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ON THE ROOTS OF THE GENERALIZED
ROGERS-RAMANUJAN FUNCTION

PABLO A. PANZONE

ABSTRACT. We give simple proofs of the fact that, for
certain parameters, the roots of the generalized Rogers-
Ramanujan function are irrational numbers and, for exam-
ple, that at least one of the following two numbers is irra-

tional: {
∑∞

n=1 Fn/(mn
∏n−1

i=0 ϕ(k + i)),
∑∞

n=1 Fn/(mn
∏n−1

i=0
ϕ(k+ i+ 1))}, where Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1 (the

Fibonacci sequence), m is a natural number > (1 +
√
5)/2

and ϕ(k) is any function taking positive integer values such
that lim supk→∞ ϕ(k) = ∞.

1. Introduction and results. The irrationality of π was first
proven by J.H. Lambert in 1761 using the continued fraction for the
function tanx. Nowadays, proofs avoid the use of continued fractions
and use a variant of Hermite’s ideas; a proof of this type was given by
I. Niven [3]. Laczkovich’s proof of the irrationality of π presented in
[5] is particularly simple and contains ideas from [6].

The aim of this note is to give short proofs of two irrationality
theorems, both inspired by Laczkovich’s proof. In fact, we use ideas
that are of an elementary nature. It may be said that the crux of
Laczkovich’s proof is based upon the existence of a one-parameter
family satisfying a certain recursion. In order to prove our theorems,
we follow the same path using three one-parameter families, namely,
(1.1), (1.3) and (1.4).

Our first and most important result is a general theorem which
implies that, for certain parameters, the roots of the generalized Rogers-
Ramanujan function are irrational numbers.

We writeQ := a1a
2
2 · · · arr, for short, and define fk = fk(x, a1, . . . , ar)

by
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(1.1)

fk :=
∞∑

n=0

1

a
nk+(n(n−1)/2)
1 · · · arnk+rn2/2+n(1−(3r/2))

r

xn∏n
i=1(1−Qi)

,

where, if n = 0, it is understood that
∏n

i=1(1−Qi) = 1.

The following theorem holds.

Theorem 1.1. Assume that ai ∈ Z and |a1 · · · ar| ≥ 2. If x ̸= 0 is
a rational number and k = 0, 1, 2, . . . , then fk ̸= 0 and fk+1/fk is
irrational.

Corollary 1.2. Assume that 1/q = ±2,±3, . . . , and k = 0, 1, 2, . . . . If
a real number x0 satisfies

(1.2) 1 +
∞∑

n=1

xn
0 q

n2+kn

(1− q) · · · (1− qn)
= 0,

then x0 is irrational.

The function appearing in (1.2) is the generalized Rogers-Ramanujan
function, see [1, 2, 4]. Observe that (1.2) can be written as
fk(−x0, 1/q) = 0, and therefore, the conclusion follows from Theo-
rem 1.1.

Note that

f0(−1, 1/q) = 1 +

∞∑
n=1

qn
2

(1− q) · · · (1− qn)

=
∞∏

n=0

1

(1− q5n+1)(1− q5n+4)

and

f1(−1, 1/q) = 1 +

∞∑
n=1

qn
2+n

(1− q) · · · (1− qn)

=
∞∏

n=0

1

(1− q5n+2)(1− q5n+3)

are the Rogers-Ramanujan functions, see [2], [4, page 78].
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In order to state the next theorem, we need to define the functions
hk and gk.

Definition 1.3.

(i) If A,B are real numbers, let Fn be recursively defined by

Fn = A(Fn−1 −BFn−2),

for 2 ≤ n, with initial values F0 = 0, F1 = 1.

Let ϕ(k) be a function taking non-zero real values and whose domain
is N

∪
{0}. If k = 0, 1, 2, . . . , we set

(1.3) hk := hk(x) =
∞∑

n=1

Fnx
n∏n−1

i=0 ϕ(k + i)
.

(ii) Let η(k), ϕ(k) be two functions taking non-zero real values and
whose domain is N

∪
{0}. If k = 0, 1, 2, . . . , we set

gk := gk(x)

(1.4)

=
∞∑

n=1

xn {ϕ(k)+ϕ(k)ϕ(k + 1)+· · ·+ϕ(k)ϕ(k+1) · · ·ϕ(k+n−1)}∏n−1
i=0 η(k+i)

.

By looking at the coefficient xn of hk, it can be observed that,
formally, the following recursion holds

(1.5)
B

ϕ(k + 1)
x2hk+2 = xhk+1 −

ϕ(k)

A
hk +

x

A
.

Similarly, gk formally satisfies

(1.6)
η(k)

ϕ(k)
gk −

{
1 +

1

ϕ(k + 1)

}
xgk+1 +

1

η(k + 1)
x2gk+2 = x.

The following theorem holds.

Theorem 1.4.

(i) In the definition of hk, let A,B, x be rational non-zero numbers
such that 1/xB and 1/x2AB are integers. Assume also that ϕ(k) takes
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positive integer values, 0 < x and 0 ≤ Fn for all n, and at least one of
the two following conditions hold :

(a) limk→∞ ϕ(k) = ∞;
(b) lim supk→∞ ϕ(k) = ∞, and there exists an x0 > x such that∑∞

1 Fnx
n
0 converges.

Then, for any k = 1, 2, . . . , at least one of {hk(x), hk+1(x)} is an
irrational number.

(ii) In the definition of gk, assume that η(k) = PkQk, ϕ(k) =
Pk−1/Rk, where Pk, Qk, Rk are positive integers for all k and limi→∞ Qi

= ∞. Furthermore, assume that supk Pk−1/RkPk ≤ M for some
1 ≤ M . Then, at least one of {gk(1/m), gk+1(1/m)} is irrational for
any m = 1, 2, 3, . . . ; k = 0, 1, 2, . . . .

Remark 1.5.

(1) As we shall see, gk is an entire function and, in the case where
condition (a) holds, the same is true for hk.

(2) The result of the abstract follows by taking A = 1, B = −1 and

x = 1/m in (b) and observing that
∑∞

1 Fnx
n
0 converges if (1 +

√
5)/2 <

1/x0.

(3) The next example follows from (ii). Let Pk and Rk be two
sequences of positive integers such that Pk−1/Pk is bounded (this is
satisfied, for example, if Pk is non-decreasing) and Q0 = 2, Q1 =
3, Q2 = 5, Q3 = 7, . . . (that is, Qk is the k + 1 prime). Then, at least
one of {g0(1), g1(1)} is irrational.

2. Proof of Theorem 1.1.

Claim 1. If fk is defined by (1.1), then the following recursion holds

(2.1) fk+1 − fk = xfk+2
1

ak+1
1 · · · ark+1

r

.

In fact, the coefficient of xn in the expression fk+1 − fk is

1

Qnka
n(n−1)/2
1 · · · arn

2/2+n(1−(r3/2))
r

∏n
i=1(1−Qi)

(
1

Qn
− 1

)
=

1

Qnk+na
n(n−1)/2
1 · · · arn

2/2+n(1−(r3/2))
r

∏n−1
i=1 (1−Qi)

,
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which is the coefficient of xn of

xfk+2
1

ak+1
1 · · · ark+1

r

= xfk+2
1

Qka1 · · · ar
.

Claim 2. We have that fk → 1 if k → ∞. In fact, by hypothesis,
ai ∈ Z and |a1 · · · ar| ≥ 2. For simplicity, assume that 2 ≤ |a1|; the
other cases are similar. Then,

|fk − 1| ≤ |x|
2k

+ · · ·+ |x|n

2nk+n(n−1)/2
+ · · · = O

(
1

2k

)
,

and the claim follows.

Claim 3. Let C ̸= 0 be a natural number such that C/x is a non-zero
integer. Recall that |Q| ≥ 2. Take a fixed natural number i ≥ 1 such
that |C/ai1 · · · arir = C/Qi| < 1, and set

Gn := fk+n
Cn

Qin
.

We have Gn → 0 if n → ∞ and Gn ̸= 0 if n is large enough; these facts
follow from Claim 2.

Claim 4. Since C,C/x, ai are all integers, the recursion (2.1) can be
written in terms of Gn more simply as

Gn+2 = SnQ
n−iGn+1 + TnQ

n−2iGn,

if 0 ≤ n, where Sn and Tn are integers; in fact, using (2.1), we obtain

Gn+2 = fk+n+2
Cn+2

Qi(n+2)
= Qk+n a1 · · · ar

x
(fk+n+1 − fk+n)

Cn+2

Qi(n+2)

=

{
Qka1 · · · ar

C

x

}
Qn−iGn+1 +

{
−Qka1 · · · ar

C2

x

}
Qn−2iGn.

Now, the proof of the theorem proceeds as follows. Assume that the
conclusion of the theorem is false; then, we may write fk = Ay and
fk+1 = By for some real non-zero number y and integers A,B. Note
that we allow A,B to be zero. This gives G0 = Ay and G1 = CBy/Qi.
The last recursion yields that G2i, G2i+1 are integer multiples of y/Qj0

for some j0 ≥ 0. However, for n ≥ 2i, the above recursion has integer
coefficients, and therefore, Gn is an integer multiple of y/Qj0 . This is
in contradiction with Claim 3. �
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3. Proof of Theorem 1.4.

(i) Claim 1. We have that hk > 0 for all k. In the case where
condition (a) holds, then hk → 0 if k → ∞. This follows from the
fact that there exists some fixed α > 0 such that 0 ≤ Fnx

n ≤ αn for
all n and such that ϕ(k) → ∞ as k → ∞. This also yields that hk

is an entire function. If condition (b) holds, then hki → 0 for some
subsequence ki → ∞.

Claim 2. Set

Gn :=
hk+n

ϕ(k + n− 1)
.

In any case, we have from Claim 1 that Gnj → 0 for some subsequence
nj → ∞ and Gn ̸= 0 for all n.

Claim 3. The recursion (1.5) can be written in terms of Gn more
simply as

Gn+2 =
ϕ(k + n)

xB
Gn+1 −

ϕ(k + n)ϕ(k + n− 1)

x2AB
Gn +

1

xAB
,

if 0 ≤ n.

Assume that the conclusion of the theorem is false, that is, both hk

and hk+1, 1 ≤ k, are rational numbers. Then, Gn and Gn+1 are both
rational numbers, say, they are integer multiples of 1/D with D ∈ N.
Recall that 1/xB and 1/x2AB are integers and 1/xAB is a rational
number, say, with denominator K ∈ N. Then, the last recursion yields
thatGn is an integer multiple of 1/KD for all n. This is in contradiction
with Claim 2.

(ii) Claim 1. We show that gk, which is a series of positive terms, is
an entire function. It is sufficient to prove that the series (1.4) converges
for any 0 < x.

Next, observe that, if 1 ≤ i ≤ n, then

0 <

∏i−1
j=0 ϕ(k + j)∏n−1
j=0 η(k + j)

=

( i−1∏
j=0

Pk−1+j

Rk+jPk+jQk+j

)
1∏n−1

j=i η(k + j)

≤ Mn∏n−1
j=0 Qk+j

.
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Therefore, if 0 < x, then

0 < gk(x) ≤
Mx

Qk
+ · · ·+ n(Mx)n∏n−1

j=0 Qk+j

+ · · · ,

where this last function converges since limi→∞ Qi = ∞. Thus, gk is
an entire function. In other words, if 0 < x, then 0 ̸= gk(x) → 0 when
k → ∞.

Claim 2. Set

Gn :=
gk+n

η(k + n− 1)
=

gk+n

Pk+n−1Qk+n−1
.

From Claim 1, we obtain that Gn → 0, if n → ∞, and Gn ̸= 0 for all n.

Claim 3. Dividing by x2 and putting k+n instead of k, the recursion
(1.6) can be written in terms of Gn as

η(k + n)η(k + n− 1)

x2ϕ(k + n)
Gn −

{
1 +

1

ϕ(k + n+ 1)

}
η(k + n)

x
Gn+1

+Gn+2 =
1

x
,

or, putting x = 1/m and using the hypothesis, the last can be written
as

m2Pk+nQk+nQk+n−1Rk+nGn

−m(Pk+nQk+n +Qk+nRk+n+1)Gn+1 +Gn+2 = m,

which is a recursion of the form

Gn+2 = Gn+1An +GnBn + Cn,

if 0 ≤ n, where An, Bn, Cn are integers.

In order to prove the theorem, assume that both gk(1/m) and
gk+1(1/m) are rational numbers. Then, G0 and G1 are both rational
numbers, say, they are integer multiples of 1/D with D ∈ N. Then,
the last recursion yields that Gn is an integer multiple of 1/D for all
n. This is in contradiction with Claim 2. �
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