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FINITE ATOMIC LATTICES
AND THEIR MONOMIAL IDEALS

PENG HE AND XUE-PING WANG

ABSTRACT. This paper primarily studies monomial
ideals by their associated lcm-lattices. It first introduces no-
tions of weak coordinatizations of finite atomic lattices which
have weaker hypotheses than coordinatizations and shows
the characterizations of all such weak coordinatizations. It
then defines a finite super-atomic lattice in L(n), investigates
the structures of L(n) by their super-atomic lattices and
proposes an algorithm to calculate all of the super-atomic
lattices in L(n). It finally presents a specific labeling of finite
atomic lattice and obtains the conditions that the specific
labelings of finite atomic lattices are the weak coordinatiza-
tions or the coordinatizations by using the terminology of
super-atomic lattices.

1. Introduction. Let M be a monomial ideal in a polynomial ring
R = K[x1, x2, . . . , xn] where K is a field. We are interested in studying
a minimal free resolution of R/M and, specifically, understanding the
maps in this resolution (see [1, 4, 6, 13, 14]). For a monomial ideal
M , a minimal resolution is completely dependent on the information
in the lcm-lattice of M , or LCM(M), which is the lattice of least
common multiples of the minimal generators of M partially ordered
by divisibility. In 1999, Gasharov, Peeva, and Welker [7] expressed
the multigraded Betti numbers of R/M using the homology groups
of certain open intervals in LCM(M). They further showed that
the combinatorial type of minimal resolutions of a monomial ideal is
determined by its LCM lattice. In 2006, Phan [12] proved that all finite
atomic lattices can be realized as the LCM lattice of some monomial
ideal M . He gave a construction which is motivated by the observation
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that, for any coordinatization of an atomic lattice as a monomial ideal,
the set of lattice elements for which a given variable has a given degree
bound is an order ideal. Essentially, he identified which order ideals are
necessary and labeled them with variables. In 2009, Mapes [9] gave a
generalization of the main construction in [12] to describe all monomial
ideals with a given LCM lattice, i.e., she proved a statement as below
(see [9, 10]).

Any labelingM of elements in a finite atomic lattice P by monomials
satisfying the following two conditions will yield a coordinatization of
the lattice P .

(A1) If p ∈ mi(P ), then mp ̸= 1, i.e., all meet-irreducibles are
labeled.

(A2) If gcd(mp,mq) ̸= 1 for some p, q ∈ P , then p and q must be
comparable, i.e., each variable only appears in monomials along one
chain in P .

Mapes thought that it would be interesting to give an explicit for-
mulation for when two coordinatizations are equivalent in this sense
or to prove a version of the above result which has weaker hypothe-
ses. This question was inadvertently answered by Katthän [8] and
independently by Mapes and Piechnik [11] using different techniques.
However, they do not give a general construction of the labeling M,
which does not satisfy conditions (A1) and (A2), although, in fact, M
is a coordinatization.

On the other hand, the fact that the set of finite atomic lattices
on n ordered atoms, denoted by L(n), is itself a finite atomic lattice
leads us to the question: what is the relationship between minimal
resolutions of coordinatizations of lattices in L(n)? The answer, due to
a result in [7], is that the total Betti numbers are weakly monotonic
along chains in L(n). This inspires us to understand the structure of
L(n). In 2013, Mapes [10] proved that, for any relation P > Q in L(n),
there exists a coordinatization of Q producing a monomial ideal MQ

and a deformation of exponents of MQ such that the lcm-lattice of the
deformed ideal is P .

This paper furthers the topics on describing all monomial ideals by
their LCM lattices and understanding the structure of L(n), and is
organized as follows. In Section 2, we give some preliminaries for con-
venience. In Section 3, we introduce notions of weak coordinatizations
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of finite atomic lattices and show their characterizations. In Section 4,
we define a finite super-atomic lattice in L(n), investigate the structures
of L(n) by their super-atomic lattices and propose an algorithm to cal-
culate all the super-atomic lattices in L(n). At the end, we present
a specific labeling of finite atomic lattice and obtain the conditions
which are used to determine whether the specific labelings are weak
coordinatizations or coordinatizations by terminology of super-atomic
lattices.

2. Preliminaries. A poset is a structure (P, ≤) where P is a
nonempty set and ≤ an ordering (reflexive, antisymmetric and tran-
sitive) relation on P . We write x∥y if x � y and y � x, and we say that
x and y are not comparable. Conversely, we write x ∦ y if x ≥ y or
y ≥ x, and we say that x and y are comparable. In addition, if x < y
and there is no element z ∈ P such that x < z < y, then we say that x
is covered by y (or y covers x), and we write x ≺ y (or y ≻ x), see [5].

Definition 2.1 ([10]). A lattice is a poset (P,≤) satisfying the follow-
ing properties:

(1) P has a maximum element denoted by 1.

(2) P has a minimum element denoted by 0.

(3) Every pair of elements a and b in P has a join a∨ b which is the
least upper bound of the two elements.

(4) Every pair of elements a and b in P has a meet a ∧ b which is
the greatest lower bound of the two elements.

If P satisfies only conditions (2) and (4), then it is a meet-semilattice,
and if P satisfies only conditions (1) and (3), then it is a join-semilattice.
Furthermore, if P is a meet-semilattice with a unique maximal element,
then it is a lattice. Equivalently, if P is a join-semilattice with a unique
minimal element, then it is a lattice.

We define an atom of a lattice P to be an element x ∈ P such that x
covers 0. We denote the set of atoms in P by atoms(P ), see [5, 10]. Let
A and B be two sets. Then, we denote that A \B = {x ∈ A : x /∈ B};
for convenience, if B = {b}, then we write A \B as A \ b.
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Definition 2.2 ([10]). If P is a lattice and every element in P \ 0 is
the join of atoms, then P is an atomic lattice. Furthermore, if P is
finite, then it is a finite atomic lattice.

If P is a lattice, then we define an element x ∈ P to be meet-
irreducible if x ̸= a ∧ b for any a > x, b > x. We denote the set of
meet-irreducible elements in P by mi(P ). Given an element x ∈ P ,
an order ideal of x is defined to be the set ⌊x⌋ = {a ∈ P : a ≤ x}.
Similarly, we define an order filter of x to be ⌈x⌉ = {a ∈ P : x ≤ a},
see [5, 10].

Lemma 2.3 ([10, Lemma 2.3]). Let P be a finite atomic lattice. Every
element p ∈ P is the meet of all the meet-irreducible elements l such
that l ≥ p.

It will be convenient to consider finite atomic lattices as sets of sets
in the following way. Let S be a set of subsets of {1, . . . , n} with no
duplicates, closed under intersections, and containing the entire set,
the empty set and the sets {i} for all 1 ≤ i ≤ n. Then, it is easy to see
that S is a finite atomic lattice by ordering the sets in S by inclusion.
Conversely, it is clear that any finite atomic lattice P can be expressed
in this way, simply by letting

SP = {σ : σ = supp(p), p ∈ P},

where supp(p) = {ai : ai ≤ p, ai ∈ atoms(P )}, see [2, 3, 10].

Definition 2.4 ([7]). The LCM lattice, LCM(M), of a monomial ideal
M is the set of least common multiples of minimal generators of M ,
partially ordered by divisibility.

Example 2.5. For the monomial ideal M = (a2cd, abd, abc) ⊆
k[a, b, c, d], the Hasse diagram of the LCM lattice of M is shown in
Figure 1 (note the minimal element of the lattice has been eliminated,
as will often be the case).

One result in [7] is that, for monomial ideals, all minimal resolutions
are completely dependent on the information in the LCM lattice.
Specifically, we can compute multigraded Betti numbers using the
LCM lattice LCM(M), and all ideals with a given LCM lattice have
isomorphic minimal free resolutions.
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FIGURE 1. The lattice LCM(M).

Definition 2.6 ([9]). Define a labeling of a finite atomic lattice P to
be any assignment of non-trivial monomials M = {mp1 , . . . ,mpt} to
some set of elements pi ∈ P . It will be convenient to think of unlabeled
elements as having the label 1. Define a monomial ideal MP,M to be
the ideal generated by monomials

(2.1) x(a) =
∏

p∈⌈a⌉c
mp

for each a ∈ atoms(P ), where ⌈a⌉c means taking the complement of ⌈a⌉
in P . We say that the labelingM is a coordinatization if the lcm-lattice
of MP,M is isomorphic to P .

Lemma 2.7 ([9, Proposition 3.2.1], [10, Theorem 3.2]). Any labeling
M of elements in a finite atomic lattice P by monomials satisfying the
following two conditions will yield a coordinatization of the lattice P .

(A1) If p ∈ mi(P ), then mp ̸= 1, i.e., all meet-irreducibles are
labeled.

(A2) If gcd(mp,mq) ̸= 1 for some p, q ∈ P , then p ∦ q, i.e., each
variable only appears in monomials along one chain in P .

Let M be a labeling with conditions (A1) and (A2), and let

f : P −→ LCM(MP,M)

be denoted by

(2.2) f(p) =
∏

q∈⌈p⌉c
mq

for each p ∈ P . Then, f is an isomorphism from P to LCM(MP,M).
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Lemma 2.8 ([10, Lemma 3.3]). If p ∈ ⌈q⌉c for some p, q ∈ P , where
P is a finite atomic lattice, then ⌊p⌋ ⊆ ⌈q⌉c.

Let M be a monomial ideal with n generators, and let PM be its
lcm-lattice. For notational purposes, denote PM as the set consisting
of elements p, which represent the monomials occurring in PM . Now,
define an abstract finite atomic lattice P , where the elements in P are
formal symbols p satisfying the relations p < p′ if and only if p < p′

in PM , in other words, P is the finite atomic lattice isomorphic to PM

obtained by simply forgetting the data of the monomials in PM . Define
a labeling of P in the following manner: let D be the set consisting of
monomials mp for each p ∈ P , defined by

(2.3) mp =
gcd{t : t > p}

p
,

where, by convention, gcd{t : t > p} for p = 1 is defined to be 1. Note
that mp is a monomial since, clearly, p divides t for all t > p.

Lemma 2.9 ([10, Proposition 3.6]). Given M a monomial ideal with
lcm-lattice PM , if P is an abstract finite atomic lattice where P is
isomorphic to PM as lattices, then the labeling D of P , defined by (2.3),
is a coordinatization, and the resulting monomial ideal is MP,D = M .

Although Lemma 2.9 shows that the labeling D of P , defined by
(2.3), is a coordinatization, the following theorem will further verify
that the labeling D induced by (2.3) is the same as M if M satisfies
the conditions of Lemma 2.7. As is standard, we denote lcm ∅ = 1 and
gcd ∅ = 1.

Theorem 2.10. Let M = {mp : p ∈ P} be a labeling of a finite atomic
lattice P satisfying the conditions of Lemma 2.7, and let M = MP,M
for each p ∈ P , p = f(p), where f(p) is defined by (2.2). Then, the
labeling

D = {m′
p : p ∈ P}

of P , defined by (2.3), satisfies m′
p = mp for each p ∈ P .



FINITE ATOMIC LATTICES 2509

Proof. Suppose that P has n atoms. First, note that

p = f(p) =
∏

q∈⌈p⌉c
mq for all p ∈ P.

Thus, formula (2.3) implies that

m′
p =

gcd{
∏

q∈⌈t⌉c mq : t > p}∏
q∈⌈p⌉c mq

=

∏
q∈⌈p⌉c mq ∗ gcd{

∏
q∈⌈t⌉c\⌈p⌉c mq : t > p}∏

q∈⌈p⌉c mq

= gcd

{ ∏
q∈⌈t⌉c\⌈p⌉c

mq : t > p

}
.

Second, note that, if a ≥ b, then ⌈a⌉c ⊇ ⌈b⌉c, which means∏
q∈⌈b⌉c\⌈p⌉c

mq |
∏

q∈⌈a⌉c\⌈p⌉c
mq,

thus,

m′
p = gcd

{ ∏
q∈⌈t⌉c\⌈p⌉c

mq : t > p

}
= gcd

{ ∏
q∈⌈t⌉c\⌈p⌉c

mq : t ≻ p

}
.

It follows that

m′
p = mp ∗ gcd

{ ∏
q∈(⌈t⌉c\⌈p⌉c)\p

mq : t ≻ p

}
since p ∈ ⌈t⌉c\⌈p⌉c for any t ≻ p. Therefore, in order to prove mp = m′

p

for all p ∈ P , we only need show

gcd

{ ∏
q∈(⌈t⌉c\⌈p⌉c)\p

mq : t ≻ p

}
= 1,

as follows.

(a) If there is only one element t ∈ P satisfying t ≻ p, then
(⌈t⌉c \ ⌈p⌉c) \ p = ∅. Otherwise, there exists an element d ∈ P such
that d > p and d � t, where d � t implies that d < t or d∥t. If d < t,
then t > d > p, contrary to t ≻ p. If d∥t, then we have an element
c ∈ P such that d ≥ c ≻ p since d > p. Thus, c = t, and then, d ≥ t, a
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contradiction. Therefore,

gcd

{ ∏
q∈(⌈t⌉c\⌈p⌉c)\p

mq : t ≻ p

}
= gcd ∅ = 1.

(b) Suppose that there are k elements t1, t2, . . . , tk in P such that
ti ≻ p for any 1 ≤ i ≤ k where k ≥ 2. If

gcd

{ ∏
q∈(⌈t⌉c\⌈p⌉c)\p

mq : t ≻ p

}
̸= 1,

then there exists a variable xp such that

xp | gcd
{ ∏

q∈(⌈t⌉c\⌈p⌉c)\p

mq : t ≻ p

}
.

Therefore, we have elements qi > p and qi � ti such that xp | mqi

for each 1 ≤ i ≤ k. From Lemma 2.7 (A2), {q1, q2, . . . , qk} lies in
a chain in P . Hence, there exists an element 1 ≤ r ≤ k such that
{q1, q2, . . . , qk, tr} is a chain, and then, for all 1 ≤ j ≤ k, we have
qj ≥ tr since qj > p and tr ≻ p. Thus, qr ≥ tr, a contradiction.
Therefore,

gcd

{ ∏
q∈(⌈t⌉c\⌈p⌉c)\p

mq : t ≻ p

}
= 1. �

3. Weak coordinatizations. One of the main results in [12] is
that every finite atomic lattice is, in fact, the lcm-lattice of a monomial
ideal. In 2009, Mapes [9] introduced a definition of coordinatization.
Moreover, she proved that there are some specific constructions which
produce a monomial ideal whose lcm-lattice has a given lattice struc-
ture, i.e., Lemma 2.7 (also see [10]). Mapes thought that it would be
interesting to give an explicit formulation for when two coordinatiza-
tions are equivalent in this sense, or to prove a version of Lemma 2.7
which has weaker hypotheses.

In this section, we shall introduce the notion of a weak coordina-
tization which has weaker hypotheses than Definition 2.6 and show a
sufficient condition which yields a weak coordinatization.
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Let P be a finite atomic lattice and p ∈ P . Define

Bp =

{
T ⊆ supp(p) :

∨
b∈T

b = p

}
.

Definition 3.1. Let M be a labeling of a finite atomic lattice P .
Define a monomial ideal IP,M to be the ideal generated by monomials

(3.1) △(a) = gcd

{
lcm{x(b) : b ∈ T} : T ∈

∪
p≥a

Bp

}
for each a ∈ atoms(P ). We say that the labeling M is a weak coordi-
natization if the lcm-lattice of IP,M is isomorphic to P .

We first have the following lemma.

Lemma 3.2. A labeling M is a coordinatization of a finite atomic
lattice P if and only if it is a weak coordinatization and △(a) = x(a)
for all a ∈ atoms(P ).

Proof. By Definition 3.1, the sufficiency is clear. Now, we prove the
necessity.

Firstly, for all a ∈ atoms(P ), as {a} ∈
∪

p≥a Bp, equation (3.1)

implies △(a) | x(a). Secondly, since M is a coordinatization, the map

g : P −→ LCM(MP,M) with g(a) = x(a)

for all a ∈ atoms(P ) is an isomorphism. Thus, for any p ∈ P and any
T ∈ Bp,

g(p) = lcm{x(b) : b ∈ supp(p)} = lcm{x(b) : b ∈ T}.

Finally, suppose that a ∈ atoms(P ). Let p ∈ P and a ≤ p. Clearly,
a ∈ supp(p), and then,

g(a) = x(a) | g(p) = lcm{x(b) : b ∈ T} for any T ∈ Bp,

so that x(a) | lcm{x(b) : b ∈ T} for any T ∈
∪

p≥a Bp. Furthermore,

by (3.1), x(a) | △(a). Therefore, △(a) = x(a) for all a ∈ atoms(P ),
which, together with the fact that M is a coordinatization of P , yields
that M is a weak coordinatization of P . �
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Note that a weak coordinatization of a finite atomic lattice P need
not be a coordinatizaton. For instance, let P be the finite atomic lattice
with labeling as in Figure 2. Then, by Definitions 2.6 and 3.1,

MP,M = (b2c2d2e2, acd2e2, a2b2d2e2, a2b3c2e, a2b3c2d),

IP,M = (b2c2d2e2, acd2e2, a2b2d2e2, a2b2c2e, a2b2c2d).

Then, it is obvious that the lattice LCM(IP,M), shown as Figure 3, is
isomorphic to P . Furthermore, the labeling M is a weak coordinatiza-
ton of P . On the other hand, the lattice LCM(MP,M) shown in Figure 4
is not isomorphic to P . It follows that M is not a coordinatizaton of P .

b
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b
c

b
d

b
e

b debab bbcb
�� @@ �� @@ �� @@
�� @@ ```

```
`̀

FIGURE 2. P with a labeling.
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FIGURE 3. LCM(IP,M).
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FIGURE 4. LCM(MP,M).

Lemma 3.3. Let M be a labeling of a finite atomic lattice P and p ∈ P .
For each R ∈ Bp, if b ∈ supp(p) \R, then △(b) | lcm{△(r) : r ∈ R}.

Proof. Suppose that △(b) - lcm{△(r) : r ∈ R}. Then, there is a
monomial xub such that xub - lcm{△(r) : r ∈ R}, where xub is the
highest power of x dividing △(b). Let

S = {a ∈ R : xub | x(a)}

and xua be the highest power of x dividing △(a) for each a ∈ S. Then,
ua < ub since xub - lcm{△(r) : r ∈ R}. Moreover, it follows from
formula (3.1) that, for any a ∈ S, there exist an element qa ∈ P with
qa ≥ a and a set Ta ∈ Bqa such that xua is the highest power of x
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dividing lcm{x(t) : t ∈ Ta}. Thus,

(3.2) xub - lcm{x(t) : t ∈ Ta}

for each a ∈ S since ua < ub.

Next, let C =
∪

a∈S Ta

∪
(R \ S). Clearly, we have∨

c∈C

c =
∨
a∈S

(∨
Ta

)
∨
∨

(R \ S)

=
∨
a∈S

qa ∨
∨

(R \ S)

≥
∨
a∈S

a ∨
∨

(R \ S) = p ≥ b

and C ∈ B∨
c∈C c. Using (3.1), we have △(b) | lcm{x(c) : c ∈ C}. Thus,

(3.3) xub | lcm{x(c) : c ∈ C}.

However, from (3.2), we know that, if c ∈
∪

a∈S Ta, then xub - x(c).
Moreover, if c ∈ R \ S, then xub - x(c) by the construction of S.
Hence, xub - lcm{x(c) : c ∈ C}, contrary to (3.3). Therefore,
△(b) | lcm{△(r) : r ∈ R}. �

Lemma 3.4. Let M be a labeling of a finite atomic lattice P . For all
p, q ∈ P , if x0 | mp and x0 | mq imply p ∦ q, then

x0 -
x(a)

gcd(△(a), x(a))

for any a ∈ atoms(P ).

Proof. Let S = {s ∈ P : x0 - ms} and R = P \ S. Suppose that
ms = xs with s ∈ S and mr = xr

0, where xr
0 is the highest power of

x0 dividing mr with r ∈ R. Then, from the hypotheses of Lemma 3.4,
the labeling M = {mp : p ∈ P} satisfies the conditions of Lemma 2.7.

Thus, M is a coordinatization of P . Hence, by Lemma 3.2, M is a
weak coordinatization of P , and

(3.4) x(a) = △(a)

for any atom a ∈ atoms(P ), where x(a) ∈ MP,M and △(a) ∈ IP,M.
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Now, assume that xa1
0 and xa1

0 are the highest powers of x0 dividing

x(a) and x(a), respectively, and xa2
0 and xa2

0 are the highest powers of

x0 dividing △(a) and △(a), respectively. By Definition 2.6, we have
a1 = a1, which, together with equation (3.1), implies that a2 = a2.
Using (3.4), we have a1 = a2. Therefore, a1 = a2, which means that

x0 -
x(a)

gcd(△(a), x(a))
. �

Theorem 3.5. Any labeling M of elements in a finite atomic lattice P
by monomials satisfying the following two conditions will yield a weak
coordinatization of the lattice P .

(C1) If p ∈ mi(P ), then mp ̸= 1.

(C2) If gcd(mp,mq) ̸= 1 for some p, q ∈ P , then either p ∦ q, or

rq(p) =
mp

gcd(mp,mq)
̸= 1, rp(q) =

mq

gcd(mp,mq)
̸= 1,

and, if x, y ∈ {s ∈ P : gcd(rq(p),ms) ̸= 1} or x, y ∈ {s ∈ P :
gcd(rp(q),ms) ̸= 1}, then x ∦ y.

Proof. The proof of Theorem 3.5 is comprised of several steps. Let
P ′ be the lcm-lattice of IP,M. For b ∈ P , define g : P → P ′ to be the
map such that

(3.5) g(b) = lcm{△(ai) : ai ∈ supp(b)}.

Next, we shall show that g is an isomorphism from P to P ′. Note that
g is well defined.

(A) △(a) - △(b) and △(b) - △(a) for any a, b ∈ atoms(P ) with
a ̸= b. By Lemma 2.3, the condition a ̸= b yields that mi(P ) ∩ ⌈a⌉ ̸=
mi(P ) ∩ ⌈b⌉. Moreover, a∥b since a ̸= b and a, b ∈ atoms(P ). Thus, by
Lemma 2.3,

mi(P ) ∩ ⌈a⌉ * mi(P ) ∩ ⌈b⌉ and mi(P ) ∩ ⌈b⌉ * mi(P ) ∩ ⌈a⌉.

Hence,

mi(P ) ∩ ⌈a⌉c * mi(P ) ∩ ⌈b⌉c and mi(P ) ∩ ⌈b⌉c * mi(P ) ∩ ⌈a⌉c.

Therefore, there exists at least one element

(3.6) q ∈ mi(P ) ∩ ⌈a⌉c but q /∈ mi(P ) ∩ ⌈b⌉c.
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We shall prove the following statement.

(3.7) There exists a variable xq | mq such that,

for all r ∈ P, xq | mr implies that q ∦ r.

Indeed, since q is meet-irreducible, condition (C1) of Theorem 3.5 yields
that mq ̸= 1. Let yq be a variable satisfying yq | mq. Then, there are
two cases.

Case (1). If, for all r ∈ P , yq | mr implies q ∦ r, then, clearly, (3.7)
is true.

Case (2). If there is a t ∈ P such that yq | mt but q∥t, then
gcd(mt,mq) ̸= 1. Thus, rt(q) ̸= 1 by condition (C2) of Theorem 3.5.
Let

xq | rt(q) and Cq = {u ∈ P : xq | mu}.

Then, q ∈ Cq and

Cq ⊆ {s ∈ P : gcd(rt(q),ms) ̸= 1}.

Again, by Theorem 3.5 (C2), x ∦ y for any x, y ∈ {s ∈ P :
gcd(rt(q),ms) ̸= 1}, i.e., {s ∈ P : gcd(rt(q),ms) ̸= 1} is a chain in P .
Thus, the condition Cq ⊆ {s ∈ P : gcd(rt(q),ms) ̸= 1} means that Cq

is a chain in P . Note that xq | mq. Therefore, by the construction of
Cq, we have that, for all r ∈ P , xq | mr implies that q ∦ r, i.e., (3.7) is
true. In view of Cases (1) and (2), (3.7) holds.

Now, let xq be a variable of mq such that (3.7) holds, and let
Dq = {v ∈ P : xq | mv}. Then, q ∈ Dq. Suppose that p ∈ ⌈b⌉c
satisfies xq | mp. Then, p ∦ q by (3.7). Note that p ̸= q. Thus, either
q < p or p < q. If q < p, then q ∈ ⌊p⌋ ⊆ ⌈b⌉c by p ∈ ⌈b⌉c and Lemma
2.8, contrary to (3.6) such that p < q. Therefore, for all p ∈ ⌈b⌉c, if
xq | mp, then p < q. Furthermore, from the construction of Dq, we
know that, if z ∈ Dq ∩ ⌈b⌉c, then z < q. Note that q ∈ ⌈a⌉c by (3.6).
Thus, z < q ∈ ⌈a⌉c, and it follows from Lemma 2.8 that z ∈ ⌈a⌉c. Thus,
Dq ∩ ⌈b⌉c ⊆ Dq ∩ ⌈a⌉c. Note that q ∈ ⌈a⌉c, q ∈ Dq and q /∈ Dq ∩ ⌈b⌉c.
Therefore,

(3.8) Dq ∩ ⌈b⌉c ( Dq ∩ ⌈a⌉c.

Finally, let xsa
q be the highest power of xq dividing x(a). Then,

by the construction of Dq and formulae (2.1) and (3.8), we know that
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xsa
q - x(b). Note that △(b) | x(b). Thus,

(3.9) xsa
q - △(b).

On the other hand, by statement (3.7), xq fulfills the conditions of
Lemma 3.4. Thus,

(3.10) xsa
q is the highest power of xq dividing △(a).

Therefore, △(a) - △(b) by (3.9). Similarly, we can prove that △(b) -
△(a).

(B) Obviously, the map g is meet-preserving.

(C) The map g is join-preserving. Let p, q ∈ P . Obviously, supp(p)
∪ supp(q) ⊆ supp(p ∨ q). Now, let

Tp∨q = supp(p ∨ q) \ (supp(p) ∪ supp(q)).

Then,
g(p ∨ q) = g(p) ∨ g(q) ∨ lcm{△(av) : av ∈ Tp∨q}.

If Tp∨q = ∅, then g(p ∨ q) = g(p) ∨ g(q) ∨ lcm ∅ = g(p) ∨ g(q). Next,
suppose that Tp∨q ̸= ∅. Then, by Lemma 3.3,

lcm{△(av) : av ∈ Tp∨q} | lcm{△(av) : av ∈ supp(p) ∪ supp(q)}

since supp(p) ∪ supp(q) ∈ Bp∨q. Therefore, g(p ∨ q) = g(p) ∨ g(q), i.e.,
the map g is join-preserving.

(D) The map g is surjective. Assume that p′ ∈ P ′. Then, p′ =
lcm{△(ai) : i ∈ I} with ai ∈ atoms(P ) for each i ∈ I. Let
b =

∨
i∈I ai ∈ P . Then, {ai : i ∈ I} ∈ Bb. Thus, by Lemma 3.3,

△(aj) | lcm{△(ai) : i ∈ I} for all aj ∈ supp(b)\{ai : i ∈ I}. Therefore,

g(b) = lcm{△(ai) : ai ∈ supp(b)} = lcm{△(ai) : i ∈ I} = p′,

which means that g is surjective.

(E) The map g is injective. Equivalently, we only need prove that
a = b when g(a) = g(b). For any a, b ∈ P , distinguishing two situations,
we can have either 0 ∈ {a, b} or a, b ∈ P \ 0. In the first case, we have
g(a) = g(b) = g(0) = 1. Obviously, a = 0 = b by (3.5) and statement
(A). In the second case, the proof will be completed by two parts.
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(i) Suppose that b � a. In this case, we easily see that

g(b) = lcm{△(ai) : ai ∈ supp(b) ∩ supp(a)}(3.11)

∨ lcm{△(aj) : aj ∈ supp(b) \ supp(a)}.

From b � a, supp(b) \ supp(a) ̸= ∅. Now, let ar ∈ supp(b) \ supp(a).
Then, ar ≤ b; however, ar � a, which, together with ar ∈ atoms(P ),
yields that ar∥a. Thus, by Lemma 2.3, we have that

mi(P ) ∩ ⌈ar⌉ * mi(P ) ∩ ⌈a⌉ and mi(P ) ∩ ⌈a⌉ * mi(P ) ∩ ⌈ar⌉,

and consequently,

mi(P ) ∩ ⌈a⌉c * mi(P ) ∩ ⌈ar⌉c and mi(P ) ∩ ⌈ar⌉c * mi(P ) ∩ ⌈a⌉c.

Hence, there exists an element q such that q ∈ mi(P ) ∩ ⌈ar⌉c, but
q /∈ mi(P )∩⌈a⌉c. Let am ∈ supp(a). Then, am ≤ a, which implies that
⌈am⌉c ∩mi(P ) ⊆ ⌈a⌉c ∩mi(P ). Thus, q /∈ mi(P ) ∩ ⌈am⌉c. Therefore,

(3.12) q /∈ mi(P ) ∩ ⌈ai⌉c

for all ai ∈ supp(a).

By statement (3.7), there exists a variable xq in mq such that, for
all r ∈ P , xq | mr implies that q ∦ r. Let x

sar
q be the highest power of

xq dividing x(ar). Then, similarly to the proof of formula (3.10), we
have x

sar
q | △(ar). Thus,

x
sar
q | lcm{△(aj) : aj ∈ supp(b) \ supp(a)}

since ar ∈ supp(b) \ supp(a). Therefore, x
sar
q | g(b) by (3.11).

Furthermore, similarly to the proof of formula (3.9), from (3.12) we
have that, for all ai ∈ supp(a), x

sar
q - △(ai). Thus, x

sar
q - g(a).

Consequently, g(b) - g(a), contrary to g(a) = g(b). This yields b ≤ a.

(ii) Similarly to the proof of (i), the condition a � b will show a
contradiction. With (i) and (ii), we know that a = b if g(a) = g(b) in
the case where a, b ∈ P \ 0. Therefore, the map g is injective.

From (B), (C), (D) and (E), g is an isomorphism from P to P ′.
Furthermore, by (3.5), M is a weak coordinatization of P . �

The following two examples will illustrate Theorem 3.5.
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Example 3.6. Let P be a finite atomic lattice with a labeling as in
Figure 5. It is easy to see that the labeling of P satisfies the conditions
of Theorem 3.5 and does not satisfy the conditions of Lemma 2.7.
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FIGURE 5. The lattice P with labeling M.

a a a
a a a

a

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

�
�
�
�

@
@
@
@

FIGURE 6. LCM(IP,M).

We can clarify that IP,M = (e2m, acm2, a2ce), and LCM(IP,M) is
isomorphic to P (see Figures 5 and 6). Moreover, we can verify that
M is a weak coordinatization and IP,M = MP,M.

Example 3.7. We consider the finite atomic lattice P , again with
labeling as in Figure 2. We can verify that the labeling of P satisfies
the conditions of Theorem 3.5 and does not satisfy the conditions of
Lemma 2.7. Moreover, the labeling M is a weak coordinatization, and
IP,M ̸= MP,M.

Remark 3.8. From Theorem 2.10, if the monomial ideal M = MP,M
with the labeling M satisfies the conditions of Lemma 2.7, then
D = M. On the other hand, by Lemma 2.9, we know that, if the
monomial ideal M = IP,M with the labeling M satisfies the conditions
of Theorem 3.5 and does not satisfy the conditions of Lemma 2.7,
then M must induce a new labeling D which is different from M and
DP,D = IP,M = M .

4. Finite super-atomic lattices. Let L(n) be the set of all finite
atomic lattices with n ordered atoms. L(n) has a partial order where
Q ≤ P if and only if there exists a join-preserving map which is a
bijection on atoms from P to Q (note that such a map will also be
surjective) [10].

In this section, we shall discuss the structure of lattice L(n). We
first define a finite super-atomic lattice and then give an algorithm to
find all of the finite super-atomic lattices in L(n).
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Definition 4.1. A finite atomic lattice P is called super-atomic if it
satisfies that, for each p ∈ (P \ atoms(P )) \ 0, there exists a T0 =
{a1, a2} ∈ Bp such that T0 ⊆ T for any T ∈ Bp.

For example, the finite atomic lattice P , shown in Figure 7, is super-
atomic.
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FIGURE 7. A finite super-atomic lattice.

Theorem 4.2. A lattice P is super-atomic if and only if, for each
p ∈ (P \ atoms(P )) \ 0, there exists a {a1, a2} ∈ Bp such that supp(p) \
a1 ∈ SP and supp(p) \ a2 ∈ SP .

Proof. Suppose that P is super-atomic. Then, there exists a {a1, a2}
∈ Bp for each p ∈ (P \ atoms(P )) \ 0. Now, assume that supp(p) \ a1 /∈
SP . Then,

supp(p) ⊇
∨

a∈supp(p)\a1

supp(a) =
∨

a∈supp(p)\a1

{a} ) supp(p) \ a1,

in which
∨

is the join of (SP ,⊆). Thus,

(4.1)
∨

a∈supp(p)\a1

supp(a) = supp(p).

From the definition of SP , (SP ,⊆) is the same as lattice P . Thus,

(4.2) supp(q) corresponds to q for each q ∈ P,

and,

(4.3) for any S ∈ SP , there exists a q ∈ P such that S = supp(q).
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Therefore, by formulas (4.1) and (4.2), we have
∨

a∈supp(p)\a1
a = p,

which means that supp(p) \ a1 ∈ Bp. Since P is super-atomic, there
exists a T0 = {b1, b2} ∈ BP such that T0 ⊆ supp(p) \ a1

∩
{a1, a2}, a

contradiction; therefore, supp(p) \ a1 ∈ SP . Similarly, we can prove
that supp(p) \ a2 ∈ SP .

Conversely, let p ∈ (P \atoms(P ))\0. Then, by the hypothesis, there
exists a {a1, a2} ∈ Bp such that supp(p)\a1 ∈ SP and supp(p)\a2 ∈ SP .
Note that T ⊆ supp(p) for all T ∈ Bp.

Next, we prove that {a1, a2} ⊆ T for all T ∈ Bp. If there exists a

T ∈ Bp such that {a1, a2} * T , then either
∨

a∈T {a} =
∨

a∈T supp(a) ⊆
supp(p) \ a1 ∈ SP or

∨
a∈T {a} =

∨
a∈T supp(a) ⊆ supp(p) \ a2 ∈ SP .

From (4.2) and (4.3), in any case, we have that
∨

a∈T a < p is contrary
to T ∈ Bp. Hence,

(4.4) {a1, a2} ⊆ T for all T ∈ Bp.

Therefore, by Definition 4.1 and (4.4), P is a finite super-atomic
lattice. �

From Definition 4.1 and Theorem 4.2, we obviously have the next
lemma.

Lemma 4.3. Let P be a super-atomic lattice in L(n) with atoms(P ) =
{1, 2, . . . , n} and n ≥ 2. Then, (SP ,⊆) satisfies the following state-
ments:

(D1) {∅, {1}, . . . , {n}, {1, . . . , n}} ⊆ SP .

(D2) If S ∈ SP \ {∅, {1}, . . . , {n}}, then there exist two different
atoms {i}, {j} ∈ SP such that S = {i} ∨ {j} and S \ k ∈ SP for any
k ∈ {i, j}.

(D3) Let S1, S2 ∈ SP . If S1 = {u}∨{v}, S2 = {k}∨{h} and S1∥S2,
then {u, v} * S2 and {k, h} * S1.

In what follows, we shall suggest an algorithm to construct all finite
super-atomic lattices in L(n) with n ≥ 2.
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Algorithm 4.4.
Input: X = {1, 2, . . . , n}.
Output: S∗.
Step 1. Take S0 = {∅},S1 = {{1}, . . . , {n}},Sn = {X}, S∗ =:
S0 ∪ S1 ∪ Sn and k := 0.
Step 2. If n− k = 2, then go to Step 7.
Step 3. For any S ∈ Sn−k, take δ(S) = {iS , jS} ⊆ S satisfying
δ(S) * T for all T ∈ Sn−k \ S.
Step 4. Sn−k−1 =

∪
S∈Sn−k

{S \ iS , S \ jS}.
Step 5. k := k + 1.
Step 6. S∗ := S∗ ∪ Sn−k, and go to Step 2.
Step 7. Stop.

Theorem 4.5. Every output (S∗,⊆) in Algorithm 4.4 is a finite super-
atomic lattice in L(n). Furthermore, every finite super-atomic lattice
in L(n) can be constructed by Algorithm 4.4.

Proof. Throughout the proof, let
∨

δ(S) = {iS} ∨ {jS} for any
S ∈ S∗ \ (S0

∪
S1). First, we shall prove that every output (S∗,⊆)

in Algorithm 4.4 is a finite super-atomic lattice in four steps, below.

(B1) Obviously, (S∗,⊆) has a minimum element ∅ and a maximum
element {1, . . . , n}.

(B2) If S ∈ S∗ \ (S1

∪
S0), then S =

∨
δ(S).

Observe that there exists a t ∈ {2, . . . , n} such that S ∈ St, and

(4.5) δ(S) * T

for all T ∈ St \ S by Algorithm 4.4. Set

D = {D ∈ S∗ : δ(S) ⊆ D}(4.6)

and

D∗ = {D : D is a minimal element of D}.

Let D ∈ D∗. We claim that D /∈ Su for any integer u with 0 ≤ u < t.
Indeed, if D ∈ Su, then there exists a G ∈ St such that D ( G by
Algorithm 4.4. Thus, δ(S) ⊆ G, which, together with (4.5), yields that
G = S. Therefore, D ⊆ S \ iS or D ⊆ S \jS by Algorithm 4.4, contrary
to δ(S) ⊆ D.
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Below, assume that D ∈ Sv with n ≥ v ≥ t. Now, we shall prove
v = t. Suppose that n ≥ v > t. From Algorithm 4.4, there exists an
R ∈ Sv such that R ) S. There are two cases.

Case (1). If D = R, then D ) S, contrary to D ∈ D∗ since S ∈ D.

Case (2). Let D ̸= R. We first claim that δ(D) = δ(S). Otherwise,
either δ(S) ⊆ D \ iD ( D or δ(S) ⊆ D \ jD ( D, contrary to D ∈ D∗.
Hence, δ(D) = δ(S) ⊆ S ( R, contrary to δ(D) * R since R ̸= D and
both R and D in Sv (see (4.5)).

Cases (1) and (2) imply that v = t. Therefore, D = S by formulas
(4.5) and (4.6), which means that D∗ contains exactly one element S
and S =

∨
δ(S).

(B3) If S1, S2 ∈ S∗, then S1 ∨S2 exists in S∗. Obviously, if S1 ∦ S2,
then S1 ∨ S2 = S1 or S1 ∨ S2 = S2.

Next, suppose that S1∥S2. Observe that S1 and S2 are not in S0.
There are three cases.

Case (i). If S1 = {i}, S2 = {j} and i ̸= j, then S1 ∨ S2 exists in S∗.
In this case, set

M = {S ∈ S∗ : {i, j} ⊆ S}

and

M∗ = {S : S is a minimal element of M}.

Note that M ̸= ∅. Hence, M∗ ̸= ∅. Assume that S ∈ M∗. Then,
S ∈ S∗ \ (S1

∪
S0). Thus, by (B2), S =

∨
δ(S). If {i, j} ̸= δ(S), then

{i, j} ⊆ S \ iS ∈ S∗ or {i, j} ⊆ S \ jS ∈ S∗ by Algorithm 4.4, contrary
to the fact that S ∈ M∗. Therefore, {i, j} = δ(S), which means that
S1 ∨ S2 = S ∈ S∗.

Case (ii). If S1 = {i} and S2 ∈ S∗ \ (S1

∪
S0) with i /∈ S2, then

S1 ∨ S2 exists in S∗. Indeed, by (B2), S2 =
∨
δ(S2). Suppose that

S1 ∨ S2 does not exist in S∗. Then, S∗ contains two different minimal
elements containing S1

∪
S2, say Sa, Sb. Clearly, Sa∥Sb.

We claim that

(4.7) δ(Sa) ⊆ {i, iS2 , jS2} and δ(Sa) ̸= δ(S2).
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Suppose that δ(Sa) * {i, iS2 , jS2}. From Algorithm 4.4, {i, iS2 , jS2} ⊆
Sa \ iSa

∈ S∗ or {i, iS2
, jS2

} ⊆ Sa \ jSa
∈ S∗. From S2 =

∨
δ(S2), if

{i, iS2 , jS2} ⊆ Sa \ iSa , then

S1

∪
S2 ⊆ Sa \ iSa ( Sa,

a contradiction. Similarly, we can prove that {i, iS2 , jS2} ⊆ Sa \ jSa ∈
S∗ will show a contradiction. Therefore, δ(Sa) ⊆ {i, iS2 , jS2}. Now,
assume that δ(Sa) = δ(S2). Then,

Sa =
∨

δ(Sa) =
∨

δ(S2) = S2,

which implies i ∈ S2, a contradiction.

Arguing as in formula (4.7), we have

(4.8) δ(Sb) ⊆ {i, iS2 , jS2} and δ(Sb) ̸= δ(S2).

Formulas (4.7) and (4.8) imply that both δ(Sa) and δ(Sb) are equal to
{i, iS2} or {i, jS2}. We claim that

(4.9) δ(Sa) ̸= δ(Sb).

Indeed, if δ(Sa) = δ(Sb), then

Sa =
∨

δ(Sa) =
∨

δ(Sb) = Sb,

contrary to Sa∥Sb. Thus, if δ(Sa) = {i, iS2}, then δ(Sb) = {i, jS2}.
Clearly, {i, jS2} ⊆ Sa \ iS2 ∈ S∗. Thus,

Sb =
∨

δ(Sb) = {i} ∨ {jS2} ⊆ Sa \ iS2 ( Sa,

contrary to Sa∥Sb. Similarly, we can prove that δ(Sa) = {i, jS2} will
show a contradiction. Therefore, S1 ∨ S2 exists in S∗.

Case (iii). If S1, S2 ∈ S∗ \ (S1

∪
S0) and S1∥S2, then S1 ∨ S2 exists

in S∗. First, if δ(S1) ⊆ S2, then
∨

δ(S1) = S1 ⊆ S2, a contradiction.
Thus, δ(S1) * S2. Similarly, we can prove δ(S2) * S1.

Assume that S1 ∨ S2 does not exist in S∗. Then, S∗ contains two
different minimal elements containing S1

∪
S2, say C1, C2. Clearly,

C1∥C2. Similarly to the proof of formula (4.7) in Case (ii), we can
prove that

(4.10) δ(C1) ⊆ δ(S1) ∪ δ(S2), δ(C1) ̸= δ(S1) and δ(C1) ̸= δ(S2).
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Using (4.10), we know that δ(C1) equals one of the four sets {iS1iS2},
{iS1

, jS2
}, {jS1

, iS2
}, {jS1

, jS2
}.

Similarly, we can prove that δ(C2) also equals one of the four sets
{iS1 , iS2}, {iS1 , jS2}, {jS1 , iS2}, {jS1 , jS2}.

Similarly to the proof of formula (4.9) in Case (ii), we can prove
δ(C1) ̸= δ(C2). Now, suppose that δ(C1) = {iS1 , iS2}. Then, C1 \ iS1 ,
C1 \ iS2 ∈ S∗ by Algorithm 4.4. If δ(C2) = {iS1 , jS2}, then

C2 = {iS1} ∨ {jS2} ⊆ C1 \ iS2 ,

contrary to C1∥C2. All of the other cases may be similarly proven,
yielding a contradiction. Therefore, S1 ∨ S2 exists in S∗.

(B4) (S∗,⊆) is super-atomic. From (B1), (B2), (B3) and Definitions
2.1 and 2.2, (S∗,⊆) is a finite atomic lattice.

Next, we shall prove that (S∗,⊆) is super-atomic. Suppose that
S ∈ S∗ \ (S1

∪
S0) and T ∈ BS . Note that

∨
T = S. If {iS} /∈ T , then∪

T ⊆ S \ iS ∈ S∗, which implies
∨
T ⊆ S \ iS , contrary to

∨
T = S.

Thus, {iS} ∈ T .

Similarly, we have {jS} ∈ T . Hence, {{iS}, {jS}} ⊆ T . Again, by
(B2), {iS} ∨ {jS} =

∨
δ(S) = S, which means that {{iS}, {jS}} ∈ BS .

Thus, by Definition 4.1, the lattice (S∗,⊆) is super-atomic.

We shall finally prove that every super-atomic lattice in L(n) can be
constructed by Algorithm 4.4. Let (S,⊆) be a super-atomic lattice in
L(n). For each 0 ≤ i ≤ n, define

Ti = {S ∈ S : |S| = i}.

Then,

S = T0
∪

T1
∪

· · ·
∪

Tn.

In what follows, we prove that there is an output S∗ by Algorithm 4.4
such that S∗ = S. In fact, from Algorithm 4.4, we know that
S∗ = S0

∪
S1

∪
· · ·

∪
Sn. Therefore, in order to construct S∗ by

Algorithm 4.4 such that S∗ = S, we merely need to construct Si such
that Ti = Si for all 0 ≤ i ≤ n.

First, by Algorithm 4.4 and (D1) in Lemma 4.3, we have

(4.11) Ti = Si for all i ∈ {0, 1, n}.
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Then, by (D2), there exist {iS}, {jS} ∈ T1 such that {iS} ∨ {jS} = S
for each S ∈ Tn with n ≥ 2. Since Tn = Sn, by (4.11), we can take
δ(S) = {iS , jS} in Step 3 of Algorithm 4.4 for all S ∈ Sn. Thus,
Tn−1 ⊇ Sn−1, by Step 4 and (D2).

We claim that Tn−1 = Sn−1. Otherwise, there exists a W ∈ Tn−1

such that W /∈ Sn−1. Let K ∈ S with K ≻ W . Then, by (D2), there
exist {iK}, {jK} ∈ T1 such that {iK} ∨ {jK} = K. If {iK , jK} ⊆ W ,
then

K = {iK} ∨ {jK} ⊆ W ≺ K,

a contradiction. Thus, {iK , jK} * W . It follows from (D2) that

W ⊆ K \ iK ≺ K or W ⊆ K \ jK ≺ K,

which means that W = K \ iK or W = K \ jK . Therefore, K ∈ Tn,
which, together with Tn = Sn, yields that W ∈ Sn−1 since δ(K) =
{iK , jK}, a contradiction.

Similarly, we can construct Th = Sh by taking δ(T ) = {iT , jT } for
any T ∈ Th+1, in which {iT }, {jT } ∈ T1 and {iT } ∨ {jT } = T for all
2 ≤ h ≤ n− 2. Consequently, Ti = Si for all 0 ≤ i ≤ n. �

The next example will illustrate Algorithm 4.4.

Example 4.6. Let n = 3. Then, by Algorithm 4.4, we have three
super-atomic lattices in L(n), as follows:

Q1 = {∅, {1}, {2}, {3}, {1, 2, 3}, {1, 2}, {1, 3}},
Q2 = {∅, {1}, {2}, {3}, {1, 2, 3}, {1, 2}, {2, 3}},
Q3 = {∅, {1}, {2}, {3}, {1, 2, 3}, {1, 3}, {2, 3}}.

It can easily be verified that (Q1,⊆), (Q2,⊆) and (Q3,⊆) are all the
super-atomic lattices in L(n).

5. Specific labelings. In [9], there are three specific coordinatiza-
tions, i.e., minimal squarefree, minimal depolarized and greedy; we can
see that all of them are based on the labeling described as in Lemma 2.7.

In this section, we shall give a type of labeling on a lattice P which
does not satisfy the conditions of Lemma 2.7 and show the conditions
that our labeling is either a coordinatization or a weak coordinatization.
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Let P ∈ L(n) with atoms(P ) = {a1, a2, . . . , an}. We define a label-
ing C of P as C = {mp : p ∈ P \ 0}, where

(5.1) mp =
∏

ai∈supp(p)

ai,

in which every ai means both an atom in P and a variable in labeling C.
In what follows, let

[a, b] = {p ∈ P : a ≤ p ≤ b} and N([a, b]) = |[a, b]|

for the purposes of convenience.

Theorem 5.1. Let P ∈ L(n). For each p ∈ (P \atoms(P ))\0, if there
exist ai, aj ∈ supp(p) such that p = ai∨aj and N([ar∨ak, 1]) < N([p, 1])
for a fixed number r ∈ {i, j} and all ak ∈ atoms(P ) \ supp(p), then the
labeling C of P , as defined by (5.1), is a weak coordinatization.

Proof. For b ∈ P , define g : P → LCM(IP,C) to be a map such that

g(b) = lcm{△(u) : u ∈ supp(b)}.

The main part is to show that g is an isomorphism of lattices. Similarly
to (B), (C) and (D) in the proof of Theorem 3.5, we can prove that
the map g is meet-preserving, join-preserving and surjection. Thus, we
only need show that g is injective. The proof will be split into two
parts.

(∗) Let au, av ∈ atoms(P ). Then, au | △(av) if and only if au ̸= av.
Suppose that au | △(av). From formula (5.1), au | mp if and only if
p ≥ au. Thus, au - x(au) by (2.1). This means that au - △(au) since
△(au) | x(au). Therefore, au ̸= av.

Conversely, assume that aw ∈ atoms(P ) \ au. Then, au ∈ ⌈aw⌉c.
Thus, au | x(aw) by equations (2.1) and (5.1). On the other hand, let

F ∈
∪

p≥av

Bp.

Then,
∨
F ≥ av such that au ̸=

∨
F since au ̸= av. Thus, there exists

an az ∈ F such that az ̸= au. Hence, au | lcm{x(aj) : aj ∈ F}. This,
together with equation (3.1), implies that au | △(av).
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(∗∗) The map g is injective. Clearly, if 0 ∈ {a, b} and g(a) = g(b),
then g(a) = g(b) = g(0) = 1, which implies that a = 0 = b. Next, let
a, b ∈ P \ 0 and g(a) = g(b).

Now, we shall prove a = b. Suppose that b � a. Then, we have
either a ∈ atoms(P ) or a ∈ (P \ atoms(P )) \ 0. In the first case, we
have supp(b) \ supp(a) ̸= ∅. Thus, there exists a c ∈ supp(b) \ supp(a).
By statement (∗), a - △(a) and a | △(c). Therefore, a | g(b) and
a - g(a), a contradiction.

In the second case, let ak ∈ atoms(P ) \ supp(a). Then, by the
hypothesis of the theorem, there exist two elements ai, aj ∈ supp(a)
such that a = ai ∨ aj and N([aj ∨ ak, 1]) < N([a, 1]) (set r = j). For
convenience, let a

ny

j be the highest power of aj dividing x(ay) for each

ay ∈ atoms(P ). Clearly, by (2.1)

x(ak) =
∏

q∈⌈ak⌉c
mq =

∏
q1∈⌈ak⌉c∩⌈aj⌉

mq1 ∗
∏

q2∈⌈ak⌉c∩⌈aj⌉c
mq2 .

Thus, by (5.1), nk = |⌈ak⌉c ∩ ⌈aj⌉|. On the other hand, ⌈ak⌉c ∩ ⌈aj⌉ =
[aj , 1]− [aj∨ak, 1] such that nk = N([aj , 1])−N([aj∨ak, 1]). Similarly,
ni = N([aj , 1])−N([aj ∨ ai, 1]). Therefore,

nk − ni = N([aj ∨ ai, 1])−N([aj ∨ ak, 1])(5.2)

= N([a, 1])−N([aj ∨ ak, 1]) ≥ 1.

Let r ≥ ak. Suppose that T ∈ Br. We claim that there exists an
at ∈ T such that at ∈ atoms(P ) \ supp(a). Otherwise, T ⊆ supp(a),
which means that

ak ≤ r =
∨

T ≤
∨

supp(a) = a,

contrary to ak /∈ supp(a). Hence, nt − ni ≥ 1 by (5.2). Thus,

(5.3) ani+1
j | lcm{x(aw) : aw ∈ T}.

Below, let a
my

j be the highest power of aj dividing △(ay) for each

ay ∈ atoms(P ). Thus, mk ≥ ni+1 by formulas (3.1) and (5.3). Clearly,
mi ≤ ni since △(ai) | x(ai). Therefore,

(5.4) mk > ni ≥ mi.
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Clearly, there exists an as ∈ supp(b)\ supp(a) ⊆ atoms(P )\ supp(a)
such that as ∨ ae = b for some ae ∈ supp(b). It follows that g(b)
= lcm{△(as),△(ae)} since g is join-preserving. Now, let amj be the
highest power of aj dividing g(b). Then, m ≥ ms. Using formula (5.4),
ms > ni ≥ mi. Thus, m ≥ ms > mi.

On the other hand, g(a) = lcm{△(ai),△(aj)}. By statement (∗),
we have aj - △(aj). Thus, ami

j is the highest power of aj dividing

g(a). Since m ≥ ms > mi, we finally have that g(b) - g(a), a
contradiction. Therefore, the assumption of b � a yields a contra-
diction. Consequently, b ≤ a.

Similarly, we can prove that a ≤ b; it follows from b ≤ a that a = b
finally. �

Remark 5.2. The labeling C as defined by (5.1) need not satisfy
condition (C2) generally. For example, consider the lattice shown in
Figure 8.
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FIGURE 8. The lattice P with a labeling C.

Clearly, the lattice P satisfies the conditions of Theorem 5.1, and its
labeling C yields that IP,C = {b2c2d, a2cd2, a3b2d2, a3b4c3}. It can be
verified that LCM(IP,C) ∼= P . Obviously, the labeling C is a weak
coordinatization, and it does not satisfy condition (C2).

Theorem 5.3. Let P be a super-atomic lattice. Then, the labeling C
of P as defined by (5.1) is a coordinatization if and only if, for each
p ∈ (P \ atoms(P )) \ 0, either

N([ai ∨ ak, 1]) ≤ N([ar ∨ ak, 1])
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or
N([aj ∨ ak, 1]) ≤ N([ar ∨ ak, 1])

for any ak, ar ∈ supp(p), where {ai, aj} ∈ Bp.

Proof. Let C be a coordinatization. Then, there exists an isomor-
phism

g : P −→ LCM(CP,C),

with g(a) = x(a) for each a ∈ atoms(P ). Suppose that p ∈ (P \
atoms(P )) \ 0 and there exist ak, ar ∈ supp(p) such that

N([ai ∨ ak, 1]) > N([ar ∨ ak, 1])

and

N([aj ∨ ak, 1]) > N([ar ∨ ak, 1]),

where {ai, aj} ∈ Bp. Let a
ny

k be the highest power of ak dividing
x(ay) for any ay ∈ atoms(P ). Then, similarly to the proof of (5.2),
we have nr > ni and nr > nj . Thus, anr

k - lcm{x(ai), x(aj)}, i.e.,
x(ar) - lcm{x(ai), x(aj)}. Note that g(p) = lcm{x(ai), x(aj)}. Hence,
x(ar) - g(p). However, ar ∈ supp(p) yields that g(ar) = x(ar) | g(p), a
contradiction.

Conversely, suppose that, for all p ∈ (P \ atoms(P )) \ 0, either

N([ai ∨ ak, 1]) ≤ N([ar ∨ ak, 1])

or
N([aj ∨ ak, 1]) ≤ N([ar ∨ ak, 1])

for any ak, ar ∈ supp(p), where {ai, aj} ∈ Bp.

In what follows, we first prove that△(a) = x(a) for all a ∈ atoms(P ).
The proof will be completed in two parts.

(E1) Let p ∈ (P \ atoms(P )) \ 0 and {ai, aj} ∈ Bp. Now, we prove
that

(5.5) x(as) | lcm{x(ai), x(aj)} if as ∈ supp(p) \ {ai, aj}.

Since P is super-atomic,

(5.6) ai ∨ as < p and aj ∨ as < p.
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Let at ∈ atoms(P ) and a
ny

t be the highest power of at dividing x(ay)
for any ay ∈ atoms(P ). We claim

(5.7) ans
t | lcm{x(ai), x(aj)}.

If at = as, then, clearly, ns = 0. It follows that (5.7) holds. If at ̸= as,
then there are two cases.

Case (1*). Suppose that at /∈ supp(p). Then, ai ∨ aj ∨ at ∨ as =
p ∨ at > p. Thus,

ai ∨ aj ̸= ai ∨ aj ∨ at ∨ as,

ai ∨ as ̸= ai ∨ aj ∨ at ∨ as

and

aj ∨ as ̸= ai ∨ aj ∨ at ∨ as

by (5.6). We claim that as ∨ at ̸= ai ∨ aj ∨ at ∨ as. Otherwise, as ∨ at
= ai ∨ aj ∨ at since ai ∨ aj ∨ at = ai ∨ aj ∨ at ∨ as, which, together with
P is super-atomic, yields s = i or s = j, a contradiction. Therefore,
either ai ∨ aj ∨ at ∨ as = ai ∨ at or ai ∨ aj ∨ at ∨ as = aj ∨ at.

Obviously, ai ∨ aj ∨ at ∨ as = ai ∨ at implies that

as ∨ at < ai ∨ aj ∨ at ∨ as = ai ∨ at.

Thus, N([as ∨ at, 1]) > N([ai ∨ at, 1]). Similarly to the proof of (5.2),
we have ns < ni. It follows that

ans
t | lcm{x(ai), x(aj)}.

Similarly, we can prove that ans
t | lcm{x(ai), x(aj)} when ai ∨ aj ∨ at ∨

as = aj ∨ at. Therefore,

ans
t | lcm{x(ai), x(aj)}

in the case of at /∈ supp(p).

Case (2*). Suppose that at ∈ supp(p). From the hypotheses, either

N([ai ∨ at, 1]) ≤ N([as ∨ at, 1])

or
N([aj ∨ at, 1]) ≤ N([as ∨ at, 1]).
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In the first case, similarly to the proof of (5.2), we have ns ≤ ni. Thus,
ans
t | lcm{x(ai), x(aj)}. Similarly, we can prove ans

t | lcm{x(ai), x(aj)}
when N([aj ∨ at, 1]) ≤ N([as ∨ at, 1]). Hence,

ans
t | lcm{x(ai), x(aj)}

in the case of at ∈ supp(p). Therefore, from Case (1*) and Case (2*),
we know that (5.7) holds if at ̸= as.

From the definition of C, we have that, if x is a variable of x(as),
then x ∈ atoms(P ). Thus, by formula (5.7)

x(as) | lcm{x(ai), x(aj)} if as ∈ supp(p) \ {ai, aj},

i.e., (5.5) is true.

(E2) We shall prove that

(5.8) △(a) = x(a)

for each a ∈ atoms(P ). Indeed, let q ∈ P and q ≥ a. We claim that

(5.9) x(a) | lcm{x(r) : r ∈ T}

for any T ∈ Bq. If q = a, then, clearly, (5.9) holds.

If q > a, then there exist au, av ∈ supp(q) such that au ∨ av = q.
Since P is super-atomic, au, av ∈ T for any T ∈ Bq. Using (5.5),
we have that x(c) | lcm{x(au), x(av)} for all c ∈ supp(q). Note that
a ∈ supp(q). Thus, x(a) | lcm{x(au), x(av)}. Therefore, (5.9) is true.

Formula (5.9) implies that

x(a) | lcm{x(r) : r ∈ T}

for any T ∈ Bq if q ≥ a. Thus, x(a) | △(a) by (3.1). Note that
△(a) | x(a). Therefore, △(a) = x(a), i.e., (5.8) holds.

In order to prove that C is a coordinatization, by Lemma 3.2, it
suffices to prove that C is a weak coordinatization. For q ∈ P , define

g : P −→ LCM(IP,C)

to be a map such that

(5.10) g(q) = lcm{△(w) : w ∈ supp(q)}.

Obviously, g is meet-preserving, join-preserving and a surjection by
(B), (C) and (D) in the proof of Theorem 3.5. Thus, we only need
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prove that g is injective. Clearly, if g(u) = g(v) and 0 ∈ {u, v}, then
u = 0 = v.

Next, suppose that g(u) = g(v) and u, v ∈ P \ 0. We shall
prove u = v. Indeed, if v � u, then supp(v) \ supp(u) ̸= ∅. Let
at ∈ supp(v) \ supp(u). There are two cases.

Case (k1). If u ∈ atoms(P ), then by statement (∗) in the proof of
Theorem 5.1, u - △(u) and u | △(at). Hence u | g(v) and u - g(u),
contrary to g(u) = g(v).

Case (k2). If u ∈ (P \ atoms(P )) \ 0, then, there exists an
{ai, aj} ∈ Bu. Thus,

(5.11) g(u) = lcm{△(ai),△(aj)}.

Obviously, u = ai ∨ aj ̸= at ∨ ai ∨ aj since at � u. Thus, either
at ∨ ai = at ∨ ai ∨ aj or at ∨ aj = at ∨ ai ∨ aj . In the first case, note
that at ∨ ai > aj ∨ ai. Then,

N([aj ∨ ai, 1]) > N([at ∨ ai, 1]).

Let a
nj

i be the highest power of ai dividing x(aj) and ant
i the highest

power of ai dividing x(at). Similarly to the proof of (5.2), nt > nj .
Thus, x(at) - x(aj). Again, by statement (∗) in the proof of Theorem
5.1, ai - x(ai) since x(ai) = △(ai), and this means that x(at) - x(ai).
Therefore, x(at) - lcm{x(ai), x(aj)}. As △(a) = x(a) for any a ∈
atoms(P ), we have

△(at) - lcm{△(ai),△(aj)}.

From formulas (5.10) and (5.11), we have △(at) - g(u), but △(at) | g(v)
since at ∈ supp(v), contrary to g(u) = g(v). In the second case, with
an analogous proof to the first case of at ∨ ai = at ∨ ai ∨ aj , we can
deduce a contradiction.

Cases (k1) and (k2) tell us that the assumption of v � u will yield
a contradiction. Hence, v ≤ u. Arguing as above, we can prove that
u ≤ v. Therefore, u = v. Consequently, g is injective. �

Using Theorem 5.3, we can determine whether the labeling, defined
by (5.1), of a super-atomic lattice is a coordinatization.

As a conclusion of this section, we shall consider when the labeling,
defined by (5.1), of a non-super-atomic lattice is also a coordinatization.
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Lemma 5.4. Let P,Q ∈ L(n) with atoms(P ) = atoms(Q) = {1, 2,
. . . , n}. If SP \ SQ = {S}, then S is meet-irreducible in (SP ,⊆).

Proof. If S is not meet-irreducible in (SP ,⊆), then there exist two
different elements S1, S2 ∈ SP such that S1 ≻ S and S2 ≻ S in lattice
(SP ,⊆). Note that S1, S2 ∈ SQ. We claim that

∨
t∈S{t} = S1 in lattice

(SQ,⊆). Otherwise, we have∨
t∈S

{t} = R ( S1

for some R ∈ SQ in lattice (SQ,⊆). Clearly, S ⊆ R ( S1. Since S /∈ SQ,
S ̸= R, which means that S ( R. Therefore, S ( R ( S1, which,
together with S,R, S1 ∈ SP yields that S1 � S in lattice (SP ,⊆), a
contradiction. Consequently,∨

t∈S

{t} = S1 in (SQ,⊆).

Similarly, we also have∨
t∈S

{t} = S2 in (SQ,⊆).

Therefore, S1 = S2, contrary to S1 ̸= S2. �

Let P ∈ L(n) with atoms(P ) = {a1, a2, . . . , an}. Next, we denote
by CP the labeling of P defined by (5.1), that is,

mc =
∏

ai∈supp(c)

ai

for any c ∈ P \ 0. Note that (SP ,⊆) is the lattice corresponding to P ,
see Section 2. Then, for any C ∈ SP \ ∅, we have that

mC =
∏
ai∈C

ai,

where C corresponds to c. Again, we denote by xP ({ai}) the monomi-
als corresponding to (SP ,⊆) defined by (2.1). Then, we define CSP ,CP

as the ideal generated by monomials xP ({ai}) for each i ∈ {1, 2, . . . , n}.
We denote by △P ({ai}) the monomials corresponding to (SP ,⊆) de-
fined by (3.1), and define ISP ,CP as the ideal generated by monomials
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△P ({ai}) for each i ∈ {1, 2, . . . , n}. Then, we have the following theo-
rem.

Theorem 5.5. Let (SQ,⊆), (SP ,⊆), (SR,⊆) ∈ L(n) and (SR,⊆) be a
super-atomic lattice. If SP ⊆ SR, SP \ SQ = {S} and CP are a coor-
dinatization, then CQ is a coordinatization if and only if △Q({ak}) =
xQ({ak}) for any k ∈ {1, 2, . . . , n}.

Proof. We only need show the sufficiency of the theorem since
the necessity is obvious. First note that ISQ,CQ

= CSQ,CQ
since

△Q({ak}) = xQ({ak}) for any k ∈ {1, 2, . . . , n}. Define a map

h : (SQ,⊆) −→ LCM(ISQ,CQ
) = LCM(CSQ,CQ

)

as

h(C) = lcm{△Q({ai}) : ai ∈ C} = lcm{xQ({ai}) : ai ∈ C}

for any C ∈ SQ. According to Lemma 3.2, we merely need to prove
that CQ is a weak coordinatization, i.e., we only need prove that h is
an isomorphism. By (B), (C) and (D) in the proof of Theorem 3.5, we
can verify that h is meet-preserving, join-preserving and surjective.

Now, we shall prove that h is injective. For C ∈ SP , we define a
map

g : (SP ,⊆) −→ LCM(CSP ,CP
)

such that
g(C) = lcm{xP ({ai}) : ai ∈ C}.

Obviously, g is an isomorphism from (SP ,⊆) to LCM(CSP ,CP
) since CP

is a coordinatization.

By Lemma 5.4 there exists exactly one element T ∈ SP such that
T ≻ S in lattice (SP ,⊆). Clearly, S /∈ atoms(SP )

∪
{∅}. If aj ∈

{a1, a2, . . . , an} \ S, then S /∈ ⌈{aj}⌉P since {aj} * S. Thus, ⌈{aj}⌉P
= ⌈{aj}⌉Q, which implies that
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xQ({aj}) =
∏

C∈⌈{aj}⌉cQ

mC =
∏

C∈SQ\⌈{aj}⌉Q

mC(5.12)

=

∏
C∈SP \⌈{aj}⌉P mC

mS
=

xP ({aj})∏
ai∈S ai

.

If aj ∈ S, then S ∈ ⌈{aj}⌉P since {aj} ⊆ S. Thus, ⌈{aj}⌉P = ⌈{aj}⌉Q
∪ {S}, which implies that

xQ({aj}) =
∏

C∈⌈{aj}⌉cQ

mC =
∏

C∈SQ\⌈{aj}⌉Q

mC(5.13)

=
∏

C∈SP \⌈{aj}⌉P

mC = xP ({aj}).

The proof is completed using three parts.

(I) Let C1, D1 ∈ SQ. If h(C1) = h(D1) and C1 ⊆ D1, then C1 = D1.
Suppose that C1 ̸= D1. Then, C1 ( D1. Thus, there exists a C2 ∈ SQ

such that

(5.14) C1 ≺ C2 ⊆ D1 in (SQ,⊆),

and

(5.15) h(C1) = h(C2)

since h is meet-preserving. Clearly, if C1 = ∅, then h(C1) = 1 = h(D1),
which implies that C1 = D1.

Next, we suppose that C1 ∈ SQ \∅. If C1 ∈ atoms((SQ,⊆)), then let
C1 = {au}. Clearly, there exists an {av} ⊆ C2 such that {av} ̸= {au}
by (5.14). From statement (∗), we know that au - △Q({au}) and
au | △Q({av}). Hence, au | h(C2) and au - h(C1), contrary to
formula (5.15). If C1 ∈ (SQ \ atoms((SQ,⊆))) \ ∅, then there exist
{ai}, {aj} ∈ atoms((SQ,⊆)) such that

(5.16) C1 = {ai} ∨ {aj}

in (SQ,⊆) since (SR,⊆) is super-atomic and SQ ⊆ SR. Furthermore,
by (5.14), there exists an {ak} ∈ atoms((SQ,⊆)) such that

(5.17) C2 = {ai} ∨ {aj} ∨ {ak}
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in (SQ,⊆). Using formulas (5.15), (5.16) and (5.17), we have

h(C1) = lcm{xQ({ai}), xQ({aj})}(5.18)

= lcm{xQ({ai}), xQ({aj}), xQ({ak})}
= h(C2).

Thus, we shall distinguish the six types, as follows. For convenience,
let a

mxy
y be the highest power of ay dividing xP ({ax}) and a

nxy
y the

highest power of ay dividing xQ({ax}) for any x, y ∈ {1, 2, . . . , n}.
Type 1. ai, aj , ak ∈ S. We first claim that C1 ̸= T . If C1 = T , then

{ai}∨{aj} = S in (SP ,⊆) since ai, aj ∈ S. Thus, {ai}∨{aj}∨{ak} = S
in (SP ,⊆) since ak ∈ S. From formula (5.17), C2 = T such that
C2 = C1, a contradiction. Hence, C1 ̸= T and C1 ( T since
{ai, aj} ⊆ T . Therefore,

(5.19) {ai} ∨ {aj} = C1 ( S

in (SP ,⊆).

Using formula (5.13), we have xQ({at}) = xP ({at}) for any t ∈
{i, j, k}. Then,
(5.20)

lcm{xP ({ai}), xP ({aj})} = lcm{xP ({ai}), xP ({aj}), xP ({ak})}

by formula (5.18). There are two subcases.

Subcase (1) (i). If C2 = T , then {ai} ∨ {aj} ∨ {ak} = S in (SP ,⊆)
since ai, aj , ak ∈ S, which, together with formulas (5.19) and (5.20),
implies that g(C1) = g(S). However, g(C1) < g(S) since C1 ( S, and
g is isomorphic, a contradiction.

Subcase (2) (i). If C2 ̸= T , then {ai} ∨ {aj} ∨ {ak} = C2 in
(SP ,⊆). From formulas (5.19) and (5.20), g(C1) = g(C2), contrary
to g(C1) < g(C2).

Type 2. ai, aj , ak /∈ S. From formula (5.12),

xP ({at}) =
( ∏

ar∈S

ar

)
∗ xQ({at}) for any t ∈ {i, j, k}.

Then, h(C1) = h(C2) implies that

h(C1) ∗
∏
ar∈S

ar = h(C2) ∗
∏
ar∈S

ar.
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Furthermore, by formula (5.18),

lcm{xP ({ai}), xP ({aj})} = lcm{xP ({ai}), xP ({aj}), xP ({ak})}.

On the other hand, as ai, aj , ak /∈ S, {ai}∨{aj} = C1 and {ai}∨{aj}∨
{ak} = C2 in (SP ,⊆), obviously. Therefore, g(C1) = g(C2), contrary
to g(C1) < g(C2).

Type 3. ai, aj /∈ S and ak ∈ S. By formulas (5.13) and (5.18), we
have that

lcm{xQ({ai}), xQ({aj})} = lcm{xQ({ai}), xQ({aj}), xP ({ak})}.

Thus, xP ({ak}) | lcm{xQ({ai}), xQ({aj})}. Similarly to the proof of
Type 2, we know that

{ai} ∨ {aj} = C1, {ai} ∨ {aj} ∨ {ak} = C2 in (SP ,⊆)

and

xP ({at}) =
( ∏

ar∈S

ar

)
∗ xQ({at}) for any t ∈ {i, j}.

Thus, xP ({ak}) | lcm{xP ({ai}), xP ({aj})}, which implies that

lcm{xP ({ai}), xP ({aj})} = lcm{xP ({ai}), xP ({aj}), xP ({ak})}.

Therefore, g(C1) = g(C2), contrary to g(C1) < g(C2).

Type 4. ai ∈ S, aj /∈ S and ak ∈ S. Using (5.13) and (5.18), we
have that

lcm{xP ({ai}), xQ({aj})} = lcm{xP ({ai}), xQ({aj}), xP ({ak})}.

Similarly to the proof of Type 3, we have that xP ({ak}) | lcm{xP ({ai}),
xP ({aj})} and g(C1) = g(C2) with {ai}∨ {aj} = C1 and {ai}∨ {aj}∨
{ak} = C2 in (SP ,⊆), contrary to g(C1) < g(C2).

Type 5. ai, aj ∈ S and ak /∈ S. Using (5.13) and (5.18), we have
that

lcm{xP ({ai}), xP ({aj})} = lcm{xP ({ai}), xP ({aj}), xQ({ak})}.

Then,

(5.21) xQ({ak}) | lcm{xP ({ai}), xP ({aj})}.
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Using (5.12), we have

xP ({ak}) =
( ∏

ar∈S

ar

)
∗ xQ({ak}).

Thus, nki +1 = mki since ai ∈ S. We note that {ai}∨{aj}∨{ak} = C2

in (SP ,⊆) since ak /∈ S. Then,

{ai} ∨ {ak} = C2 or {aj} ∨ {ak} = C2

in (SP ,⊆) since SP ⊆ SR and (SR,⊆) is super-atomic. There are two
subcases.

Subcase (1). If C1 = T , then {ai} ∨ {aj} = S in (SP ,⊆). Thus,
S ( C1 = T ( C2. Assume that {ai} ∨ {ak} = C2 in (SP ,⊆). Then,
we have that

N([{ai} ∨ {aj}, 1]) ≥ N([{ai} ∨ {ak}, 1]) + 2

in (SP ,⊆) since S ( T ( C2. Similarly to the proof of (5.2), we
have that mki ≥ mji + 2. Thus, nki ≥ mji + 1, which implies that
xQ({ak}) - xP ({aj}). From Lemma 3.2, △P ({ai}) = xP ({ai}) since
CP is a coordinatization. Furthermore, by statement (∗), we know
that ai - xP ({ai}). Therefore, xQ({ak}) - lcm{xP ({ai}), xP ({aj})},
contrary to (5.21).

If {aj}∨{ak} = C2 in (SP ,⊆), then, with an analogous proof to the
case of {ai} ∨ {ak} = C2 in (SP ,⊆), we may obtain a contradiction.

Subcase (2). If C1 ̸= T , then C1 ( S and {ai} ∨ {aj} = C1 in
(SP ,⊆) by the proof of Type 1. Suppose that {ai} ∨ {ak} = C2 in
(SP ,⊆). Then,

N([{ai} ∨ {aj}, 1]) > N([{ai} ∨ {ak}, 1])

in (SP ,⊆) since C1 ( C2. Note that C2 * S since ak /∈ S. Thus,

N([{ai} ∨ {aj}, 1]) ≥ N([{ai} ∨ {ak}, 1]) + 2

in (SP ,⊆) since C1 ( S. Similarly to Subcase (1), we can prove that

xQ({ak}) - lcm{xP ({ai}), xP ({aj})},

contrary to (5.21). If {aj} ∨ {ak} = C2 in (SP ,⊆), then with an
analogous proof to the case of {ai} ∨ {ak} = C2 in (SP ,⊆) , we may
get a contradiction.
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Type 6. ai ∈ S and aj , ak /∈ S. By (5.13) and (5.18), we have that

lcm{xP ({ai}), xQ({aj})} = lcm{xP ({ai}), xQ({aj}), xQ({ak})}.

Thus,

(5.22) xQ({ak}) | lcm{xP ({ai}), xQ({aj})}.

Clearly, {ai}∨ {aj} = C1 and {ai}∨ {aj}∨ {ak} = C2 in (SP ,⊆) since
aj , ak /∈ S. From the proof of Type 5, we know that

{ai} ∨ {ak} = C2 or {aj} ∨ {ak} = C2

in (SP ,⊆). There are two subcases.

Subcase (i). If {ai} ∨ {ak} = C2 in (SP ,⊆), by the proof of Type 5,
we have that

N([{ai} ∨ {aj}, 1]) > N([{ai} ∨ {ak}, 1])

in (SP ,⊆). Clearly, mki > mji , i.e., xP ({ak}) - xP ({aj}). Using (5.12),
we have

xP ({aj}) =
( ∏

ar∈S

ar

)
∗ xQ({aj})

and

xP ({ak}) =
( ∏

ar∈S

ar

)
∗ xQ({ak}).

Hence, xQ({ak}) - xQ({aj}).
From Lemma 3.2, △P ({ai}) = xP ({ai}) since CP is a coordinatiza-

tion. Furthermore, by statement (∗), ai - xP ({ai}). Thus,

xQ({ak}) - lcm{xP ({ai}), xQ({aj})},

contrary to formula (5.22).

Subcase (ii). If {aj} ∨ {ak} = C2 in (SP ,⊆), then, we note that

N([{ai} ∨ {aj}, 1]) > N([{aj} ∨ {ak}, 1])

in (SQ,⊆). Clearly, nkj > nij . Again, we know that nij = mij since
xP ({ai}) = xQ({ai}). Hence, xQ({ak}) - xP ({ai}). Since △Q({aj})
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= xQ({aj}), we have aj - xQ({aj}), by statement (∗). Therefore,

xQ({ak}) - lcm{xP ({ai}), xQ({aj})},

contrary to formula (5.22).

Types 1–6 tell us that, if h(C1) = h(D1) and C1 ⊆ D1, then
C1 = D1.

Similarly to (I), we can prove that

(II) If h(C1) = h(D1) and C1 ⊇ D1, then C1 = D1.

(III) If h(C1) = h(D1), then C1 ⊆ D1 or C1 ⊇ D1.

Assume that C1∥D1. Let {ai}∨ {aj} = C1 and {ak}∨ {ae} = D1 in
(SQ,⊆). Then,

C = C1∨D1 = {ai}∨{aj}∨{ak}∨{ae} ) {ai}∨{aj} = C1 in (SQ,⊆).

Thus, by (I), we have that h(C1) < h(C). It follows that

lcm{xQ({ai}), xQ({aj})}
< lcm{xQ({ai}), xQ({aj}), xQ({ak}), xQ({ae})}.

Therefore,

xQ({ak}) - lcm{xQ({ai}), xQ({aj})}(5.23)

or

xQ({ae}) - lcm{xQ({ai}), xQ({aj})},

and formula (5.23) implies that

h(D1) = lcm{xQ({ak}), xQ({ae})} - lcm{xQ({ai}), xQ({aj})} = h(C1),

i.e., h(C1) ̸= h(D1), a contradiction. From (I), (II) and (III), we know
that the map h is injective. �

The following example will illustrate Theorem 5.5.

Example 5.6. Let SP = {{a1, a2, a3, a4}, {a2, a3, a4}, {a1, a3, a4},
{a3, a4}, {a2, a3}, {a1, a4}, {a1}, {a2}, {a3}, {a4}, ∅}. It is easy to see
that (SP ,⊆) is a super-atomic lattice in L(4). Denote CP as a labeling of
SP defined by (5.1). Then, CSP ,CP

= {a32a43a34, a31a33a44, a21a2a24, a1a22a23}.
Clearly, the labeling CP is a coordinatization. Let SQ = SP \ {{a2,
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a3, a4}}. Clearly, xQ({ai}) = △Q({ai}) for any i ∈ {1, 2, 3, 4}. Then,
by Theorem 5.5,

CSQ,CQ = {a22a33a24, a31a33a44, a21a2a24, a1a22a23}.

Furthermore, it can be verified that LCM(CSQ,CQ
) ∼= (SQ,⊆), i.e., CQ

is a coordinatization.

6. Conclusions. In this paper, we studied monomial ideals by their
associated lcm-lattices. First, we introduced notions of weak coordina-
tizations which have weaker hypotheses than coordinatizations, and
next we showed the characterizations of all such weak coordinatiza-
tions which partly answer the problem given by Mapes in [10]. We
then defined a finite super-atomic lattice in L(n), used to investigate
the structures of L(n) and to identify that a specific labeling, given
by us, of a finite atomic lattice is a weak coordinatization. It should
be very interesting in the future to study a minimal free resolution of
R/M by our results.

Acknowledgments. The authors thank the referees for their valu-
able comments and suggestions.
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