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THE CAUCHY PROBLEM FOR THE DEGENERATE
CONVECTIVE CAHN-HILLIARD EQUATION

AIBO LIU AND CHANGCHUN LIU

ABSTRACT. In this paper, we study the degenerate con-
vective Cahn-Hilliard equation, which is a special case of the
general convective Cahn-Hilliard equation with M (u, Vu) =
diag(0,1,...,1). We obtain the uniform a priori decay esti-
mates of a solution by use of the long-short wave method
and the frequency decomposition method. We prove the
existence of the unique global classical solution with small
initial data by establishing the uniform estimates of the solu-
tion. Decay estimates are also discussed.

1. Introduction. In this paper, we study the following Cauchy
problem of the degenerate convective Cahn-Hilliard equation

u+A2u— Ay A(u) —7-VBu) =0 2/ e R ¢t>0,
(1.1) @
u(z,0) = uo(z),

where A(u) and B(u) are given sufficiently smooth functions, and
7 = (r1,r,...,m,) is a constant vector. Here, A(u) = O(|ul't1),
B(u) = O(|u|?*!) with the same growth property and § > 1 is an
integer. V = (9y,,...,0s,) is the gradient operator, and the notation
Ay = >, 02 denotes the 2’ direction Laplacian operator with
respect to @’ = (z2,23,...,2Ty).

The equation in (1.1) is a special case of the general convective
Cahn-Hilliard equation [7] with M (u, Vu) = diag(0,1,...,1),

(1.2) ug + div[M (u, Vu)V(Au — A(u))] — 7+ VB(u) = 0.
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Heida [7] studied equation (1.2) with M (u, Vu) such that C~1¢|? <
(M(c,d)¢) - € < CIE%, C > 0, for all (¢,d) € R x R™ and all £ € R™.
He proved the existence of solutions for equation (1.2) with dynamic
boundary conditions.

During the past several years, many authors have paid much atten-
tion to the convective Cahn-Hilliard equation. It was Kwek [8] who
first studied equation (1.2) for a special case with constant mobility
and a special convection, namely, M(u) = 1, B(u) = u. Based on
the discontinuous Galerkin finite element method, he proved the exis-
tence of classical solutions. Liu [10] proved the existence and analyzed
asymptotic behavior of classical solutions when M (u) is a constant.
Based on uniform Schauder-type estimates for local in-time solutions
via the framework of Campanato spaces, Liu [11] studied the existence
of weak solutions for the convective Cahn-Hilliard equation with de-
generate mobility. The relevant equations have also been studied in
[4, 5, 6, 13, 14].

Chen, Li and Wang [2, 3] considered the following conservation law
with degenerate diffusion:

up — Apru = divf(u).

They proved the existence of the unique global classical solution for the
initial-boundary value problem and the Cauchy problem.

In this paper, we investigate the existence of solutions. To prove the
existence of classical solutions, the main difficulties are caused by the
equation which is degenerate in the x; direction and the nonlinearity of
A, A(u). The method for the convective Cahn-Hilliard equation with
degenerate mobility, used in [11], seems not applicable to the present
situation. Our method is based on the long-short wave and frequency
decomposition methods. To estimate the low frequency part, we use
Green’s function methods, and to deal with the high frequency part,
we employ energy estimates and a Poincaré-like inequality. For the
standard continuity argument, we obtain the local solution first and
then extend it to a global in-time solution by establishing the uniform
estimates of the solution. For convenience, we suppose that A(u) and
B(u) have the same growth property. If they have a different growth
property, this creates a nonessential complexity.
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Here, we introduce some notation that will be used throughout the
paper. For any non-negative integer k£ and 1 < p < 400, we define the
following anisotropic Sobolev spaces

1/2
el = (T Wl wry )

0<s<k

Now, we state the main results of this paper.

Theorem 1.1. Assume that ! > [n/2] +4, (n—1)(0 —1/2) > 4, and
ug satisfies

lluol| ar.2mny + lluoll atoe mry + ol g1 @ny < do

for some small constant 0 < §g < 1. Then, the problem (1.1) admits a
unique global classical solution u(x,t) satisfying

u(z,t) € L>(]0, 00); Hl(]R)).

Moreover, for any given o and 8 satisfying || <1 and |B| < 1—[n/2]-1,
there exists a constant C > 0, such that

(1.3) |0Su(z, )| < C(1+ t)—[(n—l)/s]—|a/‘/4,
(1.4) 108u(z,t)|| e < C(1 + )~ 1= D/A-IF1/4,

where a = (aq,a’), o = (ag,...,ap), B = (51,0') and 5/ = (P, ...,
Bn)-

This paper is organized as follows. In Section 2, we state some
important lemmas and notation. We prove the existence of local unique
solutions of problem (1.1) for large initial data in Section 3, and then
we give the existence and decay estimates for the global solutions in
Section 4.

2. Some lemmas. In this section, we give some lemmas which will
be used later.

Lemma 2.1 ([9]). If the norms appearing on the right-hand side of
the following inequalities exist, then, for any multi-index o = (o, g,
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.oy am), |al >0, we have

(2.1) (107 (f9)l

L@y < CUfllpe @)

8zag||Lq(R")
+ 105 fll La@myllgll e ®n))

and, for any a = (a1, qa,...,q,) with a; > 1, we have
(2.2) |0z (fg) — oz gl L7 (R™)

SO0, flle@mllOgs - 05 -~ 957 gl Lamy
+ 102 fllLamy lgll r &n))

where 1/r =1/p+1/q, 1 <p, q,7 < +o00.

Lemma 2.2 ([9]). For scalar function w in R"™, let F = F(w) be
a smooth function of w satisfying F(w) = O(|w|**?), for |w| < w,
where 0 > 1 is an integer. Then, for any integer s > 0, if wy,ws €
WYR™)NLP(R™)NL®(R™) and ||wi]lne < vo, ||wal|pe < vo, we have
F(wy) — F(wg) € W"(R™). Furthermore, the following inequalities
hold:

o—
(2.3) [1F(w1)lwer < Cllwsllwsallw | e we|T

(2.4)
[ F(w1) — F(ws)||ws.r

< C(llwillzee + lwzl o)’ [llwr — wellwes (wil| e + w2l r)

+llwr — wal e (Jwillwes + [[wallwes)],

where 1/r = 1/p+1/q, 1 < p, q,r < +oo. In addition, the following
holds:

(25) 08 F(wi)] e < ClOZwr | pallwill e |wi|7 for af <s.
Lemma 2.3 ([1]). Let 0 < p; < py < 4oo. Suppose that w is

measurable on R™ x R™, that w(-,y) € LP2(R™) for almost all y € R™,
and that the function y — |[w(-,y)| ez @m) belongs to LP*(R™). Then,
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the function x — [, w(x,y)dy belongs to LP*(R™) and

</m (/n |w(x,y)lpldy)p2/pldx>1/p2
- (/ (/ Iw(xayﬂmdx)pl/mdy)1/’)1.

Lemma 2.4 ([2]). For scalar function w in R™, let F = F(w) be a
smooth function of w satisfying F(w) = O(|w|**?), for |w| < vy, where
0 > 1 is an integer. If the norms appearing on the right-hand side of
the following inequalities exist, then, for any integer k > 0, we have

0%, F(w)l| L2, ;01 @o-1)) < CllO%, wll 2 [|w]| g lw]| =
and

105, F(w)l| oo =, ;01 en-1)) < Cllwll s [wl g lw]| 2

Lemma 2.5 ([12]). Let o, f and v be positive constants, 0 < 7 < 1,
t > 271. Then
t
(i) / (1+t—5)"%(1+s) " Pds <O(1)(1+t) ™A if max{a, 8} >1;

(ii) /t(l—&-t—s)_a(l—i—s)_ﬂds <O (A+t)*77, if max{a, 8} <1,

a+ 851
t/2
(iii) / (1+t—5)"PA+s)ds <O1)(1+1)"% ifa < B,a <

’y+/67]‘-r;77é1; Orifa<ﬁza§’y+ﬂf]-77:1;
t
(iv) / (1+t—s)P1+s) s < 01+, if a < 7,
t/2
a§7+ﬂ_1757é1; O’f‘if()é<’}/,0[§’y+ﬂ—1,5:]..

3. Local existence. In this section, we shall prove the local exis-
tence of a solution to problem (1.1). For this purpose, we first consider
the following linearized iteration scheme
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u + AZum — V- (A (um ) Vu™)
(3.1) —B'(um™H7- Vu™ =0 t>0,

u™(x,0) = up(z),

with m > 1 and u°(z,t) = 0. For convenience of calculations, we do
not expand the term of V, - (A’ (u™ )V, u™). For a given integer
s > [n/2] + 5, we introduce

X5 = {u(z, 1) | [Jull xor < o0}
as the suitable space for solutions, where

lullxers = sup [l 6)grossan.
0<t<T

It is easy to show that X}H, equipped with norm || - || xs+1, is a non-
empty Banach space. To obtain the local solution, we first claim that
the sequence {u™} is bounded in X3!, ie., that [|[u™|xss1 < D
for some constant D > 0. To prove |[u™|xs+1 < D, we adopt
the inductive method. Clearly, by taking D = 2|jug||fgs+1, we have
|lut(z,t)||xs+1 < D. Now, assuming that |u’(x,t)|xs+1 < D for all
7 <m —1, we need to prove that it holds for j = m.

Lemma 3.1. Assume that T is sufficiently small. Then, there exists
some positive constant D such that ||u™| xs+1 < D.

Proof. Multiplying the equation in (3.1) by wu,,, integrating by parts
with respect to z1, and employing the Cauchy inequality, we see that

d
™ + 2 A

—_9 A/(u'm—l)|vm/u7n|2dx + 2/ Bl(unt—l)r_'/ . vz,umumdx
Rn

+2r1/ B' (™ )0, u™u™dx

= —2/ A (™ |V pu™ Pdz + 2/ B (u™ Y - V™ dx

n

+r / Oz, B'(u™ 1) (u™)?dx

<2 A (™) [z | Varu™ |72



THE CAHN-HILLIARD EQUATION 2601

o _ 1 1

AN )l (G I+ 51T )

+ a0, B (w1 | oo |2
By Lemma 2.2 and the induction hypothesis, we conclude that
d _
20| A7 < Cllum™ o Vo™ 72

o _ 1 1
(32 F I (G 51V )
+ Ol |0, u™ ) oo ™[22
< ODO(|[u™[|2s + |V oru™||2).

On the other hand, by the Gagliardo-Nirenberg interpolation inequality
and the Cauchy inequality, it is easy to obtain that

IVaru™ |72 < Cellu™ |72 + el Apru™ |22
Combining (3.2) and the above estimation, we have
d
Sl Ze + 2lA0u™(|7e < CeD[[u™||7: + eD° | Apru™ 7.
Taking ¢ small enough such that 2 — eD? > 0, we derive

sup [|u™ |22 < Juoll72 +CDT sup [u™|[.
0<t<T 0<7<T

For sufficiently small T', we obtain

sup [[u™|[72 < 2[juoll7: < D.
0<t<T

Now, we establish the higher order estimates. Differentiating the
equation with respect to the x; direction, we know that

h h
; dtna w3 + Al um 3

o (A (W™ NV pu™)0k Vpuda

+/ O (B (u™ Yl - V™)l uMdx

+ - O (B (u™ )10y u™) O uda = 11 + I + I.
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We now estimate the three terms on the right-hand side of the above
formula. Recalling Lemma 2.2, Lemma 2.1 and induction hypothesis,
we obtain

I < 103, (A" (u™ ) Vru™) || 12|07, Varu™ | 2
< Cf0 A (W™ D) L2 [ Varu™ | oe (|05, Voru™|| 2
+ C[IA (@™ ) | oo 103, Varu™ || 12105, Viru™ | 2
< C(1+ D%))|97, Varu™ (|72 + CD*||V ™ || .
Similarly, for I5, we obtain
I < (|07 (B (™ )7 V™) || 2|00, 0™ | 2
< C10%, (B (™ )| 2|V aru™ || o< |0, 0™ || 2
+ O, Varu™ || 2| B (@™ )| o< |05, w™ || 2
< CD¥(|0y, Voru™ |72 + [[Varu™)|[ 3o ) + CllOg, 0™ |[72-
I3 can be split into two parts to avoid the difficulty of degenerate
diffusion in the z; direction as follows:

I3 :/ 8;"1(3’(1; ‘_1)r18$1um)8£1umdx

:/ [OF (B'(u™ M) — B/ (u™ 1ok w0k u™dx

Z1 T1 T

+ B'(u™ 1o w™ 0" u™dx

1 TT1 T
R

xr1

:/ [OF (B'(u™ M) — B/ (u™ 1)k w0k u™dx
R"l
+%/ O B (u™ 1) (02 u™)?d.

Lemma 2.2, Lemma 2.1, Cauchy’s inequality and the induction hypoth-
esis imply that
Iy < C(||02, B' (™) || o= 105, u™ | 2
+ 105, B (w™ )| 210, u™ || oo ) 105, u™ || 2
+ 100, B/ < ok w3
< (1+CD?+ D)ok w72 + CD*||0pu™||7 .
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On the other hand, the Gagliardo-Nirenberg inequality yields
10, Voru™ |22 < Ccl|Oy, u™ |22 + ell0y, Apru™ | 2o

Combining these inequalities and integrating the result over ¢ yields
1
sup [|0F u™|%. <CD*T sup ||[Vu™ 200—1—(1—1—) O ugl|?».
s 0% 0”3 SODT sup [V et Ly ) 102wl

For those terms involving first order derivatives on the 2’ direction,
such as terms [|92710,,u™||2,, i # 1, analogously, we can obtain the
same conclusion. Furthermore, we see that

3
sup [[u™||3o41 < CD*T sup | Vu™||7 + 5Haﬁlwllis+1
0<t<T 0<t<T

holds for sufficiently small 7. By the Sobolev embedding theorem for
s> [n/2] + 5, we arrive at

lu™ 120 < 2o 7o
The proof is complete. |

Next, we show that {«™} is a Cauchy sequence, which means that
the Cauchy problem (1.1) admits a local solution.

Lemma 3.2. Assume that T is small enough. Then, {u™} is a Cauchy
sequence in Xi.
Proof. Let v™ = u™ — u™~ 1. Tt follows from (3.1) that
(3.3) v+ A20™ =V (A (™ H)Vpu™ — A (u™ ) Vpu™ )
+ (B'(u™ N7 Vu™ — B/ (%) Va™ )

with m > 2 and v!(z,t) = u'(z,t). Multiplying both sides of equation
(3.3) by v™, integrating the resulting relation and integrating by parts,
we conclude that

1 d m m I m— m ! m—
3l NAwum e == [ (AT (Y
Rn,

— A" ) Vpu™ ) Vo™ da
[ e ()

— B'(u"?)7 Va™ o™ da.
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By Lemma 2.2 and Cauchy’s inequality, we know that

1d
2dt
<A @) L [ Voo™ 2 + Cllu™ T Ve | o 0™ 22
Vo™ oo I(A" (™) = A7) [ 2| Varv™ | 2
+ Ve e (B (u™ ™) = B (™ 72) 2 o™ e

< Ollu™ M | Varv™ |72 + Cllu™ |2 V™ | oo [0 172

™72 + | Aeo™ 122

1 _ _ _ _ _
UV oo o™ [ ) (™ e + [ e )20
o™ e (1™ Ml 2 + (™ £2)?

o (™ oo + ([0 e )
1 _
+ (Ve e 0™ 22 + [ Varo™[72).
On the other hand, the Gagliardo-Nirenberg interpolation inequality
implies
[Varv™ |72 < Cello™ (|72 + el| Apv™ |72
Hence, we obtain
d
%Ilvmlliz < CD° + D)™ 72 +CD* (o™ 7w + 0™ 22)-
Integrating the above inequality in time over [0,7], and for T small
enough, we get

sup 0|7, < CD*T sup ([ 7~ + U™ 32).
0<t<T 0<t<T

Similarly, we have the higher order derivative estimate as follows

oSup 0z, m||L2<CD20T Sup (IIvaIILmLII@}va’l||iz+||vm’1II%mL

and

sup |00 Vau™ |72 < CD*T sup (Vo™ |7~ + 100 0™]|75
0<t<T 0<t<T

Hllog o IR + o )
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It follows from summing up all of estimates that

sup [0}, < CD*T sup (Vo™ |7 + 0" 7 + [0 IF70),
<t<T 0<t<T

for small enough T'.

The Sobolev embedding theorem implies

sup [[0™||3. < CD*T sup (o™ |3 + 0™ %)
0<t<T 0<t<T

for s > [n/2]+2. By taking T sufficiently small, there exists a constant
0 < n < 1 such that

o™ Nl < llo™ .

We can choose 7 as follows (for T sufficiently small)

0< — ﬂ <1

T=1=cp¥r =~
which means that {u™} is convergent in X7. Therefore, the proof of
Lemma 3.2 is finished. |

Theorem 3.3. Assume that s > [n/2] +4 and ug € H*TY(R"). Then,
there exists a time T > 0, such that problem (1.1) admits a unique
classical solution u in [0,T) satisfying

u € L*([0,T); HTH(R™)).

Proof. By Lemma 3.2, we know that v is a Cauchy sequence in
Banach space X5 with s > [n/2] +5. Therefore, the limit function u of
u™ is a local solution of problem (1.1). In addition, using Lemma 3.1,
we see that u™ is bounded in X7. Hence u" is also a Cauchy sequence
in X},H for all s’ < s, and the limit function w is in X;H. This means,
when s > [n/2] + 4, then u is a local solution in X5, The proof is
complete. (Il

4. Global existence. In this section, we are going to prove the
global existence of solutions for problem (1.1).

First, assume that
(4.1) 0%u(-,t)| 2 < E(1+ t)~L=D/8l=la"l/4,
(4.2) 102u(-, )| L < E(1 + ¢)ln=D/4=18"1/4,
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for I > n/2)+4, 0 < |a] < 1,0 < |f] <1-1[n/2] =1 and
0 < F < 1. Here, a = (a1,d), & = (ag,...,an), 8 = (51,0
and 3" = (B2, .-, Bn)-

Now, based on the a priori assumptions (4.1) and (4.2), for any
integer k > 0, we establish H* bounded estimates of the solutions for
problem (1.1).

Lemma 4.1. Assume that ug € H*(R"™), (n —1)0 > 4 and u(x,t) is a
classical solution to problem (1.1). Assume also that (4.2) holds. Then,
there exists a constant C' > 0 such that, for all k > 0,

sup [[ull7pe < Clluol|Fe-
0<t<o0

Proof. Multiplying (1.1) by u, integrating over R™ and integrating
by parts, we deduce that

ld

2 dt

= — Vo A(u)Vpude + / 7 VB(w)udz
Rﬂ,

lullZz + | AgrulZ,

n

=— [ A'w)|Vyulrde + / B'(u)7 - Vuudz.
R® Rn

Combining the Gagliardo-Nirenberg inequality, the Cauchy inequality
and Lemma 2.2, we see that

1d

3 gpllelze + 1Awullze < AWl [ VarullZe

+ 1P B ()| o [V arul| 2 [l 2
+ B (u)l| 2 [, [ oo [l 22

< (CellullFe + Cllull T lluay [l lul 72 + el Aarull 2.

Assumption (4.2) yields

d 0 0—
Zlullze < Clullze + llulplu, ) lul72

< CEV(1+¢) =004y 2.
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Integrating the above inequality over time ¢, we know that
t
lullfe < lluollZz + CE® sup IIHH%z/ (14 7)~ (=00 g,
0<t<o0 0

By (n —1)8 > 4, we obtain

lull7 < lluoll2 + CE® sup [u]..
0<t<o0

Then, it follows from 0 < F < 1 that

sup |ul|72 < Clugl|7.
<t<oo

Similarly, we can deduce that, for 0 < F < 1,

(4.3) sup |07, ul7> < C|07, uolZ--
0<t<o0

Next, we will estimate the terms involving derivatives in the x’ direc-
tion. Applying 85;1812 onto (1.1), multiplying by 85;16%11, k>1,
and integrating over R", we derive
1d I
2 dt
= —/ O 10,4, (A (u)Vru) 051 0,, Vrude

8];1_1(9@271/”%2 + ||Azla§1—16x2u”%2

+/ 0y 00y (B (W) - Vo), Oy dae
b [0 (B ) 0
Similarly to the estimate of term [|0% u™||2, in Section 3, we obtain

d | n_
O Ol
< C(105,ullz2 + 1105, OnyulZa) |l Zoe
< CE* (14 )71 002(|05 w2 + 105, Oy ullZ2).-
Integrating this over ¢ gives

107, o ullZe < 1105, Ouyuo| 22 + CE* (|07, ullZs + 1|05, OyullZ2)-
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If (n —1)0 > 2, then, for 0 < E <« 1 and (4.3), we see that

sup (|9, Onyul 2 < (1105, uollZ2 + 105, Dusuol|72).
0<t<o0

Similarly, for all |a| = k > 1, we have

sup [[0%ul|Z2 < C Y 1107 uol|7

0<t<o0o
= IvI=k

The proof is complete. O

Now, we discuss decay estimates of the solutions. Towards this
purpose, we adopt the frequency-decomposition method. Let

st
X@_{o 1> 1,

be a cut-off function. We define a Fourier multiplier operator x(D)
with the symbol x(£). We decompose the solution to problem (1.1)
into two parts: low frequency part uy, and high frequency wg, which
are defined as

ur = x(D)u,  up = (1= x(D))u.

First, we estimate the uy, by Green’s function method. Green’s function
of problem (1.1) is given by

04 {ata(x, t) + A2,G(x,t) = 0,

G(z,0) = d(z),

where §(z) is the Dirac function. Taking the Fourier transform to (4.4),
we know that

8G(E, 1) + €)1 G(€,t) = 0
G(e.0) = 1.
Hence, @(f,t) = el€'l*, Using the inverse Fourier transform, we

conclude that
G(x,t) = §(x1)G' (2, 1),

where G'(2',t) is obtained by taking the inverse Fourier transform
to e I€'1"t with respect to |¢'| in R"~1. For the low frequency part
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G (2, t) = x(D)G'(2',t) of G'(a’,t), by direct calculation, we have
the following lemma.

Lemma 4.2. For any multi-index o/ = (aa,...,an) with |o'| >0,
(4.6) | g’/G/('»t)”LQ(Rn—l) <C(1+ t)_[(n_l)/8]_|a/|/47
(A7) 08 G D penr) < O+ )~ D/A=IA,

Lemma 4.3. Let ||UO||A1,2(RTL) + ||UO||H1+1(Rn) < 50 and (TL — 1)(9 —
1/2) > 4. Assume that (4.1) and (4.2) hold. Then, for any a = (a1, ),
la| <1, there exists a constant C > 0 such that

105 url| s < O + EPH)(1 4 1)~ (=08,

Proof. By the Duhamel principle, we see that the solution u of (1.1)
satisfies

(4.8) u(z,t) = G(-, t) * uo(- /G t—7)
* (Ap Au) +7-VB(w) (-, 7)dr.

For any o = (aq,a’), 0 < |a| < I, applying the operator x(D)d% to
both sides of (4.8), we derive

(4.9)  0%up(z,t) = 0% G- t) * 0% ug(-) / 0% Gr(t—7)
* 0y (Agr A(u) + 7 VB(u)) (-, 7) dr,

where G (z,t) = x(D)G(x,t). If |&'| =0 in (4.9), we see that

(4.10) 8;111UL($,t) :GL( 8Q1UQ / GL t—T
* 00 (A A(u) + 7- VB(w)) (-, 7) dr
= 0(21)GL(+1)

* Opluo(-) /(5371 GL(t—T)
* 0y} (Agr A(u) + 7 VB(u)) (-, 7) dr.
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Therefore,
102 w12 = 18(e1)G (1) * 052 uol-)

[ 180G = 1) 08 (B ) + 7 VB2

1/2
{/HG’ t) % 05 tug (w1, - )||L2 dml} / HY?(r

/HG’ T) % gt (Apr Au) +7- VB(u ))(xl"’T)”%i,de

where

Applying Young’s inequality and Lemma 2.5, we get

107 urllze

1/2
< ||GL|L2{/||amuo ||L1dx1}

1/2
+/ |AL G (-t — ||L2{/||80‘1A ml,-,T)H%ldxl} dr
0

t 1/2
tnl [ 656Dl [1omB@e. nldnp o

1/2
+\w|/ VG (-t — 1) L2{/||aa13 xl,.,T)H%ld:L‘l} dr

< NGl L2 1107 voll L2 e, st @)
t
+C/ 120G t=) 2|05 w7 e (e, 7 | -, P dr
+C/ IGL (ot = )2 108 uly ) e llul, 7| e lul, 7|7 dr
+C/O Vo GL (- t=) 2|05 w7l e e, 7) [ a7 2 dr

Recalling Lemma 2.5, Lemma 4.1 and Lemma 4.2, we deduce that

093 g || 2 < Co(1+t)~(n=1/8

n C’E‘)H/ (14t — )~ [e=0/8121/2(1 4 py=l(=10)/41+1/24,
0
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t
n CaoE"/ (14t — 1) (=078 (1 | 7)=[(n=D (-1 /A= [n=1)/8) g
0

t
+ C’E‘9+1/ (1+¢ —7)~[=D/8=1/4(1 4 )= U((n=16)/4] g
0

Noting that (n — 1)(0 — 1/2) > 4, for ay <[, we know that
(4.11) 093z || L2 < Coo(1 + E?)(1+t)~ (=78,
We now consider the case of 1 < |of| < I. Without loss of

generality, we suppose that as > 1, i.e., o' = (1,0,...,0) + o’ with

o = (az—1,as3,...,ay). Then,

10505 url| e = 15(21)05 G (1) * Ot uo ()| 2

/naxl Gt —7)

* Ogt (Agr A(u) +7- VB(w)) (-, 7)| 2 dT

1/2
{ / o Uo(ﬂﬁly')H%Z,dIl}

¢
+/ F1/2d7+/ w/2dr,
0 t/2

where

- / 102 Gl (-t = 7) 5 02 (A A(w) + 7+ VB()) (21, 7) |22 das,
]R €T

xp:/||812G/L(-,t—7)*ag;ag,”(Aw,A(u)+F-v3(u))(x1,-,T)Hiz dz;.
R o
By (n—1)(6 — 1/2) > 4, we obtain
109102 up|| 12 < CSo(1+) (= 1/8I=1I/4 L o po+1 (1 4 4)~[(n=1)/8]=la’I/4
] x!
< C(6 —|—E9+1)(1 _|_t)7[(n71)/8]7\o/|/4.

In summary, this lemma is proven. ]

Lemma 4.4. Let ||UO||AL2(Rn) + ||u0||Hl+l(Rn) < 50 and (TL - 1)(9 -
1/2) > 4. Assume that (4.1) and (4.2) hold. Then, there ezists a
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constant C' > 0 such that
||E)“1+18“ ULHL2 < 0(50 + Ee)(l th) [(nfl)/8]7|a"/4,

forag + /| <1 and || > 1.

Proof. For |o/| = 1, without loss of generality, we suppose that
as = 1. Then, we see that

1/2
1091+ Opyurll > < [10:,GY ||L2{/ 1921 g (21, - )ildxl}

+/Ot{4||612az<-,t7>

1/2
*agllﬂLerB(u)(xh-7T)||%2,d1'1} dr

t
-/ {/ TN AT
0 R

1/2
* 8311+1A(u)||2L?,dm1} dr

+[{@|@ﬁ;<-¢ﬂ

1/2
O B a1 ) o b
:Il+I2+I3+I4.

First, Lemma 4.2 yields
I} < COg(1 4 t) " [n=1)/81=1/4

Combining the Young inequality, Lemma 2.4 and Lemma 2.5 with
(n—1)(0 —1/2) > 4, we conclude that

1/2

t/2
Bs [l { 10 B iy de b dr
0 x z

1/2
o [ { [ 10 s ol de | ar
t x
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t/2
SC/O T 22, 102 2, 7)o e, o) g (-, 7) |22 dr
t
" C/t/g 100, 052+ 2, )2 e |

where

I=0,,G.(-, t—7).

Noting that y+56—1=(1/4)(n—1)0+1/4—1> (n—1)/8+1/4 = a,
by direct calculations, we derive that

100, GL (), < CA+8)7A,
which implies

t/2
I < 050139/ (14 ¢ — 1) (O=D/B=1/A (1 | )=/ m=DE=1/2) 4
0

t
+ 060E9/ (14t —7)" V41 4 7)-W/H0=18 g
t/2
< COoE (1 + )~ [(n=1)/8-1/4,

Similarly, we have

t/2 1/2
L[ |Azfn||L2,{ / 102+ Aw) (a1, - 7|12 dxl} o
0 x i

1/2
o [ 1aemuy { [ 1o At iy an - ar
t @x

SC/o 1A 2, 1092, ) 2l 7l )]G dr
t

+C//2 1A T g1 1022 (e ) 2 fluC, 7)1 dr.
; .

On the other hand, by v+ 8 -1 = (1/4)(n — 1) + 3/4 — 1 >
(n—1)/8+43/4 = a, we know that

1A L1, = |80 02, GL (D) 11, < O+,
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Hence,
t/2
I3 < C(SOEQ/ (1+t— T)—[(n—l)/81—3/4(1 + T)_(1/4)(”_1)(9_1/2)d7
0

t
+050E9/ (1+t—7) 3414 1)~ /D=1y
t/2

< CoE?(1+ t)_[("_l)/g]_3/4 < CoE?(1+ t)_[("_l)/g]_1/4.
Similarly, we obtain

I, < COE(1+ t)*[(nfl)/8]71/4.

If |&/| > 2, let o/ =+ + 4" with |y/| = 2. Then, we derive

1/2
[02H19% ur || 12 < |02 ||L2{/ 053 ug (21, )| 3 dxl}

+/O { [1gc.e-n

1/2
% 3gll+2rlB(u)(x1, . 7')||2L'2de1} dr

(4.12) / { [1a006100-1)

1/2
* O0 T A(u) ||2L,2.,dx1} dr

t
[ [rozenea-n
0 R >
* 00T (r' - Vo B(u)) (21, ~,T)||2L2/dx1} dr
:J1+J2+J3+J4.
First, Lemma 4.2 shows that
Jy < Cp(1+ t)*[(nfl)/fﬂ}*la'\/ﬁl_

Now, we only estimate Jo, and the others are similarly estimated. By
Lemma 2.4 and Lemma 2.5, we get

' 1/2
Jo = / { HQ?/ G/[,(~,t — 7') * 82‘11+2r13(u)(x17 .77-)”%2 dl‘l} dr
0 R 2,
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t/2
! 9_
<C [ 0% GLC t=) 2, 109 2ul, 7l allul, )l s [ful, Tl dr
0 ,

t
+ C/ 107, G (ot =) 2, 103 83 u(, 7) 2 lul-, ) |70 dr.
t/2 *

Noting that v+ 8 —1 = (n—1)/8 + |/|/4 + (1/4)(n — 1) — 1 >
(n—1)/8+ |&/|/4 = a, simple calculation shows that

102/ G (DI, < C(L+D72
On the other hand, by (1/4)(n — 1)(0 — 1/2) > 1, we see that
(1/4)(n —1)6 — 1 > 0. Hence, by || + a1 + 2 <, we have

t/2
Jy < C(;OEQ/ (14t — 7)~[=D/8I-1e1/4(] 4 )= (/D=1 0-1/2) g,
0

t
+ CSE?| (14+t—7)" Y2 (147) (= D/8=1aI/4+(1/2)=(1/4)(n=1)6 g
t/2
< C6oE? (1 4 t)~l(n=D/81=1a’I/4,

It is not difficult to see that J3; and J; hold with the same estimate
of J;. Combining the above estimates, when (n — 1)(6 — 1/2) > 4, we
deduce that

|0z 10 urllze < C (8o + E)(1 4 )~ (= /sImlerl/s,
The proof is complete. O

Next, we estimate the L? decay for the high frequency part. First,
we have the following Poincaré-like inequality.

Lemma 4.5. For any multi-index «, || > 0, there exist constants Cy
and C1 such that

(4.13) 107 ur |2 < CollAw 07 ur |72,

(4.14) |V 0Sug||2: < Chl|Az 0% um|3e.
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Proof. Using the Plancherel theorem and uy = (1 — x(D))u, we
easily see that

1 2

1022 = [G5um 2. = H L ¢
7] »
< Colll€'P02un |72 = Col|ApdSun|7
and
. 1 2
190 unl s = €0 um 3 = | gl Pz |
< 1€/ PFum |2 = Cu | A us e
The proof is complete. |

Next, we shall prove the decay estimates for the high frequency part
ug of the solution.

Lemma 4.6. Assume that HuOHAl,z(Rn)—|—HUQHHL+1(]Rn) < dy, (n—l)(@—
1/2) > 4 and (4.1), (4.2) hold. Then, for any o with || <1, there exists
a constant C > 0 such that

|05 ur |2 < C(80 + BPH)(1 1) [ D/Alerl/A,

Proof. Applying the operator (1 — x(D)) to problem (1.1), we easily
derive
(4.15)

Opur + Alup = (1 — x(D) Ay A(u) + 7+ (1 = x(D))VB(u),
up (x,0) = uop ().

Multiplying the above equation by vy and integrating over R", using
integration by parts, we know that

1d
§£||UH||2L2 + | AzruplF

= [ (0= x(D)Ae A + 7+ (1= (D) Bwun) da.
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Using Cauchy’s inequality, Lemma 2.2 and Lemma 4.5, we have

d 1
Sl e + 1 Aw s + a)IIUHIIiQ

= Q/n (1 —x(D))Aw A(wyug +7- (1 — x(D)VB(u)ug)dx

< Ce(l(1= X(D)Aw A(u) |22+ 7+ (1=X(D))VB(u)[|12) +ellun |72

Ce rllull T (1AulZz + [VullZ) + ellurm 7.

IN

for small e > 0. Taking ¢ < 1/(2C)), (4.1) and (4.2) imply that

d 1
Sl lie + 1A un s + TCOIIUHIIiz
< CE2040) (1 4 )~ ln=D/4=0(n=1)/2)-1/2
(14 ) (= D/4-10-1/2)-1/4

< CE2040) (1 4 )~ ln=D)/4=[0(n=1)/2),

Multiplying both sides of the above inequality by e/ (2¢0) we obtain

d
(4.16) = (llur|[F2e" ) + | Agrug 7€)

< CE2040) (1 4 )~ [n=1)/41=[0(n=1)/2) #/(2C0).

If > 1/2, integrating the above inequality over ¢, we see that

t
|22 + / e~ =D/ CO | A |2, dr
0

< e O g7

t
4 CE2040) / e~(=)/2C0) (1 4 py=l=1)/=[0(n=1)/2] g
0
< e~t/C0)52 4 CER0H0)(1 4 ) l(n=D)/A=0(n=1)/2] g

< 0(5(2)+E2(1+0))(1+t)_(n_1)/2

Next, we establish estimates for ||0g ug|[r2, 0 < oy < 1. Applying the
operator 93! to (4.15) and integrating by parts, for small ¢ > 0, we
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conclude that
d [e51 2 o 2 1 o 9
a”azl uHHL? + ||A1;/(9Il UHHL2 + Fo"aml UHHL2
< 2/n ((1 - X(D))Az’agllA(U)a?qu dx

+2/ r(1— x(D))O B (w) 0 ug d

< Ce(l|0; A()lI72 + 105 B(w)ll72 + 105 B(u)|72))
+e(log unllie + Ve 03t un 72 + | A0 05 urr[172)

1 1
0
< Cellul T (102 ullZs + 102+ ull72)

1

+e(log un e + IVe 05 unllts + 8005 um12).

Choosing ¢ < max{1/(2C1 +2),1/(2Cy)}, by Lemma 4.1 and the
a priori assumption, we know that

G0 w3+ 51800 un e + 55108 w3

< CllullZ (192 ulZz + 1105+ ull72)

< OB |0 ug|[3a (1 + 1)~ 109172,

1

Similarly to (4.16), when 6 > 1, we obtain

1

1 t
1052 up 172 + 5/0 e UTICONA L O up ||72d7
< 058(1+E2(1+0))(1+t)_(n_1)/2.

. ’
In the same way, we can estimate ||9510% ug | > for |o/| > 1 as follows:

, 1/t ,
05205 unllps + 5 [ e 00| 0208 un 3 dr
0
< C(62 + B0 (1 4 ¢)~[(n=1)/2=1e"l/2,

if > 1/2. The proof is complete. a

By Lemma 4.3 and Lemma 4.6, we have the following estimate.
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Lemma 4.7. Assume that [[uo|| ai.2mn)+[[vol| g1 ny < do, (n—1)(0—
1/2) > 4, and the a priori assumptions hold. Then, for any a with
la| <1, there exists a constant C > 0 such that

(4.17) 10%ul| 2 < C(8g + EOT1) (1 + )~ Ln=1/81=le"l/4,

Now, we also use the frequency decomposition method to derive L™
decay estimates of solutions.

Lemma 4.8. Assume that |[ug || gt.0c ny+ w0l g gny < do, (n—1)8 > 4
and (4.1), (4.2) hold. Then, for any B with |B] <1 —[n/2] — 1, there
exists a constant C' > 0, such that

10Pur|| g < C(8o + EOTH)(1 + )~ [(n=1/4=18"1/4,

Proof. For any multi-index = (81, 8) with 0 < |8] <1—[n/2] -1,
we know that

108w (2, )| e = 0% G- t) ¥ 01 ug / Wt —T)
* 00 (A A(u) + 7+ VB(w))(-,7) dr.
If |8’| = 0 in the above equality, Young’s inequality yields
107 ur Lo < [[6(21)GL( )*3fiuo(')|\m°
# [ 1606t =) 5 0 (B0

+ 7 VB(u)) (-, 7)|| L~ dr
< sup [|GL (-, 8) * O ug (1, -) ||
zER

t

+/ sup |G/ (-t = 7) % O (Ayr A(u)
0 z€ER

+ 7 VB() (a1, 7)| s dr

< NGl 195 woll Lo R, i (rm1)

[ 180G = Dl sup 102 A a1, 7y e
0 TER v

t
[ Gt = 7l sup 02 B ) o, )
0 ¥ z€ER x
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t
+/ || Var G’ (-, t=7) | L5 sup |05 B(u) (x4, -, 7)]| 1, dr.
0 * z€R ©

By Lemma 2.4, we deduce that

|05 ug || Lo

<N Gl 105 woll Lo (R, i (rm1)

t

+C/o 180 G (=) s e )z e, ) e, ) [
t

*C/o IVar G (=) s ) o o) e e, )|
t

+O/o 16 (ot = )l e, ) s e, ) L e, ) 22

When (n —1)0 > 4, by Lemma 4.2, Lemma 2.5 and the fact ; +2 <1
(18] <1—[n]/2 = 1,[8] = |B'| + B1,]8'| = 0, n > 2), we conclude that

08 up || L

< Cp(1 4 t)~ln=1/4
oToas! /t(l bt — ) =DA=/2) (1 4y ln-D6/41-(1/4) g
0
L ORf+! /t(l 4t — )l D= (1 ) l=10/41-(1/4) g
0
eI oias! /t(l ot — )LD/ (g ) l=D0/A-(1/9) gy
0
< CE't /tu +t— )" l=D/A () 4 )= l=10/4] g
< C(6 + E09+1)(1 + )~ (n=h/4,
Here, we have used the fact
(14 1)~ [(=DO/A=A/D < (1 4 7)~I=DO/A for any 7 > 0.

Next, we consider the case that |8’| > 1. Without loss of generality, we
assume that |Gz > 1. By Young’s inequality, we see that
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182108 ur = < 105 Gl 108 ol oo s (1)

t/2 p
*/ 182006 (= 1) sup 08 ACw) o7 |, d
I / IV 02 G (,t — 1)l sup 192 B(u)(ar, - 7)llps dr
* zER @
t2
I / 102G/ (-t — )| s sup 05+ B(u) (s, 7)o dr
* zER z

+/ 8202, G' (-t = 7)1, sup\\afiaf/ Au)(z1, -, 7)o dr
t/2 * reR *

ry !

t
4 [ 1006t = 1)y, sup |7 050 VB ()r, -, 1) dr
t/2 * zeR *

6

:ZL’ia

i=1
where 8" = (82—1, 83, ..., By). Similarly to the estimates of the terms

I; of Lemma 4.4, we can estimate L; term-by-term. Therefore, we have

102105 ur o < C(Bo 4+ B7H)(1 4 ¢) =DA%,

x !

when (n — 1)6 > 4. The proof is complete. O

Lemma 4.9. Assume that HUOHAZ,Q(RH)+HUOHH1+1(RTL) < 50, (n—l)(@—
1/2) > 4 and (4.1), (4.2) hold. Then, for any B with |B| <1—[n/2] -1,
there exists a constant C > 0 such that

108w || < C(8g + EOT1)(1 + ¢)~Ln=D/4=18"1/4,

Proof. Lemma 4.6 and the Sobolev embedding theorem yield the
desired conclusion, and the proof is complete. O

By Lemma 4.8 and Lemma 4.9, we immediately obtain the following
lemma.

Lemma 4.10. Let ||U0HAZ,2(Rn) + ||u0||Al,oo(]Rn) =+ ||UOHHL+1(]RTL) S 60,
(n—1)(0—1/2) > 4. Assume also that (4.1), (4.2) hold. Then, for any
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B with |B] <1—[n/2] — 1, there exists a constant C > 0 such that

108ull = < C (8o + EO+)(1 4 1)~ 1= D/a-181/4,

Combining Lemma 4.7, Lemma 4.10 and taking E sufficiently small,
we obtain the a priori assumptions. Therefore, the proof of Theorem 1.1
is complete.
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