EIGENVALUES OF SOME $p(x)$-BIHARMONIC PROBLEMS UNDER NEUMANN BOUNDARY CONDITIONS

MOUNIR HSINI, NAWAL IRZI AND KHALED KEFI

$$
\begin{aligned}
& \text { ABSTRACT. In this paper, we study the following } p(x) \text { - } \\
& \text { biharmonic problem in Sobolev spaces with variable expo- } \\
& \text { nents } \\
& \qquad \begin{array}{ll}
\triangle_{p(x)}^{2} u=\lambda(\partial F(x, u) / \partial u) & x \in \Omega \\
\partial u / \partial n=0 & x \in \partial \Omega \\
\partial\left(|\triangle u|^{p(x)-2} \triangle u\right) / \partial n=a(x)|u|^{p(x)-2} u & x \in \partial \Omega
\end{array}
\end{aligned}
$$

By means of the variational approach and Ekeland's principle, we establish that the above problem admits a nontrivial weak solution under appropriate conditions.

1. Introduction. Stimulated by the development of the study of elastic mechanics, see [29], electrorheological fluids, see [26], image processing, see [5], and mathematical description of the filtration processes of an ideal baroscopic gas through a porous medium, see [1], interest in variational problems and differential equations with variable exponents has grown in recent decades. Meanwhile, elliptic problems involving operators in divergence form can be found in [4, 22]. Some other results dealing with the $p(x)$-Laplace and the $p(x)$-biharmonic operators in Sobolev spaces with variable exponents can be found in $[12,15,16,17,18,20,21]$.

The purpose of this paper is to study the existence of an eigenvalue for the following $p(x)$-biharmonic problem

$$
\begin{cases}\triangle_{p(x)}^{2} u=\lambda(\partial F(x, u) / \partial u) & x \in \Omega, \tag{1.1}\\ \partial u / \partial n=0 & x \in \partial \Omega, \\ \partial\left(|\triangle u|^{p(x)-2} \triangle u\right) / \partial n=a(x)|u|^{p(x)-2} u & x \in \partial \Omega,\end{cases}
$$

[^0]where Ω is a bounded smooth domain in $\mathbb{R}^{N}(N \geq 3)$ with sufficiently smooth boundary $\partial \Omega, \Delta_{p(x)}^{2} u=\Delta\left(|\Delta u|^{p(x)-2} \Delta u\right)$ is the $p(x)$ biharmonic operator of fourth order, n is a unit outward normal to $\partial \Omega$, $a \in L^{\infty}(\partial \Omega)$ with $a^{-}:=\inf _{x \in \partial \Omega} a(x)>0, \lambda$ is a positive real number and the functions p and F satisfy the following assumptions:
$$
p \in C(\bar{\Omega}) \text { with } p^{-}:=\inf _{x \in \bar{\Omega}} p(x)>1 \quad \text { and } \quad F \in C^{1}(\bar{\Omega} \times \mathbb{R}, \mathbb{R})
$$

The $p(x)$-biharmonic problem under Neumann boundary conditions has been studied by many authors in recent years. Let us recall that Ben Haddouch, et al. [3], studied the following problem:

$$
\begin{cases}\triangle_{p(x)}^{2} u=\lambda|u|^{q(x)-2} u & x \in \Omega \tag{1.2}\\ \partial u / \partial n=\partial\left(|\triangle u|^{p(x)-2} \triangle u\right) / \partial n=0 & x \in \partial \Omega\end{cases}
$$

The authors established the existence of a continuous family of eigenvalues by using the Mountain pass lemma and Ekeland's variational principle. Moreover, Taarabti, et al. [27], studied the following nonhomogeneous eigenvalue problem

$$
\begin{cases}\triangle_{p(x)}^{2} u=\lambda V(x)|u|^{q(x)-2} u & x \in \Omega \tag{1.3}\\ \partial u / \partial n=\partial\left(|\triangle u|^{p(x)-2} \triangle u\right) / \partial n=0 & x \in \partial \Omega\end{cases}
$$

They used Ekeland's variational principle to prove the existence of a continuous family of eigenvalues which lies in a neighborhood of the origin. Moreover, Bin Ge, et al. [13], proved the existence of a continuous family of eigenvalues by considering different situations concerning the growth rates involved in the above-quoted problem. Inspired by the above-mentioned papers, we study problem (1.1) under the following assumptions.
$(\mathbf{H 1}) F: \bar{\Omega} \times \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1} function such that

$$
F(x, t u)=t^{q(x)} F(x, u), t>0, \text { for all } x \in \Omega, u \in \mathbb{R}
$$

$$
\begin{equation*}
\left|\frac{\partial F}{\partial t}(x, t)\right| \leq c_{1} V(x)|t|^{q(x)-1} \tag{H2}
\end{equation*}
$$

for all $t \in \mathbb{R}$, for all $x \in \bar{\Omega}$, where c is a positive constant, $V \in L^{s(x)}(\Omega)$ and $s, q \in C(\bar{\Omega})$ are such that, for all $x \in \bar{\Omega}$, we have $1<q(x)<p(x)<$ $N / 2<s(x)$.
(H3) There exists an $\Omega_{0} \subset \subset \Omega$ with $\left|\Omega_{0}\right|>0$ such that $F(x, t)>0$ in Ω_{0}.

Remark 1.1. Due to assumption (H1), F leads to the so-called Euler identity

$$
\begin{equation*}
t \frac{\partial F}{\partial t}(x, t)=q(x) F(x, t), \quad \text { for all } x \in \Omega, t \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

Our main results establish, for small perturbation, the existence of a continuous family of eigenvalues in a neighborhood of the origin. On the other hand, we show the existence of a global minimizer of the Euler Lagrange functional associated to problem (1.1).
2. Terminology and abstract setting. In order to study $p(x)$ biharmonic problems, we need some results on the spaces $L^{p(x)}(\Omega)$, $W^{1, p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, see $[\mathbf{1 0}, \mathbf{1 4}, \mathbf{2 4}, \mathbf{2 5}]$ for details, complements and proofs.

Set

$$
C_{+}(\bar{\Omega}):=\{h: h \in C(\bar{\Omega}), h(x)>1 \text { for all } x \in \bar{\Omega}\}
$$

For any $p \in C_{+}(\bar{\Omega})$, we denote $1<p^{-}:=\min _{x \in \bar{\Omega}} p(x) \leq p^{+}=$ $\max _{x \in \bar{\Omega}} p(x)<\infty$ and

$$
L^{p(x)}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable and } \int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\}
$$

The spaces $L^{p(x)}(\Omega)$ were introduced by Orlicz [23].
The space $L^{p(x)}(\Omega)$ is endowed with the Luxemburg norm, defined by

$$
|u|_{p(x)}=\inf \left\{\mu>0: \int_{\Omega}\left|\frac{u(x)}{\mu}\right|^{p(x)} d x \leq 1\right\}
$$

Clearly, when $p(x) \equiv p$, the space $L^{p(x)}(\Omega)$ reduces to the classical Lebesgue space $L^{p}(\Omega)$, and the norm $|u|_{p(x)}$ reduces to the standard norm

$$
\|u\|_{L^{p}}=\left(\int_{\Omega}|u|^{p} d x\right)^{1 / p} \quad \text { in } L^{p}(\Omega)
$$

For any positive integer k, let

$$
W^{k, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega): D^{\alpha} u \in L^{p(x)}(\Omega),|\alpha| \leq k\right\}
$$

where $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)$ is a multi-index,

$$
|\alpha|=\sum_{i=1}^{N} \alpha_{i} \quad \text { and } \quad D^{\alpha} u=\frac{\partial^{|\alpha|} u}{\partial^{\alpha_{1}} x_{1} \cdots \partial^{\alpha_{N}} x_{n}}
$$

Then, $W^{k, p(x)}(\Omega)$ is a separable and reflexive Banach space, equipped with the norm

$$
\|u\|_{k, p(x)}=\sum_{|\alpha| \leq k}\left|D^{\alpha} u\right|_{p(x)}
$$

Let $L^{p^{\prime}(x)}(\Omega)$ be the conjugate space of $L^{p(x)}(\Omega)$ with $1 / p+1 / p^{\prime}=1$. Then, the following Hölder-type inequality
$\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{\left(p^{\prime}\right)^{-}}\right)|u|_{p(x)}|v|_{p^{\prime}(x)}, \quad u \in L^{p(x)}(\Omega), v \in L^{p^{\prime}(x)}(\Omega)$,
holds. Moreover, if h_{1}, h_{2} and $h_{3}: \bar{\Omega} \rightarrow(1, \infty)$ are Lipschitz continuous functions such that $1 / h_{1}(x)+1 / h_{2}(x)+1 / h_{3}(x)=1$, then, for any $u \in L^{h_{1}(x)}(\Omega), v \in L^{h_{2}(x)}(\Omega)$ and $w \in L^{h_{3}(x)}(\Omega)$, the following inequality holds [9, Proposition 2.5]:

$$
\begin{equation*}
\left|\int_{\Omega} u v w d x\right| \leq\left(\frac{1}{h_{1}^{-}}+\frac{1}{h_{2}^{-}}+\frac{1}{h_{3}^{-}}\right)|u|_{h_{1}(x)}|v|_{h_{2}(x)}|w|_{h_{3}(x)} . \tag{2.2}
\end{equation*}
$$

Inequality (2.1) and its generalized version (2.2) are due to Orlicz [23].
The modular on the space $L^{p(x)}(\Omega)$ is the map $\rho_{p(x)}: L^{p(x)}(\Omega) \rightarrow \mathbb{R}$, defined by

$$
\rho_{p(x)}(u):=\int_{\Omega}|u|^{p(x)} d x .
$$

Proposition 2.1 ([19]). For all $u, v \in L^{p(x)}(\Omega)$, we have
(i) $|u|_{p(x)}<1$ (respectively, $=1,>1$) $\Leftrightarrow \rho_{p(x)}(u)<1$ (respectively, $=1,>1$).
(ii) $\min \left(|u|_{p(x)}^{p^{-}},|u|_{p(x)}^{p^{+}}\right) \leq \rho_{p(x)}(u) \leq \max \left(|u|_{p(x)}^{p^{-}},|u|_{p(x)}^{p^{+}}\right)$.
(iii) $\rho_{p(x)}(u-v) \rightarrow 0 \Leftrightarrow|u-v|_{p(x)} \rightarrow 0$.

Another interesting property of the variable exponent Lebesgue space $L^{p(x)}(\Omega)$ is the following.

Proposition $2.2([6])$. Let p and q be measurable functions such that $p \in L^{\infty}(\Omega)$ and $1 \leq p(x) q(x) \leq \infty$, for almost every $x \in \Omega$. Let $u \in L^{q(x)}(\Omega), u \neq 0$. Then

$$
\min \left(|u|_{p(x) q(x)}^{p^{+}},|u|_{p(x) q(x)}^{p^{-}}\right) \leq \|\left.\left. u\right|^{p(x)}\right|_{q(x)} \leq \max \left(|u|_{p(x) q(x)}^{p^{-}},|u|_{p(x) q(x)}^{p^{+}}\right)
$$

In order to prove the existence of a weak solution for problem (1.1), we introduce the space

$$
X=\left\{u \in W^{2, p(x)}(\Omega):\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0\right\}
$$

This space was first considered by El Amrouss, et al. [7], who proved that X is a nonempty and well-defined closed subspace of $W^{2, p(x)}(\Omega)$.

Let

$$
\|u\|_{a}:=\inf \left\{\mu>0: \int_{\Omega}\left|\frac{\Delta u}{\mu}\right|^{p(x)} d x+\int_{\partial \Omega} a(x)\left|\frac{u}{\mu}\right|^{p(x)} d \sigma \leq 1\right\}
$$

for $u \in X$. Since $a \in L^{\infty}(\partial \Omega)$ and $\operatorname{essinf}_{x \in \Omega} a>0$, we deduce that $\|u\|_{a}$ is an equivalent norm to $\|u\|_{2, p(x)}$ in X. Here, we will use the norm $\|u\|_{a}$, and the modular is defined as $\rho_{p(x)}^{a}: X \rightarrow \mathbb{R}$ by

$$
\rho_{p(x)}^{a}(u)=\int_{\Omega}|\Delta u|^{p(x)} d x+\int_{\partial \Omega} a(x)|u|^{p(x)} d \sigma
$$

which satisfies the same properties as Proposition 2.1. Accordingly, we have, similar to [11, Theorem 1.3], the following propositions.

Proposition 2.3. For all $u \in L^{p(x)}(\Omega)$, we have
(i) $\|u\|_{a}<1$ (respectively, $=1,>1$) $\Leftrightarrow \rho_{p(x)}^{a}(u)<1$ (respectively, $=1,>1$).
(ii) $\min \left(\|u\|_{a}^{p^{-}},\|u\|_{a}^{p^{+}}\right) \leq \rho_{p(x)}^{a}(u) \leq \max \left(\|u\|_{a}^{p^{-}},\|u\|_{a}^{p^{+}}\right)$.
(iii) $\left\|u_{n}\right\|_{a} \rightarrow 0$ (respectively, $\rightarrow \infty$) $\Leftrightarrow \rho_{p(x)}^{a}\left(u_{n}\right) \rightarrow 0$ (respectively, $\rightarrow \infty)$.

Arguments similar to those used in the proof of [2, Proposition 4.2] showed the following.

Proposition 2.4. Let

$$
I_{a}(u)=\int_{\Omega} \frac{1}{p(x)}|\Delta u|^{p(x)} d x+\int_{\partial \Omega} \frac{1}{p(x)} a(x)|u|^{p(x)} d \sigma
$$

Then
(i) $I_{a}: X \rightarrow \mathbb{R}$ is sequentially weakly lower semi-continuous, $I_{a} \in C^{1}(X, \mathbb{R})$.
(ii) The mapping $I_{a}^{\prime}: X \rightarrow X^{*}$ is a strictly monotone, bounded homeomorphism, and is of type $\left(S_{+}\right)$, that is, if $u_{n} \rightarrow u$ and $\lim \sup _{n \rightarrow+\infty} I_{a}^{\prime}\left(u_{n}\right)\left(u_{n}-u\right) \leq 0$, then $u_{n} \rightarrow u$.

We recall that the critical Sobolev exponent is defined as follows:

$$
p^{*}(x)= \begin{cases}\frac{N p(x)}{N-p(x)} & p(x)<\frac{N}{2} \\ +\infty & p(x) \geq \frac{N}{2}\end{cases}
$$

We point out that, if $q \in C^{+}(\bar{\Omega})$ and $q(x)<p^{*}(x)$ for all $x \in \bar{\Omega}$, then X is continuously and compactly embedded in $L^{q(x)}(\Omega)$. The Lebesgue and Sobolev spaces with variable exponents coincide with the usual Lebesgue and Sobolev spaces, provided that p is constant. According to [25, pages 8-9], these function spaces $L^{p(x)}$ and $W^{1, p(x)}$ have some unusual properties, such as:
(i) Assuming that $1<p^{-} \leq p^{+}<\infty$, and $p: \bar{\Omega} \rightarrow[1, \infty)$ is a smooth function, then the following co-area formula

$$
\int_{\Omega}|u(x)|^{p} d x=p \int_{0}^{\infty} t^{p-1}|\{x \in \Omega ;|u(x)|>t\}| d t
$$

has no analog in the framework of variable exponents.
(ii) Spaces $L^{p(x)}$ do not satisfy the mean continuity property. More exactly, if p is nonconstant and continuous in an open ball B, then there is some $u \in L^{p(x)}(B)$ such that $u(x+h) \notin L^{p(x)}(B)$ for every $h \in \mathbb{R}^{N}$ with arbitrary small norm.
(iii) Function spaces with variable exponents are never invariant with respect to translations. The convolution is also limited. For instance, the classical Young inequality

$$
|f * g|_{p(x)} \leq c|f|_{p(x)}\|g\|_{L^{1}}
$$

remains true if and only if p is constant.
3. Main results and auxiliary properties. Throughout the paper, the letters $c, c_{i}, i=1,2, \ldots$, denote positive constants which may change from line to line. In the sequel, denote by $s^{\prime}(x)$ the conjugate exponent of the function $s(x)$, and put $\alpha(x):=s(x) q(x) /(s(x)-q(x))$. Then, we have:

Remark 3.1. Under assumption $\left(\mathbf{H}_{2}\right)$, we have $s^{\prime}(x) q(x)<p^{*}(x)$ for all $x \in \bar{\Omega}, \alpha(x)<p^{*}(x)$ for all $x \in \bar{\Omega}$; hence, the embeddings $X \hookrightarrow L^{s^{\prime}(x) q(x)}(\Omega)$ and $X \hookrightarrow L^{\alpha(x)}(\Omega)$ are compact and continuous.

Proposition 3.2 ([8, Theorem 2.4]). Let $\Omega \in \mathbb{R}^{N}$ be an open bounded domain with Lipschitz boundary. Let m be a positive integer. Suppose that $p \in C^{0}(\bar{\Omega})$ with $p^{-}>1$ and $m p^{+}<N$. If $q \in S(\partial \Omega)$, where $S(\partial \Omega)$ is the set of all measurable real functions defined on Ω, and there exists a positive constant ε such that

$$
1 \leq q(x)<q(x)+\varepsilon \leq \frac{(N-1) p(x)}{N-m p(x)} \quad \text { for } x \in \partial \Omega
$$

then the boundary trace embedding $W^{m, p(.)}(\Omega) \hookrightarrow L^{q(.)}(\partial \Omega)$ is compact.
Remark 3.3. Since $p>1 / 2$, then, by Proposition 3.2, we have that $W^{2, p(x)}(\Omega) \hookrightarrow L^{p(x)}(\partial \Omega)$ is compact.

Note that an eigenvalue for problem (1.1) satisfies the following definition.

Definition 3.4. We say that $\lambda \in \mathbb{R}$ is an eigenvalue of problem (1.1), if there exists a $u \in X \backslash\{0\}$ such that

$$
\int_{\Omega}|\triangle u|^{p(x)-2} \triangle u \triangle v d x+\int_{\partial \Omega} a(x)|u|^{p(x)-2} u v d \sigma=\lambda \int_{\Omega} \frac{\partial F}{\partial u}(x, u) v d x
$$

for any $v \in X$, and we recall that, if λ is an eigenvalue of problem (1.1), then, the corresponding $u \in X \backslash\{0\}$ is a weak solution of (1.1).

Proposition 3.5. If $u \in X$ is a weak solution of (1.1) and $u \in C^{4}(\bar{\Omega})$, then, u is a classical solution of (1.1).

Proof. Let $u \in C^{4}(\bar{\Omega})$ be a weak solution of problem (1.1). Then, for every $v \in X$, we have

$$
\int_{\Omega}|\triangle u|^{p(x)-2} \triangle u \triangle v d x+\int_{\partial \Omega} a(x)|u|^{p(x)-2} u v d \sigma=\lambda \int_{\Omega} \frac{\partial F}{\partial u}(x, u) v d x
$$

By applying Green's formula, we have:

$$
\begin{aligned}
\int_{\Omega} \triangle\left(|\triangle u|^{p(x)-2} \triangle u\right) v d x= & -\int_{\Omega} \nabla\left(|\triangle u|^{p(x)-2} \triangle u\right) \cdot \nabla v d x \\
& +\int_{\partial \Omega} v \frac{\partial}{\partial n}\left(|\triangle u|^{p(x)-2} \triangle u\right) d \sigma
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\Omega}|\triangle u|^{p(x)-2} \triangle u \Delta v d x= & -\int_{\Omega} \nabla\left(|\triangle u|^{p(x)-2} \triangle u\right) \cdot \nabla v d x \\
& +\int_{\partial \Omega}\left(|\triangle u|^{p(x)-2} \triangle u\right) \frac{\partial}{\partial n}(v) d \sigma
\end{aligned}
$$

Since $v \in X$, then $\partial(v) / \partial n=0$. For $v \in D(\Omega)$, we have

$$
\triangle\left(|\triangle u|^{p(x)-2} \triangle u\right)=\lambda \frac{\partial F}{\partial u}(x, u) \text { almost everywhere } x \in \Omega
$$

For each $v \in X$, we have

$$
\int_{\partial \Omega} \frac{\partial}{\partial n}\left(|\triangle u|^{p(x)-2} \triangle u\right) v d \sigma=\int_{\partial \Omega} a(x)|u|^{p(x)-2} u v d \sigma .
$$

Then, for all $v \in D(\Omega)$, we have

$$
\int_{\partial \Omega} \frac{\partial}{\partial n}\left(|\triangle u|^{p(x)-2} \triangle u\right) v d \sigma=\int_{\partial \Omega} a(x)|u|^{p(x)-2} u v d \sigma
$$

which implies that

$$
\frac{\partial}{\partial n}\left(|\triangle u|^{p(x)-2} \triangle u\right)-a(x)|u|^{p(x)-2} u=0
$$

almost everywhere $x \in \Omega$.

The first result in this paper is the following.

Theorem 3.6. Assume that hypotheses (H1), (H2) and (H3) are fulfilled. Then, there exists a $\lambda^{*}>0$, such that any $\lambda \in\left(0, \lambda^{*}\right)$ is an eigenvalue of problem (1.1).

In the second, we establish that the Euler-Lagrange functional associated to problem (1.1) has a global minimizer.

Theorem 3.7. Assume that hypotheses (H1), (H2) and (H3) hold. Then, any $\lambda>0$ is an eigenvalue of problem (1.1).

In order to formulate the variational problem (1.1), we introduce the functionals Φ and $J: X \rightarrow \mathbb{R}$, defined by:

$$
\Phi(u)=\int_{\Omega} \frac{1}{p(x)}|\triangle u|^{p(x)} d x+\int_{\partial \Omega} \frac{a(x)}{p(x)}|u|^{p(x)} d \sigma
$$

and

$$
J(u)=\int_{\Omega} F(x, u) d x
$$

The Euler Lagrange functional corresponding to problem (1.1) is defined by $\Psi_{\lambda}: X \rightarrow \mathbb{R}$, where

$$
\Psi_{\lambda}(u):=\Phi(u)-\lambda J(u)
$$

Standard arguments show that $\Psi_{\lambda} \in C^{1}(X, \mathbb{R})$ and

$$
\begin{aligned}
\left\langle d \Psi_{\lambda}(u), v\right\rangle= & \int_{\Omega}|\triangle u|^{p(x)-2} \Delta u \Delta v d x \\
& +\int_{\partial \Omega} a(x)|u|^{p(x)-2} u v d \sigma-\lambda \int_{\Omega} \frac{\partial F}{\partial u}(x, u) v d x
\end{aligned}
$$

for any $v \in X$. Hence, a solution to problem (1.1) is a critical point of Ψ_{λ}.

We begin with the following auxiliary lemmas.

Lemma 3.8. Suppose that we are under the hypotheses of Theorem 3.6. Then, for all $\rho \in(0,1)$, there exist $\lambda^{*}>0$ and $b>0$ such that, for all
$u \in X$ with $\|u\|_{a}=\rho$,

$$
\Psi_{\lambda}(u) \geq b>0 \quad \text { for all } \lambda \in\left(0, \lambda^{*}\right)
$$

Proof. Since the embedding $X \hookrightarrow L^{s^{\prime}(x) q(x)}(\Omega)$ is continuous, then

$$
\begin{equation*}
|u|_{s^{\prime}(x) q(x)} \leq c_{2}\|u\|_{a}, \quad \text { for all } u \in X \tag{3.1}
\end{equation*}
$$

We assume that $\|u\|_{a}<\min \left(1,1 / c_{2}\right)$, where c_{2} is the positive constant of inequality (3.1). Then, we have $|u|_{s^{\prime}(x) q(x)}<1$, using Hölder inequality (2.1), Proposition 2.3, Remark 1.1 and inequality (3.1), we deduce that, for any $u \in X$ with $\|u\|_{a}=\rho$, the following inequalities hold:

$$
\begin{aligned}
\Psi_{\lambda}(u) & =\int_{\Omega} \frac{1}{p(x)}|\triangle u|^{p(x)} d x+\int_{\partial \Omega} \frac{a(x)}{p(x)}|u|^{p(x)} d \sigma-\lambda \int_{\Omega} F(x, u) d x \\
& \geq \frac{1}{p^{+}}\|u\|_{a}^{p^{+}}-\left.\left.\lambda c_{1}|V|_{s(x)}| | u\right|^{q(x)}\right|_{s^{\prime}(x)} \\
& \geq \frac{1}{p^{+}}\|u\|_{a}^{p^{+}}-\lambda c_{1}|V|_{s(x)}|u|_{s^{\prime}(x) q(x)}^{q^{-}} \\
& \geq \frac{1}{p^{+}}\|u\|_{a}^{p^{+}}-\lambda c_{1}|V|_{s(x)} c_{2}^{q^{-}}\|u\|_{a}^{q^{-}} \\
& =\frac{1}{p^{+}} \rho^{p^{+}}-\lambda c_{1} c_{2}^{q^{-}}|V|_{s(x)} \rho^{q^{-}} \\
& =\rho^{q^{-}}\left(\frac{1}{p^{+}} \rho^{p^{+}-q^{-}}-\lambda c_{1} c_{2}^{q^{-}}|V|_{s(x)}\right)
\end{aligned}
$$

From the above inequality, we remark that, if we define

$$
\begin{equation*}
\lambda^{*}=\frac{\rho^{p^{+}-q^{-}}}{2 p^{+}} \frac{1}{c_{1} c_{2}^{q^{-}}|V|_{s(x)}} \tag{3.2}
\end{equation*}
$$

then, for any $\lambda \in\left(0, \lambda^{*}\right)$ and $u \in X$ with $\|u\|_{a}=\rho$, there exists a $b>0$ such that

$$
\Psi_{\lambda}(u) \geq b>0
$$

The proof of Lemma 3.8 is complete.

The next result asserts the existence of a valley for Ψ_{λ} near the origin.

Lemma 3.9. There exists a $\phi \in X$ such that $\phi \geq 0, \phi \neq 0$ and $\Psi_{\lambda}(t \phi)<0$, for $t>0$ small enough.

Proof. Assumption (H2) implies that $q(x)<p(x)$ for all $x \in \bar{\Omega}_{0}$. In the sequel, denote $q_{0}^{-}=\inf _{\Omega_{0}} q(x)$ and $p_{0}^{-}=\inf _{\Omega_{0}} p(x)$. Let ϵ_{0} be such that $q_{0}^{-}+\epsilon_{0}<p_{0}^{-}$. On the other hand, since $q \in C\left(\bar{\Omega}_{0}\right)$, there exists an open set $\Omega_{1} \subset \Omega_{0}$ such that $\left|q(x)-q_{0}^{-}\right|<\epsilon_{0}$ for all $x \in \Omega_{1}$. It follows that $q(x) \leq q_{0}^{-}+\epsilon_{0}<p_{0}^{-}$, for all $x \in \Omega_{1}$.

Let $\phi \in C_{0}^{\infty}(\Omega)$ be such that $\operatorname{supp}(\phi) \subset \Omega_{1} \subset \Omega_{0}, \phi=1$ in a subset $\Omega^{\prime}{ }_{1} \subset \operatorname{supp}(\phi), 0 \leq \phi \leq 1$ in Ω_{1}. We obtain

$$
\begin{aligned}
\Psi_{\lambda}(t \phi)= & \int_{\Omega} \frac{1}{p(x)}|\triangle(t \phi)|^{p(x)} d x+\int_{\partial \Omega} \frac{a(x)}{p(x)}|t \phi|^{p(x)} d \sigma-\lambda \int_{\Omega} F(x, t \phi) d x \\
\leq & \frac{1}{p_{0}^{-}}\left(\int_{\Omega_{0}} t^{p(x)}|\triangle \phi|^{p(x)} d x+\int_{\partial \Omega} t^{p(x)} a(x)|\phi|^{p(x)} d \sigma\right) \\
& -\lambda \int_{\Omega_{1}} t^{q(x)} F(x, \phi) d x \\
\leq & \frac{t^{p_{0}^{-}}}{p_{0}^{-}} \rho_{p(x)}^{a}(\phi)-\lambda t^{q_{0}^{-}+\epsilon_{0}} \int_{\Omega_{1}} F(x, \phi) d x \\
\leq & \frac{t^{p_{0}^{-}}}{p_{0}^{-}} \max \left(\|\phi\|_{a}^{p^{-}},\|\phi\|_{a}^{p^{+}}\right)-\lambda t^{q_{0}^{-}+\epsilon_{0}} \int_{\Omega_{1}} F(x, \phi) d x .
\end{aligned}
$$

Therefore,

$$
\Psi_{\lambda}(t \phi)<0
$$

for $t<\delta^{1 /\left(p_{0}^{-}-q_{0}^{-}-\epsilon_{0}\right)}$, with

$$
0<\delta<\min \left\{1, \frac{\lambda p_{0}^{-} \int_{\Omega_{1}} F(x, \phi) d x}{\max \left(\|\phi\|_{a}^{p^{+}},\|\phi\|_{a}^{p^{-}}\right)}\right\} .
$$

Since $\phi=1$ in $\Omega^{\prime}{ }_{1}$, then $\|\phi\|_{a}>0$; thus, the proof of Lemma 3.9 is complete.

Proof of Theorem 3.6. Let $\lambda^{*}>0$ be defined as in (3.2) and $\lambda \in$ $\left(0, \lambda^{*}\right)$. By Lemma 3.8 it follows that, on the boundary of the ball centered at the origin and of radius ρ in X, denoted by $B_{\rho}(0)$, we have

$$
\begin{equation*}
\inf _{\partial B_{\rho}(0)} \Psi_{\lambda}>0 \tag{3.3}
\end{equation*}
$$

On the other hand, by Lemma 3.9, there exists a $\phi \in X$ such that $\Psi_{\lambda}(t \phi)<0$ for all $t>0$ small enough. Moreover, using Hölder inequality (2.1), Proposition 2.3 and inequality (3.1), we deduce that, for any $u \in B_{\rho}(0)$, we have

$$
\Psi_{\lambda}(u) \geq \frac{1}{p^{+}}\|u\|_{a}^{p^{+}}-\lambda c_{1} c_{2}^{q-}|V|_{s(x)}\|u\|_{a}^{q^{-}} .
$$

It follows that

$$
-\infty<\underline{c}:=\frac{\inf }{B_{\rho}(0)} \Psi_{\lambda}<0
$$

Let $0<\epsilon<\inf _{\partial B_{\rho}(0)} \Psi_{\lambda}-\inf _{B_{\rho}(0)} \Psi_{\lambda}$. Using the above information, the functional $\Psi_{\lambda}: \overline{B_{\rho}(0)} \rightarrow \mathbb{R}$ is lower bounded on $\overline{B_{\rho}(0)}$ and $\Psi_{\lambda} \in C^{1}\left(\overline{B_{\rho}(0)}, \mathbb{R}\right)$. Then, by Ekeland's variational principle, there exists a $u_{\epsilon} \in \overline{B_{\rho}(0)}$ such that

$$
\left\{\begin{array}{l}
\underline{c} \leq \Psi_{\lambda}\left(u_{\epsilon}\right) \leq \underline{c}+\epsilon \\
0<\Psi_{\lambda}(u)-\Psi_{\lambda}\left(u_{\epsilon}\right)+\epsilon \cdot\left\|u-u_{\epsilon}\right\|_{a} \quad u \neq u_{\epsilon}
\end{array}\right.
$$

Since

$$
\Psi_{\lambda}\left(u_{\epsilon}\right) \leq \inf _{B_{\rho}(0)} \Psi_{\lambda}+\epsilon \leq \inf _{B_{\rho}(0)} \Psi_{\lambda}+\epsilon<\inf _{\partial B_{\rho}(0)} \Psi_{\lambda}
$$

we deduce that $u_{\epsilon} \in B_{\rho}(0)$.
Now, we define $I_{\lambda}: \overline{B_{\rho}(0)} \rightarrow \mathbb{R}$ by $I_{\lambda}(u)=\Psi_{\lambda}(u)+\epsilon \cdot\left\|u-u_{\epsilon}\right\|_{a}$. It is clear that u_{ϵ} is a minimum point of I_{λ}, and thus,

$$
\frac{I_{\lambda}\left(u_{\epsilon}+t \cdot v\right)-I_{\lambda}\left(u_{\epsilon}\right)}{t} \geq 0
$$

for small $t>0$ and any $v \in B_{1}(0)$. The above relation yields

$$
\frac{\Psi_{\lambda}\left(u_{\epsilon}+t \cdot v\right)-\Psi_{\lambda}\left(u_{\epsilon}\right)}{t}+\epsilon \cdot\|v\|_{a} \geq 0
$$

Letting $t \rightarrow 0$, it follows that $\left\langle d \Psi_{\lambda}\left(u_{\epsilon}\right), v\right\rangle+\epsilon \cdot\|v\|_{a} \geq 0$, and we infer that $\left\|d \Psi_{\lambda}\left(u_{\epsilon}\right)\right\|_{a} \leq \epsilon$. We deduce that there exists a sequence $\left\{w_{n}\right\} \subset B_{\rho}(0)$ such that

$$
\begin{equation*}
\Psi_{\lambda}\left(w_{n}\right) \longrightarrow \underline{c}<0 \quad \text { and } \quad d \Psi_{\lambda}\left(w_{n}\right) \longrightarrow 0_{X^{*}} \tag{3.4}
\end{equation*}
$$

It is clear that $\left\{w_{n}\right\}$ is bounded in X. Thus, there exists a w in X such that, up to a subsequence, $\left\{w_{n}\right\}$ weakly converges to w in X. Since $\alpha(x)<p^{*}(x)$ for all $x \in \bar{\Omega}$, we deduce that there exists a compact
embedding $E \hookrightarrow L^{\alpha(x)}(\Omega)$, and consequently, $\left\{w_{n}\right\}$ strongly converges in $L^{\alpha(x)}(\Omega)$. For the strong convergence of $\left\{w_{n}\right\}$ in X, we need the following proposition.

Proposition 3.10.

$$
\lim _{n \rightarrow \infty} \int_{\Omega} \frac{\partial F}{\partial u}\left(x, w_{n}\right)\left(w_{n}-w\right) d x=0
$$

Proof. Using Hölder inequality (2.1), we have:

$$
\begin{aligned}
\int_{\Omega}\left|\frac{\partial F}{\partial u}\left(x, w_{n}\right)\left(w_{n}-w\right)\right| d x \leq\left.\left. c_{1}|V|_{s(x)}| | w_{n}\right|^{q(x)-2} w_{n}\left(w_{n}-w\right)\right|_{s^{\prime}(x)} \\
\leq\left. c_{1}|V|_{s(x)}| |\left|w_{n}\right|^{q(x)-2} w_{n}\right|_{q(x) /(q(x)-1)}\left|w_{n}-w\right|_{\alpha(x)}
\end{aligned}
$$

Now, if $\left|\left|w_{n}\right|^{q(x)-2} w_{n}\right|_{q(x) /(q(x)-1)}>1$, by Proposition 2.2 , we get $\left|\left|w_{n}\right|^{q(x)-2} w_{n}\right|_{q(x) /(q(x)-1)} \leq\left|w_{n}\right|_{q(x)}^{q^{+}}$. The compact embedding $X \hookrightarrow$ $L^{q(x)}(\Omega)$ concludes the proof.

Since $d \Psi_{\lambda}\left(w_{n}\right) \rightarrow 0$, and w_{n} is bounded in X, we have

$$
\begin{aligned}
\left|\left\langle d \Psi_{\lambda}\left(w_{n}\right), w_{n}-w\right\rangle\right| & \leq\left|\left\langle d \Psi_{\lambda}\left(w_{n}\right), w_{n}\right\rangle\right|+\left|\left\langle d \Psi_{\lambda}\left(w_{n}\right), w\right\rangle\right| \\
& \leq\left\|d \Psi_{\lambda}\left(w_{n}\right)\right\|_{a}\left\|w_{n}\right\|_{a}+\left\|d \Psi_{\lambda}\left(w_{n}\right)\right\|_{a}\|w\|_{a}
\end{aligned}
$$

Moreover, using Proposition 3.10, we have

$$
\lim _{n \rightarrow \infty}\left\langle d \Psi_{\lambda}\left(w_{n}\right), w_{n}-w\right\rangle=0
$$

Hence,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{\Omega}\left|\triangle w_{n}\right|^{p(x)-2} \triangle w_{n}\left(\triangle w_{n}-\triangle w\right) d x \\
&+\int_{\partial \Omega} a(x)\left|w_{n}\right|^{p(x)-2} w_{n}\left(w_{n}-w\right) d \sigma=0
\end{aligned}
$$

Now, Proposition 2.4 ensures that $\left\{w_{n}\right\}$ strongly converges to w in X. Since $\Psi_{\lambda} \in C^{1}(X, \mathbb{R})$, we conclude

$$
\begin{equation*}
d \Psi_{\lambda}\left(w_{n}\right) \longrightarrow d \Psi_{\lambda}(w) \quad \text { as } n \rightarrow \infty \tag{3.5}
\end{equation*}
$$

Relations (3.4) and (3.5) show that $d \Psi_{\lambda}(w)=0$, and thus, w is a weak solution for problem (1.1). Moreover, by relation (3.4), it follows
that $\Psi_{\lambda}(w)<0$, and thus, w is a nontrivial weak solution for (1.1). The proof of Theorem 3.6 is complete.

Proof of Theorem 3.7. Using Hölder inequality (2.1) for $\|u\|_{a}>1$, we have

$$
\begin{aligned}
\Psi_{\lambda}(u) & =\int_{\Omega} \frac{1}{p(x)}|\triangle u|^{p(x)} d x+\left.\int_{\partial \Omega} \frac{1}{p(x)}|a(x)| u\right|^{p(x)} d \sigma-\lambda \int_{\Omega} F(x, u) d x \\
& \geq \frac{1}{p^{+}}\|u\|_{a}^{p^{-}}-\left.\left.\lambda c_{1}|V|_{s(x)}| | u\right|^{q(x)}\right|_{s^{\prime}(x)} \\
& \geq \frac{1}{p^{+}}\|u\|_{a}^{p^{-}}-\lambda c_{1}|V|_{s(x)}|u|_{s^{\prime}(x) q(x)}^{q^{+}} \\
& \geq \frac{1}{p^{+}}\|u\|_{a}^{p^{-}}-\lambda c_{1}|V|_{s(x)} c_{2}^{q^{+}}\|u\|_{a}^{q^{+}} \longrightarrow+\infty \quad \text { as }\|u\|_{a} \rightarrow+\infty .
\end{aligned}
$$

In conclusion, since Ψ_{λ} is weakly lower semi-continuous, then it has a global minimizer which is a solution of problem (1.1); moreover, Lemma 3.9 ensures that this minimizer is nontrivial, which ends the proof.

Example 3.11. Put $F(x, t)=V(x) t^{q(x)}$, where the function $V(\cdot)$ was as in the assumption (H2), and consider the problem

$$
\begin{cases}\triangle_{p(x)}^{2} u=\lambda(\partial F(x, u) / \partial u) & x \in \Omega \tag{3.6}\\ \partial u / \partial n=0 & x \in \partial \Omega \\ \partial\left(|\triangle u|^{p(x)-2} \triangle u\right) / \partial n=a(x)|u|^{p(x)-2} u & x \in \partial \Omega\end{cases}
$$

where Ω is a bounded smooth domain in $\mathbb{R}^{N}, N \geq 3$, with sufficiently smooth boundary $\partial \Omega, n$ is a unit outward normal to $\partial \Omega, a \in L^{\infty}(\partial \Omega)$ with $a^{-}:=\inf _{x \in \partial \Omega} a(x)>0$ and λ is a positive real number.

First, observe that the function F satisfies assumptions (H1), (H2) and (H3). Then, Theorem 3.6 asserts that there exists a $\lambda^{*}>0$, under which problem (3.6) has a nontrivial weak solution. Moreover, due to Theorem 3.7, we have a solution for any $\lambda>0$.

Acknowledgments. The authors thank the anonymous referee for a careful and constructive analysis of this paper and for the remarks and comments, which considerably improved the initial version of the present work.

REFERENCES

1. S.N. Antontsev and S.I Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence, uniqueness and localization properties of solutions, Nonlin. Anal. Th. Meth. Appl. 60 (2005), 515-545.
2. A. Ayoujil and A.R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlin. Anal. 71 (2009), 4916-4926.
3. K. Ben Haddouch, Z. El Allali, A. Ayoujil and N. Tsouli, Continuous spectrum of a fourth order eigenvalue problem with variable exponent under Neumann boundary conditions, Ann. Univ. Craiova, Math. Comp. Sci. 42 (2015), 42-55.
4. M. Cencelj, D. Repovš and Z. Virk, Multiple perturbations of a singular eigenvalue problem, Nonlin. Anal. 119 (2015), 37-45.
5. Y. Chen, S. Levine and M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math. 66 (2006), 1383-1406.
6. D. Edmunds and J. Rakosnik, Sobolev embeddings with variable exponent, Stud. Math. 143 (2000), 267-293.
7. A.R. El Amrouss, F. Moradi and M. Moussaoui, Existence and multiplicity of solutions for a $p(x)$-biharmonic problem with Neumann boundary condition, preprint.
8. X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl. 339 (2008), 1395-1412.
9. X. Fan and X. Han, Existence and multiplicity of solutions for $p(x)$-Laplacian equations in \mathbb{R}^{N}, Nonlin. Anal. 59 (2004), 173-188.
10. X. Fan, J. Shen and D. Zhao, Sobolev embedding theorems for spaces $W^{k, p(x)}(\Omega)$, J. Math. Anal. Appl. 262 (2001), 749-760.
11. X.L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263 (2001), 424-446.
12. Y. Fu and Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlin. Anal. 5 (2016), 121-132.
13. B. Ge, Q.-M. Zhou and Y.-H. Wu, Eigenvalues of the $p(x)$-biharmonic operator with indefinite weight, Springer, Berlin, 2014.
14. P. Harjulehto, P. Hästö, U.V. Le and M. Nuortio, Overview of differential equations with non-standard growth, Nonlin. Anal. 72 (2010), 4551-4574.
15. K. Kefi, On the Robin problem with indefinite weight in Sobolev spaces with variable exponents, Z. Anal. Anwend. 37 (2018), 25-38.
16. \qquad , $p(x)$-Laplacian with indefinite weight, Proc. Amer. Math. Soc. 139 (2011), 4351-4360.
17. K. Kefi and V. Rãdulescu, On a $p(x)$-biharmonic problem with singular weights, Z. angew. Math. Phys. (2017), 68-80.
18. K. Kefi and K. Saoudi, On the existence of a weak solution for some singular $p(x)$-biharmonic equation with Navier boundary conditions. Adv. Nonlin. Anal., DOI: https://doi.org/10.1515/anona-2016-0260.
19. R.A. Mashiyev, S. Ogras, Z. Yucedag and M. Avci, Existence and multiplicity of weak solutions for nonuniformly elliptic equations with non-standard growth condition, Compl. Var. Ellip. Eqs. 57 (2012), 579-595.
20. M. Mihcailescu, P. Pucci and V. Radulescu, Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent, J. Math. Anal. Appl. 340 (2008), 687-698.
21. \qquad , Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C.R. Acad. Sci. Paris 345 (2007), 561-566.
22. G. Molica Bisci and D. Repovš, Multiple solutions for elliptic equations involving a general operator in divergence form, Ann. Acad. Sci. Fenn. Math. 39 (2014), 259-273.
23. W. Orlicz, Über konjugierte Exponentenfolgen, Stud. Math. 3 (1931), 200212.
24. V.D. Rădulescu, Nonlinear elliptic equations with variable exponent: Old and new, Nonlin. Anal. 121 (2015), 336-369.
25. V.D. Rădulescu and D.D. Repovš, Partial differential equations with variable exponents: Variational methods and qualitative analysis, Mono. Res. Notes Math., Taylor \& Francis, London, 2015.
26. M. Ruzicka, Electrorheological fluids: Modeling and mathematical theory, Springer, Berlin, 2000.
27. S. Taarabti, Z. El Allali and K. Ben Hadddouch, Eigenvalues of the $p(x)$ biharmonic operator with indefinite weight under Neumann boundary conditions, Bol. Soc. Paran. Mat. 36 (2018), 195-213.
28. A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent Lebesgue Sobolev spaces, Nonlin. Anal. Th. Meth. Appl. 69 (2008), 36293636.
29. V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk 50 (1986), 675-710; Math. USSR-Izv. 29 (1987), 33-66 (in English).

University of Tunis, Mathematics Department, Faculty of Science, Tunis, Tunisia

Email address: mounir.hsini@ipeit.rnu.tn

University of Tunis, Mathematics Department, Faculty of Science, Tunis, Tunisia
Email address: nawalirzi15@gmail.com
Northern Border University, Community College of Rafha, Saudi Arabia and University of Tunis, Mathematics Department, Faculty of Science, Tunis, Tunisia

Email address: khaled_kefi@yahoo.fr

[^0]: 2010 AMS Mathematics subject classification. Primary 35D05, 35D30, 35J58, 35J60, 35J65.

 Keywords and phrases. $p(x)$-biharmonic operator, Ekeland's variational principle, generalized Sobolev spaces, weak solution.

 Received by the editors on December 14, 2017, and in revised form on April 18, 2018.

