∂2i+1v(0)

∂x2i+1
+α

∂2i+1v(π)

∂x2i+1
= 0, i= 0, 1, . . . ,m− 1,

(4.7)

where µ is a constant introduced via separation of variables.

The differential operator Lm is generated by the differential expression
l(m)(v(x)) = (−d2/dx2 + q(x))mv(x) on



1204 İLHAN, KASIMOV, MADRAXIMOV AND BASKONUS

D(L) =

{
v(x) : v(x) ∈ C2m(0, π)∩C2m−1[0, π], l(m)(v(x)) ∈ L2[0, π],

α
∂2iv(0)

∂x2i
+β

∂2iv(π)

∂x2i
= 0,

β
∂2i+1v(0)

∂x2i+1
+α

∂2i+1v(π)

∂x2i+1
= 0, i= 0, 1, . . . ,m− 1

}
.

Similarly, as in Lemma 3.2 it can be shown that the operator Lm is
a symmetric and positive operator in space L2(0, π).

The eigenvalues of problem (4.6), (4.7) for µn ≥ 0 and each µn =
λmn corresponds to one eigenvalue of problem (2.4), (2.5), and the
eigenfunctions {vn(x)}∞n=1 of problem (4.6), (4.7) and eigenfunctions
{yn(x)}∞n=1 of problem (2.4), (2.5) coincide, i.e., vn(x) ≡ yn(x) for
n ∈N . �

Theorem 4.2. Let α 6= 0, β 6= 0, |α| 6= |β| be real numbers, and

θ =
√

2 · max
x∈[0,π]

|eiϕx− 1|< 1, sn = 2n+ εn ·ϕ,

ϕ=
1

π
arccos

−2αβ

α2 +β2
, εn = ε−n =±1,

at n ∈ Z. Then the solution of the problem (2.1), (2.2), (2.3) exists, it
is unique and is represented in the form of the series

(4.8) u(x, t) =

∞∑
n=−∞

[ p∑
k=1

ϕknt
α−kEα,α−k+1(−λmn · tα)

+

∫ t

0

(t− τ)α−1 ·Eα,α[−λmn (t− τ)α]fn(τ) dτ

]
· yn(x),

where the coefficients are determined by

Eα,α−k+1(−λmn · tα) =

∞∑
j=0

(−λmn · tα)j

Γ(αj+α− k+ 1)
,

Eα,α(−λmn · (t− τ)α) =

∞∑
j=1

(−λmn )j−1 · (t− τ)α(j−1)

Γ(α · j)
,
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f(x, t) =

∞∑
n=−∞

fn(t) · yn(x),

ϕk(x) =

∞∑
n=−∞

ϕkn · yn(x), k = 1, 2, . . . , p.

5. Conclusion. We have studied the solvability of the mixed prob-
lem of a partial differential equation of high order with fractional
derivatives with respect to time and with Sturm-Liouville operators
with spatial variables and non-local boundary conditions. The solution
is found in the form of a series of eigenfunctions of the Sturm-Liouville
operator with non-local boundary conditions.
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