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GENERAL WEIGHTED HARDY-TYPE INEQUALITIES
RELATED TO GREINER OPERATORS

ABDULLAH YENER

ABSTRACT. In this article, we present a general method
that can be used to deduce weighted Hardy-type inequalities
from a particular non-linear partial differential inequality in
a relatively simple and unified way on the sub-Riemannian
manifold R2n+1 = Rn×Rn×R, defined by the Greiner vector
fields

Xj =
∂

∂xj
+ 2kyj |z|2k−2 ∂

∂l
,

Yj =
∂

∂yj
− 2kxj |z|2k−2 ∂

∂l
,

j = 1, . . . , n, where z = x + iy ∈ Cn, l ∈ R, k ≥ 1. Our
method allows us to improve, extend, and unify many pre-
viously obtained sharp weighted Hardy-type inequalities as
well as to yield new ones. These cases are illustrated by
giving many concrete examples, including radial, logarithmic,
hyperbolic and non-radial weights. Furthermore, we intro-
duce a new technique for constructing two-weight Lp Hardy-
type inequalities with remainder terms on smooth bounded
domains Ω in R2n+1. We also give several applications lead-
ing to various weighted Hardy inequalities with remainder
terms.

1. Overview and generalities. Let n ≥ 2 and 1 ≤ p < n. The
classical Hardy inequality states that

(1.1)

∫
Rn

|∇ϕ|pdx ≥
(
n− p

p

)p ∫
Rn

|ϕ|p

|x|p
dx

holds for every ϕ ∈ C∞
0 (Rn). Here, the subscript zero signifies compact

support and the constant (n− p)p/pp in (1.1) is sharp, but, for p > 1,
it is never achieved. This inequality has been intensively studied in the
Euclidean framework for the last few decades, particularly, in view of its
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applications to partial differential equations motivated by physics and
geometry; see, for instance, [1, 4, 5, 8, 13, 15, 16, 17, 19, 29, 30],
and the references therein.

Considerable effort has also been devoted to extending the Hardy
inequality (1.1) to subelliptic settings. For example, in the case of the
sub-Riemannian manifold R2n+1 = Rn×Rn×R, defined by the Greiner
vector fields,

Xj =
∂

∂xj
+ 2kyj |z|2k−2 ∂

∂l
,

Yj =
∂

∂yj
− 2kxj |z|2k−2 ∂

∂l
,

j = 1, . . . , n, where z = x+ iy ∈ Cn, l ∈ R, k ≥ 1, Zhang and Niu [33]
first proved the following Hardy inequality:

(1.2)

∫
R2n+1

|∇kϕ|pdz dl ≥
(
Q− p

p

)p ∫
R2n+1

(
|z|
ρ

)p(2k−1) |ϕ|p

ρp
dz dl

for all ϕ ∈ C∞
0 (R2n+1 \ {(0, 0)}), 1 < p < Q. In order to prove

(1.2), they used a Picone-type identity for the family {Xj , Yj}. Here,
∇k = (X1, . . . , Xn, Y1, . . . , Yn) is the subelliptic gradient,

ρ = (|z|4k + l2)1/4k

is the gauge induced by the fundamental solution for the subelliptic
operator ∆k =

∑n
j=1(X

2
j + Y 2

j ), and Q = 2n+ 2k is the homogeneous
dimension for ∆k. If k = 1, then ∆k becomes the sub-Laplacian ∆Hn

on the Heisenberg group Hn and, in this context, the inequality (1.2)
was considered by Garofalo and Lanconelli in [14], Niu, et al., in [27],
D’Ambrosio in [9] and Yener in [32].

On the other hand, D’Ambrosio [10] obtained various weighted
Hardy-type inequalities related to quasilinear second-order degenerate
differential operators involving the subelliptic operator ∆k. His ap-
proach is based upon the divergence theorem and on the careful choice
of a vector field. Later, Niu, et al., [26] used the fundamental solution
of the p-degenerate subelliptic operator ∆k,p = ∇k · (|∇k|p−2∇k) to
establish a weighted version of (1.2). More precisely, they established
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the following inequality∫
R2n+1

ραp|∇kϕ|pdz dl ≥
∣∣∣∣Q+ αp− p

p

∣∣∣∣p(1.3)

·
∫
R2n+1

ραp
(
|z|
ρ

)p(2k−1) |ϕ|p

ρp
dz dl,

where ϕ ∈ C∞
0 (R2n+1 \ {(0, 0)}), Q ≥ 3, Q ̸= p and Q + αp − p > 0.

Furthermore, the constant |(Q+ αp− p)/p|p in (1.3) is sharp.

In the article [24], Lian proved a representation formula for ∇k and
showed that, for any function ϕ ∈ C∞

0 (R2n+1), we have∫
R2n+1

|z|β

ρα+β
|∇kϕ|pdz dl ≥

(
Q− p− α

p

)p

(1.4)

·
∫
R2n+1

|z|β

ρα+β

(
|z|
ρ

)p(2k−1) |ϕ|p

ρp
dz dl

provided that 1 < p < Q−α and β+2n+(p−1)(2k−1) > 0. Moreover,
the constant ((Q− p− α)/p)p in (1.4) is sharp. Recently, Ahmetolan
and Kombe [3] investigated sharp two weight Hardy-type inequalities
associated with the Greiner operator ∆k.

In view of all of these developments, it is natural to research a
sufficient constructive criteria for the validity of more general weighted
Hardy-type inequalities related to the Greiner operator ∆k. In this
direction, we prove that, if a ∈ C1(R2n+1) and b ∈ L1

loc(R2n+1) are
nonnegative functions and ϑ ∈ C∞(R2n+1) is a positive function such
that

−∇k · (a|∇kϑ|p−2∇kϑ) ≥ bϑp−1

almost everywhere in R2n+1, then the general weighted Lp Hardy-type
inequality having the form∫

R2n+1

a|∇kϕ|pdz dl ≥
∫
R2n+1

b|ϕ|pdz dl

is valid for every ϕ ∈ C∞
0 (R2n+1), p > 1. We would like to mention,

in particular, that our approach is quite practical and constructive for
obtaining both known and new weighted Hardy-type inequalities. In
order to construct various weighted Hardy-type inequalities on R2n+1

or on some special domains in R2n+1, it is sufficient to determine the
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proper model functions a and ϑ that satisfy the above hypotheses. The
flexibility in choosing the functions a and ϑ leads to the exhibition
of many concrete examples of Hardy-type inequalities with radial,
logarithmic, hyperbolic and non-radial weights (see subsection 3.1).

We also introduce a new method for deriving two-weight Lp Hardy-
type inequalities with remainder terms on smooth bounded domains Ω
in R2n+1. The main tool which is employed in deriving these types of
inequalities is the nonlinear partial differential inequality

(1.5) −∇k ·
(
aρp−Q |∇kϑ|p−2

ϑp−2
∇kϑ

)
≥ 0,

where a is a nonnegative weight function, ρ is the gauge and ϑ is
a positive smooth function (see Theorem 4.1). Through the careful
choice of functions a and ϑ in the differential inequality (1.5), we
present a variety of improved Lp Hardy-type inequalities, including
radial, logarithmic and exponential weights (see subsection 4.1).

2. Preliminary results and notation. We begin by providing
some notation, definitions and preliminary facts which will be necessary
in the sequel. We split R2n+1 into w = (z, l) = (x, y, l) ∈ Rn × Rn × R
with n ≥ 1. The generalized Greiner operator is of the form

(2.1) ∆k =
n∑

j=1

(X2
j + Y 2

j ),

where

(2.2) Xj =
∂

∂xj
+ 2kyj |z|2k−2 ∂

∂l
, Yj =

∂

∂yj
− 2kxj |z|2k−2 ∂

∂l
,

for j = 1, . . . , n, k ≥ 1. Note that, when k = 1, ∆k becomes the sub-
Laplacian ∆Hn on the Heisenberg group Hn, see [11]. If k = 2, 3, . . . ,
∆k is the Greiner operator, see [18]. The subelliptic gradient associated
with ∆k is as follows:

∇k = (X1, . . . , Xn, Y1, . . . , Yn).

A natural family of dilations is given by

(2.3) δλ(z, l) = (λz, λ2kl), λ > 0.
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The change of variables formula for the Lebesgue measure yields that

dδλ(z, l) = λQdz dl = λQdw,

where
Q = 2n+ 2k

is the homogeneous dimension with respect to the dilation δλ, and
dw = dz dl denotes the Lebesgue measure on R2n+1.

For w = (z, l) ∈ R2n × R, we define the norm

ρ = ρ(z, l) = (|z|4k + l2)1/4k,

where we have set
|z| :=

√
|x|2 + |y|2.

Here, | · | stands for the standard Euclidean norm. We remark that
ρ is positive, smooth away from the origin, and symmetric. The
norm function ρ is also closely related to the fundamental solution
of subelliptic operator ∆k at the origin, see [6, 7], namely, if Q > 2,
then the function u2 := ρ2−Q satisfies the relation

−∆ku2 = ℓ2δ0 on R2n+1

in a weak sense, where δ0 is the Dirac distribution at 0 and ℓ2 is a
positive constant.

For a differentiable real-valued function u : R2n+1 → R, the p-
degenerate, subelliptic operator ∆k,p associated with the vector fields
(2.2) is given by

∆k,pu = ∇k · (|∇ku|p−2∇ku), p > 1.

If p = 2, it coincides with ∆k in (2.1). It is immediately seen that ∆k,p

is a homogeneous partial differential operator of degree p with respect
to the anisotropic dilations (2.3), that is, ∆k,p ◦ δλ = λpδλ ◦∆k,p. Let
up be the function, defined as

up =

{
ρ( p−Q)/(p−1) if p ̸= Q,

− ln ρ if p = Q,

for w ̸= 0. The function up is p-harmonic on R2n+1 \ {0}, that is,

−∆k,pup = 0 on R2n+1 \ {0}.
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Moreover, for each 1 < p <∞, there exists a constant ℓp ̸= 0 such that

−∆k,pup = ℓpδ0

in the sense of distribution and ℓp > 0 if and only if Q ≥ p, see [33].

Now we mention, without proofs, some useful facts which we shall
use throughout the computations in this paper. An evident calculation
yields

∇kρ =
|z|2k−2

ρ4k−1
(x|z|2k + yl, y|z|2k − xl).

Thus, we readily obtain

|∇kρ| =
|z|2k−1

ρ2k−1
.

Suppose that a smooth function u has the form u = u(ρ) on R2n+1.
Then, we have

|∇ku(ρ)| = |∇kρ||u′(ρ)|

for all w ∈ R2n+1 − {0} and

∆k,pu(ρ) = |∇kρ|p|u′(ρ)|p−2

[
(p− 1)u′′(ρ) + (Q− 1)

u′(ρ)

ρ

]
, p > 1,

at every point w ∈ R2n+1 − {0} with u′(ρ(w)) ̸= 0, see [33]. In
particular, when u(ρ) = ρα, we get

(2.4) |∇kρ
α| = |α||∇kρ|ρα−1

and

(2.5) ∆k,pρ
α = α|α|p−2(Q+ αp− α− p)|∇kρ|pραp−p−α,

where α ∈ R. Observe that, in the case p = 2, the formula (2.5) reduces
to

∆kρ
α = α(Q+ α− 2)|∇kρ|2ρα−2.

Moreover, together with the above formulas and noting that

∇k|z| =
z

|z|
, ∆k|z| =

2n− 1

|z|
,

we can easily obtain the following two identities:

∇kρ
α · ∇k|z|β = αβ|∇kρ|2|z|βρα−2
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and

∆k(ρ
α|z|β)=α(Q+2β+α−2)|∇kρ|2|z|βρα−2+β(2n+β−2)|z|β−2ρα,

with α, β ∈ R, n ≥ 1. We also note that the gauge ρ is infinitely har-
monic in R2n+1 − {0}, that is, ρ is solution of the following equation:

(2.6) ∇k(|∇kρ|2) · ∇kρ = 0.

Let BR = {w ∈ R2n+1 | ρ(w) < R}, ∂BR = {w ∈ R2n+1 | ρ(w) = R},
and call these sets, respectively, ρ-ball and ρ-sphere centered at the
origin with radius R.

3. General weighted Hardy-type inequalities. There are sev-
eral necessary and sufficient conditions to obtain the validity of Hardy-
type inequalities in the literature. One of the most efficient ways is
linking Hardy inequalities with solutions or subsolutions to differential
problems. In this regard, we now provide a systematic and unified
approach that includes and improves most of the Hardy- and uncer-
tainty principle-type inequalities in a more adequate fashion on the
sub-Riemannian manifold R2n+1 defined by the Greiner vector fields
(2.2). Then, we illustrate these cases by giving many explicit exam-
ples, including radial, logarithmic, hyperbolic and non-radial weights.
The main result of this section follows.

Theorem 3.1. Let a ∈ C1(R2n+1) and b ∈ L1
loc(R2n+1) be nonneg-

ative functions and ϑ ∈ C∞(R2n+1) a positive function satisfying the
differential inequality

(3.1) −∇k · (a|∇kϑ|p−2∇kϑ) ≥ bϑp−1

almost everywhere in R2n+1. There exists a positive constant cp = c(p)
such that, if p ≥ 2, then

(3.2)

∫
R2n+1

a|∇kϕ|pdw ≥
∫
R2n+1

b|ϕ|pdw + cp

∫
R2n+1

a

∣∣∣∣∇k
ϕ

ϑ

∣∣∣∣pϑpdw,
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and, if 1 < p < 2, then

∫
R2n+1

a|∇kϕ|pdw ≥
∫
R2n+1

b|ϕ|pdw

(3.3)

+ cp

∫
R2n+1

a
|∇k(ϕ/ϑ)|2ϑ2

(|(ϕ/ϑ)∇kϑ|+ |∇k(ϕ/ϑ)|ϑ)2−p
dw

for every ϕ ∈ C∞
0 (R2n+1).

Proof. Let φ := ϕ/ϑ, where ϕ ∈ C∞
0 (R2n+1) and 0 < ϑ ∈

C∞(R2n+1). Thus,

|∇kϕ|p = |φ∇kϑ+ ϑ∇kφ|p.

We now use the following convexity inequality: for any x, y ∈ Rn and
p ≥ 2,

(3.4) |x+ y|p ≥ |x|p + p|x|p−2x · y + cp|y|p,

where cp = c(p) > 0, see [25]. From (3.4), we have

(3.5) |∇kϕ|p ≥ |∇kϑ|p|φ|p + ϑ|∇kϑ|p−2∇kϑ · ∇k(|φ|p) + cp|∇kφ|pϑp.

Multiplying the inequality (3.5) by a on both sides, and then applying
integration by parts over R2n+1, yields∫

R2n+1

a|∇kϕ|pdw ≥
∫
R2n+1

a|∇kϑ|p|φ|pdw

+ cp

∫
R2n+1

a|∇kφ|pϑpdw

−
∫
R2n+1

∇k · (aϑ|∇kϑ|p−2∇kϑ)|φ|pdw

= −
∫
R2n+1

∇k · (a|∇kϑ|p−2∇kϑ)ϑ|φ|pdw

+ cp

∫
R2n+1

a|∇kφ|pϑpdw.

It therefore follows from (3.1) that∫
R2n+1

a|∇kϕ|pdw ≥
∫
R2n+1

b|φ|pϑpdw + cp

∫
R2n+1

a|∇kφ|pϑpdw.
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Making the variable change φ = ϕ/ϑ in the above integral, we obtain
the desired result (3.2). In the case of 1 < p < 2, we apply the following
convexity inequality:

(3.6) |x+ y|p ≥ |x|p + p|x|p−2x · y + cp
|y|2

(|x|+ |y|)2−p
,

where cp = c(p) > 0 and x, y ∈ Rn, see [25]. Following a similar
procedure as in the proof of inequality (3.2), the proof of Theorem 3.1
is completed. �

Remark 3.2. Note that one of the novelties of our approach is that it
automatically yields a remainder term. For p = 2, there is an equality
in (3.4) with c2 = 1, and this gives the following remainder formula:∫

R2n+1

a|∇kϕ|2dw =

∫
R2n+1

bϕ2dw +

∫
R2n+1

a

∣∣∣∣∇k
ϕ

ϑ

∣∣∣∣2ϑ2dw.
3.1. Applications of Theorem 3.1. Let ϵ > 0 be given. To make
the following arguments rigorous, we should replace the function ρ with
its regularization

ρϵ := (|z|4kϵ + l2)1/4k,

where

|z|ϵ :=
(
ϵ2 +

n∑
j=1

(x2j + y2j )

)1/2

and, after calculations, take the limit as ϵ → 0. However, for the sake
of simplicity, we will proceed formally.

As mentioned earlier, we now apply Theorem 3.1 to demonstrate
how our approach systematically recovers, extends and improves many
previously known sharp, weighted Hardy-type inequalities, such as
those obtained in [3, 10, 16, 24, 26, 29], and also enables us to
derive new inequalities in a relatively simple and unified manner. We
begin by considering the model functions

a = ραp and ϑ = ρ−(Q+αp−p)/p

in Theorem 3.1. After some computations, the subsequent result that
was established by Niu, et al., [26] is readily obtained.
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Corollary 3.3. Let Q ≥ 3, Q ̸= p and Q + αp − p > 0. Then, the
inequality∫

R2n+1

ραp|∇kϕ|pdw ≥
∣∣∣∣Q+ αp− p

p

∣∣∣∣p ∫
R2n+1

ραp|∇kρ|p
|ϕ|p

ρp
dw

is valid for every ϕ ∈ C∞
0 (R2n+1 \ {0}).

Remark 3.4. It was shown in [26] that the positive constant∣∣∣∣Q+ αp− p

p

∣∣∣∣p
in the above inequality is sharp.

We can recapture, via our approach, most of the results of D’Ambrosio,
presented in [10], for the generalized Greiner operator. As a first ex-
ample, if we take the following pair

a = ρα+p and ϑ = ρ|Q+α|/p,

then we have the weighted Lp Hardy-type inequality in [10].

Corollary 3.5. Let 1 < p < ∞, α ∈ R. If Q+ α < 0, then, for every
function ϕ ∈ C∞

0 (R2n+1), we have∫
R2n+1

ρα+p|∇kϕ|pdw ≥
(
|Q+ α|

p

)p ∫
R2n+1

ρα|∇kρ|p|ϕ|pdw.

Remark 3.6. Moreover, the positive constant (|Q+ α|/p)p in the
above inequality is sharp. For the proof of sharpness, the interested
reader may consult [10].

On the other hand, by specializing the functions as

a = |z|α+p and ϑ = |z||2n+α|/p,

we recover another weighted Lp Hardy-type inequality, due to D’Ambrosio
[10].
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Corollary 3.7. Let 1 < p < ∞, α ∈ R, and let Ω ⊂ (R2n \ {0}) × R
be an open set. If 2n+ α < 0, then, for every ϕ ∈ C∞

0 (Ω), we have∫
Ω

|z|α+p|∇kϕ|pdw ≥
(
|2n+ α|

p

)p ∫
Ω

|z|α|ϕ|p dw.

Observe also that the α = −p case of the above choice

a ≡ 1 and ϑ = |z||2n−p|/p,

together with the relation

1

|z|p
≥ 1

ρp
,

directly gives inequality (3.24) in [10].

Corollary 3.8. Let 1 < p < ∞, α ∈ R, and let Ω ⊂ (R2n \ {0}) × R
be an open set. If 2n− p < 0, then, for every ϕ ∈ C∞

0 (Ω), we have∫
Ω

|∇kϕ|pdw ≥
(
|2n− p|

p

)p ∫
Ω

|ϕ|p

ρp
dw.

We now set the pair as

a =

(
log

R

ρ

)α+p

and ϑ =

(
log

R

ρ

)|α+1|/p

.

Hence, we derive the power logarithmic Lp Hardy-type inequality
(3.21), again, presented in [10].

Corollary 3.9. Let Q = p > 1 and α + 1 < 0. Then, for any ϕ ∈
C∞

0 (BR), we have∫
BR

(
log

R

ρ

)α+p

|∇kϕ|pdw ≥
(
|α+ 1|
p

)p∫
BR

(
log

R

ρ

)α

|∇kρ|p
|ϕ|p

ρp
dw,

where BR is the ρ-ball centered at the origin with radius R.
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An immediate application of Theorem 3.1 with the following func-
tions

a =

(
log

R

|z|

)α+p

and ϑ =

(
log

R

|z|

)|α+1|/p

is inequality (3.25) in [10].

Corollary 3.10. Let p = 2n and α+1 < 0. Then, for any ϕ ∈ C∞
0 (Ω),

we have∫
Ω

(
log

R

|z|

)α+p

|∇kϕ|pdw ≥
(
|α+ 1|
p

)p ∫
Ω

(
log

R

|z|

)α |ϕ|p

|z|p
dw,

where Ω = {w = (z, l) ∈ R2n × R : |z| < R} and R > 0.

On the other hand, by considering the units

a =
|z|β

ρα+β
and ϑ = ρ−(Q−p−α)/p,

we obtain the following two-weight Lp Hardy inequality, which was
proven by Lian [24].

Corollary 3.11. Let α, β ∈ R, 1 < p < Q − α and β + 2n + (p −
1)(2k − 1) > 0. Then, for any ϕ ∈ C∞

0 (R2n+1), we have
(3.7)∫

R2n+1

|z|β

ρα+β
|∇kϕ|pdw ≥

(
Q− p− α

p

)p ∫
R2n+1

|z|β

ρα+β
|∇kρ|p

|ϕ|p

ρp
dw.

Remark 3.12. Moreover, Lian [24] showed that the constant (Q −
p− α)p/pp in (3.7) is sharp.

As an immediate consequence of the following choice

a = ρα|z|β and ϑ = ρ−(Q+α+β−p)/p,

we derive another two-weight Lp Hardy inequality, due to Ahmetolan
and Kombe [3].
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Corollary 3.13. Let α, β ∈ R, Q+α+β > p > 1 and β+2kp−p+2n >
0. Then, the inequality
(3.8)∫

R2n+1

ρα|z|β |∇kϕ|pdw≥
(
Q+α+β−p

p

)p∫
R2n+1

ρα|z|β |∇kρ|p
|ϕ|p

ρp
dw

holds for all ϕ ∈ C∞
0 (R2n+1).

Remark 3.14. Ahmetolan and Kombe [3] also proved that the con-
stant (Q+ α+ β − p)p/pp in (3.8) is sharp.

We must state that Theorem 3.1 not only gives us known, weighted
Hardy-type inequalities, but also gives other, new inequalities for the
generalized Greiner operator ∆k. In the literature, Hardy-type inequal-
ities mostly involve weights of the form |z|αρβ for some α, β ∈ R. We
now discuss versions of Hardy inequalities with more general weights.
Recall that the following, weighted Hardy-type inequalities in the
Euclidean setting were proven by Ghoussoub and Moradifam [16]: let
s, t > 0 and α, β,m be real numbers.

• If αβ > 0 and m ≤ (n− 2)/2, then, for all ϕ ∈ C∞
0 (Rn),

(3.9)∫
Rn

(s+ t|x|α)β

|x|2m
|∇ϕ|2dx ≥

(
n− 2m− 2

2

)2 ∫
Rn

(s+ t|x|α)β

|x|2m+2
ϕ2dx.

• If αβ < 0 and 2m− αβ ≤ n− 2, then, for all ϕ ∈ C∞
0 (Rn),

(3.10)

∫
Rn

(s+ t|x|α)β

|x|2m
|∇ϕ|2dx

≥
(
n+ αβ − 2m− 2

2

)2 ∫
Rn

(s+ t|x|α)β

|x|2m+2
ϕ2dx.

We now extend and improve inequalities (3.9) and (3.10) to the Lp

case for the generalized Greiner operator. In order to do so, we now
take the pair as

a =
(s+ tρα)β

ρpm
and ϑ = ρ−(Q−pm−p)/p

in Theorem 3.1. This gives the following improvement of inequality
(3.9).
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Corollary 3.15. Let s, t > 0 and α, β,m ∈ R. If αβ > 0 and
1 < p ≤ Q− pm, then, for all ϕ ∈ C∞

0 (R2n+1), we have∫
R2n+1

(s+ tρα)β

ρpm
|∇kϕ|pdw

≥ Cp
Q,p,m

∫
R2n+1

(s+ tρα)β

ρpm+p
|∇kρ|p|ϕ|pdw

+ Cp−1
Q,p,mαβt

∫
R2n+1

(s+ tρα)β−1

ρpm+p−α
|∇kρ|p|ϕ|pdw,

where CQ,p,m = (Q− pm− p)/p.

If we consider the units

a =
(s+ tρα)β

ρpm
and ϑ = ρ−(Q+αβ−pm−p)/p,

then we immediately obtain the following improvement of inequality
(3.10).

Corollary 3.16. Let s, t > 0 and α, β,m ∈ R. If αβ < 0 and
1 < p ≤ Q+ αβ − pm, then, for all ϕ ∈ C∞

0 (R2n+1), we have

∫
R2n+1

(s+ tρα)β

ρpm
|∇kϕ|pdw

≥ Cp
Q,p,m,α,β

∫
R2n+1

(s+ tρα)β

ρpm+p
|∇kρ|p|ϕ|pdw

− Cp−1
Q,p,m,α,βαβs

∫
R2n+1

(s+ tρα)β−1

ρpm+p
|∇kρ|p|ϕ|pdw,

where CQ,p,m,α,β = (Q+ αβ − pm− p)/p.

Remark 3.17. Note that, if α = 0 or β = 0 in the above two
inequalities, then they reduce to Hardy-type inequalities with the usual
weights. Hence, we are interested in the case where αβ ̸= 0.

On the other hand, by applying Theorem 3.1 with the following pair

a = ρα sinhβ ρ and ϑ = ρ−(Q+α+β−p)/p,
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and noting that ρ coth ρ ≥ 1, we obtain the power hyperbolic sine Lp

Hardy-type inequality.

Corollary 3.18. Let α ∈ R, β ≥ 0 and Q+ α+ β > p > 1. Then, the
following inequality holds:∫

R2n+1

ρα sinhβ ρ|∇kϕ|pdw

≥
(
Q+ α+ β − p

p

)p ∫
R2n+1

ρα sinhβ ρ|∇kρ|p
|ϕ|p

ρp
dw

for all ϕ ∈ C∞
0 (R2n+1).

We now set the non-symmetric functions

a = coshα x1 and ϑ = log y1

in Ω := {w = (x, y, l) ∈ R2n+1 : y1 > 1}. This immediately yields the
following Lp Hardy-type inequality with non-symmetric weights.

Corollary 3.19. For any ϕ ∈ C∞
0 (Ω) and p > 1, we have∫

Ω

coshα x1|∇kϕ|pdw ≥ (p− 1)

∫
Ω

coshα x1

yp1 log
p−1 y1

|ϕ|pdw,

where Ω = {w = (x, y, l) ∈ R2n+1 : y1 > 1}, α ∈ R.

When we take the pair

a = xp−2
1 log y1 and ϑ = log x1

in Ω := {w = (x, y, l) ∈ R2n+1 : x1 > 1, y1 > 1}, we deduce another
Lp Hardy-type inequality with non-symmetric weights.

Corollary 3.20. For any ϕ ∈ C∞
0 (Ω) and p > 1, we have∫

Ω

xp−2
1 log y1|∇kϕ|pdw ≥

∫
Ω

log y1

x21 log
p−1 x1

|ϕ|pdw,

where Ω = {w = (x, y, l) ∈ R2n+1 : x1 > 1, y1 > 1}.
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Another application of Theorem 3.1 with the choice

a =

(
|z|2k−1

l

)2−p

and ϑ = log l

in Ω := {w = (z, l) ∈ R2n × R : l > 1} is the following Lp Hardy-type
inequality with different non-radial weights.

Corollary 3.21. For any ϕ ∈ C∞
0 (Ω) and p > 1, we have∫

Ω

(
|z|2k−1

l

)2−p

|∇kϕ|pdw ≥ (2k)p
∫
Ω

|z|4k−2

l2 logp−1 l
|ϕ|pdw,

where Ω = {w = (z, l) ∈ R2n × R : l > 1}, k ≥ 1.

It is worth stressing here that, by considering the model functions

a = (1 + ρp/(p−1))α(p−1) and ϑ = (1 + ρp/(p−1))(1−α)

in Theorem 3.1, we extend a result of Skrzypczak [29] on the Euclidean
space to the sub-Riemannian manifold R2n+1, defined by the Greiner
vector fields (2.2).

Corollary 3.22. Let 1 < p < Q, α > 1. Then, for all ϕ ∈ C∞
0 (R2n+1),

the following holds:∫
R2n+1

(1 + ρp/(p−1))α(p−1)|∇kϕ|pdw

≥ CQ,p,α

∫
R2n+1

(1 + ρp/(p−1))(α−1)(p−1)|∇kρ|p|ϕ|pdw,

where CQ,p,α = Q(p(α− 1)/(p− 1))p−1.

Another consequence of Theorem 3.1, with the special functions

a = ρα and ϑ = (1 + ρp/(p−1))−(Q+α−p)/p,

leads us to the subsequent weighted Lp Hardy-type inequality with
different weights.
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Corollary 3.23. Let α ∈ R, Q+ α > p > 1. Then, the inequality :∫
R2n+1

ρα|∇kϕ|pdw ≥
(
Q+ α− p

p− 1

)p−1

(Q+ α)

·
∫
R2n+1

ρα

(1 + ρp/(p−1))p
|∇kρ|p|ϕ|pdw

holds for every ϕ ∈ C∞
0 (R2n+1).

3.2. Uncertainty principle inequalities. The Heisenberg-Pauli-
Weyl inequality [20, 31], a rigorous mathematical formulation of the
uncertainty principle of quantum mechanics, asserts that

(3.11)

(∫
Rn

|∇ϕ|2 dx
)(∫

Rn

|x|2ϕ2dx
)

≥ n2

4

(∫
Rn

ϕ2dx

)2

for all ϕ ∈ C∞
0 (Rn), with n2/4 being the sharp constant. This in-

equality has been exhaustively analyzed in many different settings,
see [2, 12, 21, 22, 23, 28]. For instance, the inequality (3.11) was
generalized to the Greiner operator ∆k in the work of Ahmetolan and
Kombe [2]. This result reads as follows:
(3.12)(∫

R2n+1

|∇kϕ|2

|∇kρ|2
dw

)(∫
R2n+1

ρ2ϕ2dw

)
≥ Q2

4

(∫
R2n+1

ϕ2dw

)2

,

where ϕ ∈ C∞
0 (R2n+1), and the constant Q2/4 is sharp.

It is worth mentioning here that Theorem 3.1 can, however, be
applied to obtain the Heisenberg-Pauli-Weyl-type inequalities with the
best constant. In order to be more precise, we now take p = 2 in
Theorem 3.1 and choose the following functions

a =
1

|∇kρ|2
and ϑ = e−αρ2

,

where α > 0. This allows the derivation of the inequality

(3.13)

∫
R2n+1

|∇kϕ|2

|∇kρ|2
dw ≥ 2αQ

∫
R2n+1

ϕ2dw − 4α2

∫
R2n+1

ρ2ϕ2dw

with equality if and only if ϕ is proportional to ϑ. Therefore, (3.13)
reads

Aα2 +Bα+ C ≥ 0
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for every α > 0, where

A = 4

∫
R2n+1

ρ2ϕ2dw,

B = −2Q

∫
R2n+1

ϕ2dw,

C =

∫
R2n+1

|∇kϕ|2

|∇kρ|2
dw.

This is equivalent to B2 − 4AC ≤ 0, or the sharp Heisenberg-Pauli-
Weyl-type inequality (3.12).

On the other hand, by setting the functions

a ≡ 1 and ϑ = e−αρ, α > 0,

we shall deduce from Theorem 3.1 that∫
R2n+1

|∇kϕ|2dw≥α(Q− 1)

∫
R2n+1

|∇kρ|2

ρ
ϕ2dw − α2

∫
R2n+1

|∇kρ|2ϕ2dw.

Hence, a very similar argument applies to obtain the following version
of the Heisenberg-Pauli-Weyl-type inequality.

Corollary 3.24. For every ϕ ∈ C∞
0 (R2n+1), we have(∫

R2n+1

|∇kϕ|2dw
)(∫

R2n+1

|∇kρ|2ϕ2dw
)

≥ (Q− 1)2

4

(∫
R2n+1

|∇kρ|2

ρ
ϕ2dw

)2

.

We end this section by showing a further application. When we
consider the pair

a ≡ 1 and ϑ = e−αρ2

, α > 0,

in Theorem 3.1, we readily obtain∫
R2n+1

|∇kϕ|2dw≥2αQ

∫
R2n+1

|∇kρ|2ϕ2dw − 4α2

∫
R2n+1

ρ2|∇kρ|2ϕ2dw,

or the next inequality.
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Corollary 3.25. For every ϕ ∈ C∞
0 (R2n+1), we have(∫

R2n+1

|∇kϕ|2dw
)(∫

R2n+1

ρ2|∇kρ|2ϕ2dw
)
≥Q2

4

(∫
R2n+1

|∇kρ|2ϕ2dw
)2

.

4. Two-weight Hardy-type inequalities with remainders. In
this section, we first prove an improved two-weight Lp Hardy-type
inequality on the basis of a particular partial differential inequality
and then give explicit examples to illustrate our results for different
weights. Our method is inspired by the techniques from the paper by
Kombe and Özaydın [22].

Theorem 4.1. Let Ω be a bounded domain with smooth boundary ∂Ω
in R2n+1. Let a be a nonnegative C1-function and ϑ a positive C∞-
function such that

−∇k ·
(
aρp−Q |∇kϑ|p−2

ϑp−2
∇kϑ

)
≥ 0

almost everywhere in Ω. Then, for any ϕ ∈ C∞
0 (Ω), we have∫

Ω

aρα|∇kϕ|pdw ≥
(
Q+ α− p

p

)p ∫
Ω

aρα|∇kρ|p
|ϕ|p

ρp
dw

+

(
Q+α−p

p

)p−1∫
Ω

ρα+1|∇kρ|p−2∇kρ · ∇ka
|ϕ|p

ρp
dw(4.1)

+
cp
pp

∫
Ω

aρα
|∇kϑ|p

ϑp
|ϕ|p dw,

provided that Q+ α > p ≥ 2, α ∈ R, cp = c(p) > 0.

Proof. Let φ := ρ−βϕ, where ϕ ∈ C∞
0 (Ω) and β < 0, which will be

determined later. Note that, evidently,

∇k(ρ
βφ) = βρβ−1φ∇kρ+ ρβ∇kφ.

As a direct consequence of the convexity inequality (3.4), we obtain

aρα|βρβ−1φ∇kρ+ ρβ∇kφ|p

≥ |β|paρα+p(β−1)|∇kρ|p|φ|p + cpaρ
α+pβ |∇kφ|p

+ β|β|p−2aρα+p(β−1)+1|∇kρ|p−2∇kρ · ∇k(|φ|p).
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Applying integration by parts to the third term on the right hand side
of the above inequality leads to

∫
Ω

aρα|∇kϕ|pdw ≥ |β|p
∫
Ω

aρα+p(β−1)|∇kρ|p|φ|pdw

(4.2)

+ cp

∫
Ω

aρα+pβ |∇kφ|pdw

− β|β|p−2

∫
Ω

∇k · (aρα+p(β−1)+1|∇kρ|p−2∇kρ)|φ|pdw.

Standard computation yields

∇k · (aρα+p(β−1)+1|∇kρ|p−2∇kρ)(4.3)

= ρα+p(β−1)+1|∇kρ|p−2∇kρ · ∇ka

+ [Q+ α+ p(β − 1)]aρα+p(β−1)|∇kρ|p,

where we have used the formulas (2.4), (2.5) and (2.6). Inserting (4.3)
into (4.2) and rearranging terms, we conclude that∫

Ω

aρα|∇kϕ|pdw ≥ f(β)

∫
Ω

aρα+p(β−1)|∇kρ|p|φ|pdw(4.4)

+ cp

∫
Ω

aρα+pβ |∇kφ|pdw

− β|β|p−2

∫
Ω

ρα+p(β−1)+1|∇kρ|p−2∇kρ

· ∇ka|φ|pdw,

where f(β) = |β|p−β|β|p−2(Q+α+βp−p). Observe that f(β) attains
the maximum for

β0 = −Q+ α− p

p
< 0,

and this maximum value is equal to

f(β0) =

(
Q+ α− p

p

)p

.
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Therefore, inequality (4.4) takes the form∫
Ω

aρα|∇kϕ|pdw(4.5)

≥
(
Q+ α− p

p

)p ∫
Ω

aρ−Q|∇kρ|p|φ|pdw

+

(
Q+ α− p

p

)p−1 ∫
Ω

ρ1−Q|∇kρ|p−2∇kρ · ∇ka|φ|pdw

+ cp

∫
Ω

aρp−Q|∇kφ|pdw.

We now concentrate on the integral expression cp
∫
Ω
aρp−Q|∇kφ|pdw

on the right hand side of (4.5). Let ψ be the new function ψ := ϑ−1/pφ
with 0 < ϑ ∈ C∞(Ω) and φ ∈ C∞

0 (Ω). It then follows from the
convexity inequality (3.4) that

|∇kφ|p =

∣∣∣∣1pϑ(1−p)/pψ∇kϑ+ ϑ1/p∇kψ

∣∣∣∣p(4.6)

≥ 1

pp
|∇kϑ|p

ϑp−1
|ψ|p

+
1

pp−1

|∇kϑ|p−2

ϑp−2
∇kϑ · ∇k(|ψ|p) + cpϑ

p|∇kψ|p.

Hence, it can readily be inferred from (4.6) that

cp

∫
Ω

aρp−Q|∇kφ|pdw ≥ cp
pp

∫
Ω

aρp−Q |∇kϑ|p

ϑp−1
|ψ|pdw

− cp
pp−1

∫
Ω

∇k ·
(
aρp−Q |∇kϑ|p−2

ϑp−2
∇kϑ

)
|ψ|pdw.

Since

−∇k ·
(
aρp−Q |∇kϑ|p−2

ϑp−2
∇kϑ

)
≥ 0 and ψ := ϑ−1/pρ(Q+α−p)/pϕ,

we have

(4.7) cp

∫
Ω

aρp−Q|∇kφ|pdw ≥ cp
pp

∫
Ω

aρα
|∇kϑ|p

ϑp
|ϕ|pdw.

Finally, plugging (4.7) into inequality (4.5), and then taking into
account that φ = ρ(Q+α−p)/pϕ, we deduce the claimed result (4.1). �
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Remark 4.2. It is worthwhile noting that the inequality stated in
Theorem 4.1 also holds for 1 < p < 2 with different reminder terms
and, in this case, we use the convexity inequality (3.6).

4.1. Applications of Theorem 4.1. We emphasize that, in our
approach, the role of the differential inequality

(4.8) −∇k ·
(
aρp−Q |∇kϑ|p−2

ϑp−2
∇kϑ

)
≥ 0

is crucial. We now present here some examples of the improved,
weighted Hardy-type inequalities with several choices of a and ϑ in
inequality (4.8). A first example is the following.

By applying Theorem 4.1 to the pair

a ≡ 1 and ϑ = R− ρ

on the ρ-ball BR centered at the origin with radius R, we immediately
get the subsequent result.

Corollary 4.3. Let BR be the ρ-ball centered at the origin with radius
R in R2n+1. Then, for all ϕ ∈ C∞

0 (BR), we have∫
BR

ρα|∇kϕ|pdw ≥
(
Q+ α− p

p

)p ∫
BR

ρα|∇kρ|p
|ϕ|p

ρp
dw

+
cp
pp

∫
BR

ρα

(R− ρ)p
|∇kρ|p|ϕ|pdw,

where Q+ α > p ≥ 2, α ∈ R and cp > 0.

Another application of Theorem 4.1 with special functions

a = eρ and ϑ = e−ρ

is the following two-weight Lp Hardy-type inequality involving two
nonnegative remainders.

Corollary 4.4. Let Ω be a bounded domain with smooth boundary ∂Ω
in R2n+1. Then, for all ϕ ∈ C∞

0 (Ω), we have
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∫
Ω

ραeρ|∇kϕ|pdw ≥
(
Q+ α− p

p

)p ∫
Ω

ραeρ|∇kρ|p
|ϕ|p

ρp
dw

+

(
Q+ α− p

p

)p−1 ∫
Ω

ρα+1eρ|∇kρ|p
|ϕ|p

ρp
dw

+
cp
pp

∫
Ω

ραeρ|∇kρ|p|ϕ|pdw,

where Q+ α > p ≥ 2, α ∈ R, cp > 0.

On the other hand, by setting the units

a ≡ 1, ϑ = log
R

ρ
, R > sup

w∈Ω
ρ,

on a bounded domain Ω with smooth boundary in R2n+1, we derive the
weighted Lp Hardy-type inequality containing a logarithmic remainder.

Corollary 4.5. Let Ω be a bounded domain with smooth boundary ∂Ω
in R2n+1. Then, for all ϕ ∈ C∞

0 (Ω), we have∫
Ω

ρα|∇kϕ|pdw ≥
(
Q+ α− p

p

)p ∫
Ω

ρα|∇kρ|p
|ϕ|p

ρp
dw

+
cp
pp

∫
Ω

ρα

(log(R/ρ))p
|∇kρ|p

|ϕ|p

ρp
dw,

where Q+ α > p ≥ 2, α ∈ R, cp > 0, R > supw∈Ω ρ.

Finally, we mention that, when considering Theorem 4.1 with the
pair

a ≡ 1, ϑ = log

(
log

R

ρ

)
, R > e sup

w∈Ω
ρ,

we can obtain the following result including a different logarithmic
remainder.

Corollary 4.6. Let Ω be a bounded domain with smooth boundary ∂Ω
in R2n+1. Then, for all ϕ ∈ C∞

0 (Ω), we have
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∫
Ω

ρα|∇kϕ|pdw ≥
(
Q+ α− p

p

)p ∫
Ω

ρα|∇kρ|p
|ϕ|p

ρp
dw

+
cp
pp

∫
Ω

ρα

(log(R/ρ))p(log(log(R/ρ)))p
|∇kρ|p

|ϕ|p

ρp
dw,

where Q+ α > p ≥ 2, α ∈ R, cp > 0, R > e supw∈Ω ρ.

Remark 4.7. The lack of regularities on the above choices can be
readily handled by replacing the function ρ with ρϵ and then passing
to the limit as ϵ→ 0.
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