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EIGENVALUES OF SOME
p(x)-BIHARMONIC PROBLEMS UNDER
NEUMANN BOUNDARY CONDITIONS

MOUNIR HSINI, NAWAL IRZI AND KHALED KEFI

ABSTRACT. In this paper, we study the following p(x)-
biharmonic problem in Sobolev spaces with variable expo-
nents

△2
p(x)u = λ(∂F (x, u)/∂u) x ∈ Ω,

∂u/∂n = 0 x ∈ ∂Ω,

∂(|△u|p(x)−2△u)/∂n = a(x)|u|p(x)−2u x ∈ ∂Ω.

By means of the variational approach and Ekeland’s princi-
ple, we establish that the above problem admits a nontrivial
weak solution under appropriate conditions.

1. Introduction. Stimulated by the development of the study of
elastic mechanics, see [29], electrorheological fluids, see [26], image
processing, see [5], and mathematical description of the filtration
processes of an ideal baroscopic gas through a porous medium, see [1],
interest in variational problems and differential equations with variable
exponents has grown in recent decades. Meanwhile, elliptic problems
involving operators in divergence form can be found in [4, 22]. Some
other results dealing with the p(x)-Laplace and the p(x)-biharmonic
operators in Sobolev spaces with variable exponents can be found in
[12, 15, 16, 17, 18, 20, 21].

The purpose of this paper is to study the existence of an eigenvalue
for the following p(x)-biharmonic problem

(1.1)


△2

p(x)u = λ(∂F (x, u)/∂u) x ∈ Ω,

∂u/∂n = 0 x ∈ ∂Ω,
∂(|△u|p(x)−2△u)/∂n = a(x)|u|p(x)−2u x ∈ ∂Ω,
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where Ω is a bounded smooth domain in RN (N ≥ 3) with suffi-
ciently smooth boundary ∂Ω, ∆2

p(x)u = ∆(|∆u|p(x)−2∆u) is the p(x)-

biharmonic operator of fourth order, n is a unit outward normal to ∂Ω,
a ∈ L∞(∂Ω) with a− := infx∈∂Ω a(x) > 0, λ is a positive real number
and the functions p and F satisfy the following assumptions:

p ∈ C(Ω) with p− := inf
x∈Ω

p(x) > 1 and F ∈ C1(Ω× R,R).

The p(x)-biharmonic problem under Neumann boundary conditions
has been studied by many authors in recent years. Let us recall that
Ben Haddouch, et al. [3], studied the following problem:

(1.2)

{
△2

p(x)u = λ|u|q(x)−2u x ∈ Ω,

∂u/∂n = ∂(|△u|p(x)−2△u)/∂n = 0 x ∈ ∂Ω.

The authors established the existence of a continuous family of eigen-
values by using the Mountain pass lemma and Ekeland’s variational
principle. Moreover, Taarabti, et al. [27], studied the following nonho-
mogeneous eigenvalue problem

(1.3)

{
△2

p(x)u = λV (x)|u|q(x)−2u x ∈ Ω,

∂u/∂n = ∂(|△u|p(x)−2△u)/∂n = 0 x ∈ ∂Ω.

They used Ekeland’s variational principle to prove the existence of
a continuous family of eigenvalues which lies in a neighborhood of
the origin. Moreover, Bin Ge, et al. [13], proved the existence of
a continuous family of eigenvalues by considering different situations
concerning the growth rates involved in the above-quoted problem.
Inspired by the above-mentioned papers, we study problem (1.1) under
the following assumptions.

(H1) F : Ω× R → R is a C1 function such that

F (x, tu) = tq(x)F (x, u), t > 0, for all x ∈ Ω, u ∈ R.

(H2)

∣∣∣∣∂F∂t (x, t)
∣∣∣∣ ≤ c1V (x)|t|q(x)−1,

for all t ∈ R, for all x ∈ Ω, where c is a positive constant, V ∈ Ls(x)(Ω)
and s, q ∈ C(Ω) are such that, for all x ∈ Ω, we have 1 < q(x) < p(x) <
N/2 < s(x).
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(H3) There exists an Ω0 ⊂⊂ Ω with |Ω0| > 0 such that F (x, t) > 0
in Ω0.

Remark 1.1. Due to assumption (H1), F leads to the so-called Euler
identity

(1.4) t
∂F

∂t
(x, t) = q(x)F (x, t), for all x ∈ Ω, t ∈ R.

Our main results establish, for small perturbation, the existence of
a continuous family of eigenvalues in a neighborhood of the origin. On
the other hand, we show the existence of a global minimizer of the
Euler Lagrange functional associated to problem (1.1).

2. Terminology and abstract setting. In order to study p(x)-
biharmonic problems, we need some results on the spaces Lp(x)(Ω),
W 1,p(x)(Ω) and W k,p(x)(Ω), see [10, 14, 24, 25] for details, comple-
ments and proofs.

Set

C+(Ω) := {h : h ∈ C(Ω), h(x) > 1 for all x ∈ Ω}.

For any p ∈ C+(Ω), we denote 1 < p− := minx∈Ω p(x) ≤ p+ =
maxx∈Ω p(x) < ∞ and

Lp(x)(Ω) =

{
u : Ω → R measurable and

∫
Ω

|u(x)|p(x)dx < ∞
}
.

The spaces Lp(x)(Ω) were introduced by Orlicz [23].

The space Lp(x)(Ω) is endowed with the Luxemburg norm, defined
by

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)µ

∣∣∣∣p(x)dx ≤ 1

}
.

Clearly, when p(x) ≡ p, the space Lp(x)(Ω) reduces to the classical
Lebesgue space Lp(Ω), and the norm |u|p(x) reduces to the standard
norm

∥u∥Lp =

(∫
Ω

|u|pdx
)1/p

in Lp(Ω).
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For any positive integer k, let

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k},

where α = (α1, α2, . . . , αN ) is a multi-index,

|α| =
N∑
i=1

αi and Dαu =
∂|α|u

∂α1x1 · · · ∂αNxn
.

Then, W k,p(x)(Ω) is a separable and reflexive Banach space, equipped
with the norm

∥u∥k,p(x) =
∑
|α|≤k

|Dαu|p(x).

Let Lp′(x)(Ω) be the conjugate space of Lp(x)(Ω) with 1/p+1/p′ = 1.
Then, the following Hölder-type inequality
(2.1)∣∣∣∣ ∫

Ω

uv dx

∣∣∣∣ ≤ (
1

p−
+

1

(p′)−

)
|u|p(x)|v|p′(x), u ∈ Lp(x)(Ω), v∈Lp′(x)(Ω),

holds. Moreover, if h1, h2 and h3 : Ω → (1,∞) are Lipschitz
continuous functions such that 1/h1(x) + 1/h2(x) + 1/h3(x) = 1, then,
for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω) and w ∈ Lh3(x)(Ω), the following
inequality holds [9, Proposition 2.5]:

(2.2)

∣∣∣∣ ∫
Ω

uvw dx

∣∣∣∣ ≤ (
1

h−
1

+
1

h2
− +

1

h3
−

)
|u|h1(x)|v|h2(x)|w|h3(x).

Inequality (2.1) and its generalized version (2.2) are due to Orlicz [23].

The modular on the space Lp(x)(Ω) is the map ρp(x) : L
p(x)(Ω) → R,

defined by

ρp(x)(u) :=

∫
Ω

|u|p(x)dx.

Proposition 2.1 ([19]). For all u, v ∈ Lp(x)(Ω), we have

(i) |u|p(x) < 1 (respectively, = 1, > 1) ⇔ ρp(x)(u) < 1 (respectively,
= 1, > 1).

(ii) min(|u|p
−

p(x), |u|
p+

p(x)) ≤ ρp(x)(u) ≤ max(|u|p
−

p(x), |u|
p+

p(x)).

(iii) ρp(x)(u− v) → 0 ⇔ |u− v|p(x) → 0.
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Another interesting property of the variable exponent Lebesgue
space Lp(x)(Ω) is the following.

Proposition 2.2 ([6]). Let p and q be measurable functions such that
p ∈ L∞(Ω) and 1 ≤ p(x)q(x) ≤ ∞, for almost every x ∈ Ω. Let
u ∈ Lq(x)(Ω), u ̸= 0. Then

min(|u|p
+

p(x)q(x), |u|
p−

p(x)q(x)) ≤ ||u|p(x)|q(x) ≤ max(|u|p
−

p(x)q(x), |u|
p+

p(x)q(x)).

In order to prove the existence of a weak solution for problem (1.1),
we introduce the space

X =

{
u ∈ W 2,p(x)(Ω) :

∂u

∂n

∣∣∣∣
∂Ω

= 0

}
.

This space was first considered by El Amrouss, et al. [7], who proved
that X is a nonempty and well-defined closed subspace of W 2,p(x)(Ω).

Let

∥u∥a := inf

{
µ > 0 :

∫
Ω

∣∣∣∣∆u

µ

∣∣∣∣p(x)dx+

∫
∂Ω

a(x)

∣∣∣∣uµ
∣∣∣∣p(x)dσ ≤ 1

}
for u ∈ X. Since a ∈ L∞(∂Ω) and essinfx∈Ωa > 0, we deduce that
∥u∥a is an equivalent norm to ∥u∥2,p(x) in X. Here, we will use the
norm ∥u∥a, and the modular is defined as ρap(x) : X → R by

ρap(x)(u) =

∫
Ω

|∆u|p(x)dx+

∫
∂Ω

a(x)|u|p(x)dσ,

which satisfies the same properties as Proposition 2.1. Accordingly, we
have, similar to [11, Theorem 1.3], the following propositions.

Proposition 2.3. For all u ∈ Lp(x)(Ω), we have

(i) ∥u∥a < 1 (respectively, = 1, > 1) ⇔ ρap(x)(u) < 1 (respectively,

= 1, > 1).

(ii) min(∥u∥p−

a , ∥u∥p+

a ) ≤ ρap(x)(u) ≤ max(∥u∥p−

a , ∥u∥p+

a ).

(iii) ∥un∥a → 0 (respectively, → ∞) ⇔ ρap(x)(un) → 0 (respectively,

→ ∞).
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Arguments similar to those used in the proof of [2, Proposition 4.2]
showed the following.

Proposition 2.4. Let

Ia(u) =

∫
Ω

1

p(x)
|∆u|p(x)dx+

∫
∂Ω

1

p(x)
a(x)|u|p(x)dσ.

Then

(i) Ia : X → R is sequentially weakly lower semi-continuous,
Ia ∈ C1(X,R).

(ii) The mapping I ′a : X → X∗ is a strictly monotone, bounded
homeomorphism, and is of type (S+), that is, if un ⇀ u and
lim supn→+∞ I ′a(un)(un − u) ≤ 0, then un → u.

We recall that the critical Sobolev exponent is defined as follows:

p∗(x) =


Np(x)

N − p(x)
p(x) <

N

2
,

+∞ p(x) ≥ N

2
.

We point out that, if q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω, then
X is continuously and compactly embedded in Lq(x)(Ω). The Lebesgue
and Sobolev spaces with variable exponents coincide with the usual
Lebesgue and Sobolev spaces, provided that p is constant. According
to [25, pages 8–9], these function spaces Lp(x) and W 1,p(x) have some
unusual properties, such as:

(i) Assuming that 1 < p− ≤ p+ < ∞, and p : Ω → [1,∞) is a
smooth function, then the following co-area formula∫

Ω

|u(x)|pdx = p

∫ ∞

0

tp−1 |{x ∈ Ω; |u(x)| > t}| dt

has no analog in the framework of variable exponents.

(ii) Spaces Lp(x) do not satisfy the mean continuity property. More
exactly, if p is nonconstant and continuous in an open ball B, then
there is some u ∈ Lp(x)(B) such that u(x + h) ̸∈ Lp(x)(B) for every
h ∈ RN with arbitrary small norm.
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(iii) Function spaces with variable exponents are never invariant with
respect to translations. The convolution is also limited. For instance,
the classical Young inequality

|f ∗ g|p(x) ≤ c |f |p(x) ∥g∥L1

remains true if and only if p is constant.

3. Main results and auxiliary properties. Throughout the pa-
per, the letters c, ci, i = 1, 2, . . . , denote positive constants which may
change from line to line. In the sequel, denote by s′(x) the conjugate
exponent of the function s(x), and put α(x) := s(x)q(x)/(s(x)− q(x)).
Then, we have:

Remark 3.1. Under assumption (H2), we have s′(x)q(x) < p∗(x)
for all x ∈ Ω, α(x) < p∗(x) for all x ∈ Ω; hence, the embeddings

X ↩→ Ls′(x)q(x)(Ω) and X ↩→ Lα(x)(Ω) are compact and continuous.

Proposition 3.2 ([8, Theorem 2.4]). Let Ω ∈ RN be an open bounded
domain with Lipschitz boundary. Let m be a positive integer. Suppose
that p ∈ C0(Ω) with p− > 1 and mp+ < N . If q ∈ S(∂Ω), where S(∂Ω)
is the set of all measurable real functions defined on Ω, and there exists
a positive constant ε such that

1 ≤ q(x) < q(x) + ε ≤ (N − 1)p(x)

N −mp(x)
for x ∈ ∂Ω,

then the boundary trace embedding Wm,p(.)(Ω) ↩→ Lq(.)(∂Ω) is compact.

Remark 3.3. Since p > 1/2, then, by Proposition 3.2, we have that
W 2,p(x)(Ω) ↩→ Lp(x)(∂Ω) is compact.

Note that an eigenvalue for problem (1.1) satisfies the following
definition.

Definition 3.4. We say that λ ∈ R is an eigenvalue of problem (1.1),
if there exists a u ∈ X \ {0} such that∫
Ω

|△u|p(x)−2△u△v dx+

∫
∂Ω

a(x)|u|p(x)−2uv dσ = λ

∫
Ω

∂F

∂u
(x, u)v dx,
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for any v ∈ X, and we recall that, if λ is an eigenvalue of problem (1.1),
then, the corresponding u ∈ X \ {0} is a weak solution of (1.1).

Proposition 3.5. If u ∈ X is a weak solution of (1.1) and u ∈ C4(Ω),
then, u is a classical solution of (1.1).

Proof. Let u ∈ C4(Ω) be a weak solution of problem (1.1). Then,
for every v ∈ X, we have∫
Ω

|△u|p(x)−2△u△v dx+

∫
∂Ω

a(x)|u|p(x)−2uv dσ = λ

∫
Ω

∂F

∂u
(x, u)v dx.

By applying Green’s formula, we have:∫
Ω

△(|△u|p(x)−2△u)v dx = −
∫
Ω

∇(|△u|p(x)−2△u) · ∇v dx

+

∫
∂Ω

v
∂

∂n
(|△u|p(x)−2△u) dσ,

and ∫
Ω

|△u|p(x)−2△u△v dx = −
∫
Ω

∇(|△u|p(x)−2△u) · ∇v dx

+

∫
∂Ω

(|△u|p(x)−2△u)
∂

∂n
(v) dσ.

Since v ∈ X, then ∂(v)/∂n = 0. For v ∈ D(Ω), we have

△(|△u|p(x)−2△u) = λ
∂F

∂u
(x, u) almost everywhere x ∈ Ω.

For each v ∈ X, we have∫
∂Ω

∂

∂n
(|△u|p(x)−2△u)vdσ =

∫
∂Ω

a(x)|u|p(x)−2uv dσ.

Then, for all v ∈ D(Ω), we have∫
∂Ω

∂

∂n
(|△u|p(x)−2△u)v dσ =

∫
∂Ω

a(x)|u|p(x)−2uv dσ,

which implies that

∂

∂n
(|△u|p(x)−2△u)− a(x)|u|p(x)−2u = 0

almost everywhere x ∈ Ω. �
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The first result in this paper is the following.

Theorem 3.6. Assume that hypotheses (H1), (H2) and (H3) are
fulfilled. Then, there exists a λ∗ > 0, such that any λ ∈ (0, λ∗) is
an eigenvalue of problem (1.1).

In the second, we establish that the Euler-Lagrange functional
associated to problem (1.1) has a global minimizer.

Theorem 3.7. Assume that hypotheses (H1), (H2) and (H3) hold.
Then, any λ > 0 is an eigenvalue of problem (1.1).

In order to formulate the variational problem (1.1), we introduce the
functionals Φ and J : X → R, defined by:

Φ(u) =

∫
Ω

1

p(x)
|△u|p(x)dx+

∫
∂Ω

a(x)

p(x)
|u|p(x)dσ

and

J(u) =

∫
Ω

F (x, u) dx.

The Euler Lagrange functional corresponding to problem (1.1) is de-
fined by Ψλ : X → R, where

Ψλ(u) := Φ(u)− λJ(u).

Standard arguments show that Ψλ ∈ C1(X,R) and

⟨dΨλ(u), v⟩ =
∫
Ω

|△u|p(x)−2△u△v dx

+

∫
∂Ω

a(x)|u|p(x)−2uv dσ − λ

∫
Ω

∂F

∂u
(x, u)v dx,

for any v ∈ X. Hence, a solution to problem (1.1) is a critical point of
Ψλ.

We begin with the following auxiliary lemmas.

Lemma 3.8. Suppose that we are under the hypotheses of Theorem 3.6.
Then, for all ρ ∈ (0, 1), there exist λ∗ > 0 and b > 0 such that, for all
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u ∈ X with ∥u∥a = ρ,

Ψλ(u) ≥ b > 0 for all λ ∈ (0, λ∗).

Proof. Since the embedding X ↩→ Ls′(x)q(x)(Ω) is continuous, then

(3.1) |u|s′(x)q(x) ≤ c2∥u∥a, for all u ∈ X.

We assume that ∥u∥a < min(1, 1/c2), where c2 is the positive constant
of inequality (3.1). Then, we have |u|s′(x)q(x) < 1, using Hölder
inequality (2.1), Proposition 2.3, Remark 1.1 and inequality (3.1), we
deduce that, for any u ∈ X with ∥u∥a = ρ, the following inequalities
hold:

Ψλ(u) =

∫
Ω

1

p(x)
|△u|p(x)dx+

∫
∂Ω

a(x)

p(x)
|u|p(x)dσ − λ

∫
Ω

F (x, u) dx

≥ 1

p+
∥u∥p

+

a − λc1|V |s(x)||u|q(x)|s′(x)

≥ 1

p+
∥u∥p

+

a − λc1|V |s(x)|u|q
−

s′(x)q(x)

≥ 1

p+
∥u∥p

+

a − λc1|V |s(x)cq
−

2 ∥u∥q
−

a

=
1

p+
ρp

+

− λc1c
q−

2 |V |s(x)ρq
−

= ρq
−
(

1

p+
ρp

+−q− − λc1c
q−

2 |V |s(x)
)
.

From the above inequality, we remark that, if we define

(3.2) λ∗ =
ρp

+−q−

2p+
1

c1 cq
−

2 |V |s(x)
,

then, for any λ ∈ (0, λ∗) and u ∈ X with ∥u∥a = ρ, there exists a b > 0
such that

Ψλ(u) ≥ b > 0.

The proof of Lemma 3.8 is complete. �

The next result asserts the existence of a valley for Ψλ near the
origin.
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Lemma 3.9. There exists a ϕ ∈ X such that ϕ ≥ 0, ϕ ̸= 0 and
Ψλ(tϕ) < 0, for t > 0 small enough.

Proof. Assumption (H2) implies that q(x) < p(x) for all x ∈ Ω0. In
the sequel, denote q−0 = infΩ0 q(x) and p−0 = infΩ0 p(x). Let ϵ0 be such
that q−0 + ϵ0 < p−0 . On the other hand, since q ∈ C(Ω0), there exists an
open set Ω1 ⊂ Ω0 such that |q(x) − q−0 | < ϵ0 for all x ∈ Ω1. It follows
that q(x) ≤ q−0 + ϵ0 < p−0 , for all x ∈ Ω1.

Let ϕ ∈ C∞
0 (Ω) be such that supp(ϕ) ⊂ Ω1 ⊂ Ω0, ϕ = 1 in a subset

Ω′
1 ⊂ supp(ϕ), 0 ≤ ϕ ≤ 1 in Ω1. We obtain

Ψλ(tϕ) =

∫
Ω

1

p(x)
|△(tϕ)|p(x)dx+

∫
∂Ω

a(x)

p(x)
|tϕ|p(x)dσ − λ

∫
Ω

F (x, tϕ) dx

≤ 1

p−0

(∫
Ω0

tp(x)|△ϕ|p(x)dx+

∫
∂Ω

tp(x)a(x)|ϕ|p(x)dσ
)

− λ

∫
Ω1

tq(x)F (x, ϕ) dx

≤ tp
−
0

p−0
ρap(x)(ϕ)− λtq

−
0 +ϵ0

∫
Ω1

F (x, ϕ) dx,

≤ tp
−
0

p−0
max(∥ϕ∥p

−

a , ∥ϕ∥p
+

a )− λtq
−
0 +ϵ0

∫
Ω1

F (x, ϕ) dx.

Therefore,
Ψλ(tϕ) < 0

for t < δ1/(p
−
0 −q−0 −ϵ0), with

0 < δ < min

{
1,

λp−0
∫
Ω1

F (x, ϕ)dx

max(∥ϕ∥p+

a , ∥ϕ∥p−
a )

}
.

Since ϕ = 1 in Ω′
1, then ∥ϕ∥a > 0; thus, the proof of Lemma 3.9 is

complete. �

Proof of Theorem 3.6. Let λ∗ > 0 be defined as in (3.2) and λ ∈
(0, λ∗). By Lemma 3.8 it follows that, on the boundary of the ball
centered at the origin and of radius ρ in X, denoted by Bρ(0), we have

(3.3) inf
∂Bρ(0)

Ψλ > 0.
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On the other hand, by Lemma 3.9, there exists a ϕ ∈ X such that
Ψλ(tϕ) < 0 for all t > 0 small enough. Moreover, using Hölder
inequality (2.1), Proposition 2.3 and inequality (3.1), we deduce that,
for any u ∈ Bρ(0), we have

Ψλ(u) ≥
1

p+
∥u∥p

+

a − λc1c
q−
2 |V |s(x)∥u∥q

−

a .

It follows that
−∞ < c := inf

Bρ(0)
Ψλ < 0.

Let 0 < ϵ < inf∂Bρ(0) Ψλ − infBρ(0) Ψλ. Using the above information,

the functional Ψλ : Bρ(0) → R is lower bounded on Bρ(0) and

Ψλ ∈ C1(Bρ(0),R). Then, by Ekeland’s variational principle, there

exists a uϵ ∈ Bρ(0) such that{
c ≤ Ψλ(uϵ) ≤ c+ ϵ,

0 < Ψλ(u)−Ψλ(uϵ) + ϵ · ∥u− uϵ∥a u ̸= uϵ.

Since
Ψλ(uϵ) ≤ inf

Bρ(0)
Ψλ + ϵ ≤ inf

Bρ(0)
Ψλ + ϵ < inf

∂Bρ(0)
Ψλ,

we deduce that uϵ ∈ Bρ(0).

Now, we define Iλ : Bρ(0) → R by Iλ(u) = Ψλ(u) + ϵ · ∥u− uϵ∥a. It
is clear that uϵ is a minimum point of Iλ, and thus,

Iλ(uϵ + t · v)− Iλ(uϵ)

t
≥ 0,

for small t > 0 and any v ∈ B1(0). The above relation yields

Ψλ(uϵ + t · v)−Ψλ(uϵ)

t
+ ϵ · ∥v∥a ≥ 0.

Letting t → 0, it follows that ⟨dΨλ(uϵ), v⟩ + ϵ · ∥v∥a ≥ 0, and we
infer that ∥dΨλ(uϵ)∥a ≤ ϵ. We deduce that there exists a sequence
{wn} ⊂ Bρ(0) such that

(3.4) Ψλ(wn) −→ c < 0 and dΨλ(wn) −→ 0X∗ .

It is clear that {wn} is bounded in X. Thus, there exists a w in X such
that, up to a subsequence, {wn} weakly converges to w in X. Since
α(x) < p∗(x) for all x ∈ Ω, we deduce that there exists a compact
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embedding E ↩→ Lα(x)(Ω), and consequently, {wn} strongly converges
in Lα(x)(Ω). For the strong convergence of {wn} in X, we need the
following proposition.

Proposition 3.10.

lim
n→∞

∫
Ω

∂F

∂u
(x,wn)(wn − w) dx = 0.

Proof. Using Hölder inequality (2.1), we have:∫
Ω

∣∣∣∣∂F∂u (x,wn)(wn−w)

∣∣∣∣dx≤c1|V |s(x)||wn|q(x)−2wn(wn−w)|s′(x)

≤c1|V |s(x)|||wn|q(x)−2wn|q(x)/(q(x)−1)|wn−w|α(x).

Now, if ||wn|q(x)−2wn|q(x)/(q(x)−1) > 1, by Proposition 2.2, we get

||wn|q(x)−2wn|q(x)/(q(x)−1) ≤ |wn|q
+

q(x). The compact embedding X ↩→
Lq(x)(Ω) concludes the proof. �

Since dΨλ(wn) → 0, and wn is bounded in X, we have

|⟨dΨλ(wn), wn − w⟩| ≤ |⟨dΨλ(wn), wn⟩|+ |⟨dΨλ(wn), w⟩|
≤ ∥dΨλ(wn)∥a∥wn∥a + ∥dΨλ(wn)∥a∥w∥a.

Moreover, using Proposition 3.10, we have

lim
n→∞

⟨dΨλ(wn), wn − w⟩ = 0.

Hence,

lim
n→∞

∫
Ω

|△wn|p(x)−2△wn(△wn −△w) dx

+

∫
∂Ω

a(x)|wn|p(x)−2wn(wn − w) dσ = 0.

Now, Proposition 2.4 ensures that {wn} strongly converges to w in X.
Since Ψλ ∈ C1(X,R), we conclude

(3.5) dΨλ(wn) −→ dΨλ(w) as n → ∞.

Relations (3.4) and (3.5) show that dΨλ(w) = 0, and thus, w is a
weak solution for problem (1.1). Moreover, by relation (3.4), it follows
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that Ψλ(w) < 0, and thus, w is a nontrivial weak solution for (1.1).
The proof of Theorem 3.6 is complete. �

Proof of Theorem 3.7. Using Hölder inequality (2.1) for ∥u∥a > 1,
we have

Ψλ(u) =

∫
Ω

1

p(x)
|△u|p(x)dx+

∫
∂Ω

1

p(x)
|a(x)|u|p(x)dσ − λ

∫
Ω

F (x, u) dx

≥ 1

p+
∥u∥p

−

a − λc1|V |s(x)||u|q(x)|s′(x)

≥ 1

p+
∥u∥p

−

a − λc1|V |s(x)|u|q
+

s′(x)q(x)

≥ 1

p+
∥u∥p

−

a − λc1|V |s(x)cq
+

2 ∥u∥q
+

a −→ +∞ as ∥u∥a → +∞.

In conclusion, since Ψλ is weakly lower semi-continuous, then it has
a global minimizer which is a solution of problem (1.1); moreover,
Lemma 3.9 ensures that this minimizer is nontrivial, which ends the
proof. �

Example 3.11. Put F (x, t) = V (x)tq(x), where the function V (·) was
as in the assumption (H2), and consider the problem

(3.6)


△2

p(x)u = λ(∂F (x, u)/∂u) x ∈ Ω,

∂u/∂n = 0 x ∈ ∂Ω,

∂(|△u|p(x)−2△u)/∂n = a(x)|u|p(x)−2u x ∈ ∂Ω,

where Ω is a bounded smooth domain in RN , N ≥ 3, with sufficiently
smooth boundary ∂Ω, n is a unit outward normal to ∂Ω, a ∈ L∞(∂Ω)
with a− := infx∈∂Ω a(x) > 0 and λ is a positive real number.

First, observe that the function F satisfies assumptions (H1), (H2)
and (H3). Then, Theorem 3.6 asserts that there exists a λ∗ > 0, under
which problem (3.6) has a nontrivial weak solution. Moreover, due to
Theorem 3.7, we have a solution for any λ > 0.

Acknowledgments. The authors thank the anonymous referee for
a careful and constructive analysis of this paper and for the remarks
and comments, which considerably improved the initial version of the
present work.



SOME p(x)-BIHARMONIC PROBLEMS 2557

REFERENCES

1. S.N. Antontsev and S.I Shmarev, A model porous medium equation with
variable exponent of nonlinearity: Existence, uniqueness and localization properties
of solutions, Nonlin. Anal. Th. Meth. Appl. 60 (2005), 515–545.

2. A. Ayoujil and A.R. El Amrouss, On the spectrum of a fourth order elliptic
equation with variable exponent, Nonlin. Anal. 71 (2009), 4916–4926.

3. K. Ben Haddouch, Z. El Allali, A. Ayoujil and N. Tsouli, Continuous spectrum
of a fourth order eigenvalue problem with variable exponent under Neumann
boundary conditions, Ann. Univ. Craiova, Math. Comp. Sci. 42 (2015), 42–55.
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24. V.D. Rădulescu, Nonlinear elliptic equations with variable exponent : Old
and new, Nonlin. Anal. 121 (2015), 336–369.
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