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ZEROS OF RANDOM ORTHOGONAL POLYNOMIALS
WITH COMPLEX GAUSSIAN COEFFICIENTS

AARON YEAGER

ABSTRACT. Let {fj}nj=0 be a sequence of orthonormal

polynomials where the orthogonality relation is satisfied on
either the real line or on the unit circle. We study zero
distribution of random linear combinations of the form

Pn(z) =

n∑
j=0

ηjfj(z),

where η0, . . . , ηn are complex-valued iid standard Gaussian
random variables. Using the Christoffel-Darboux formula,
the density function for the expected number of zeros of
Pn in these cases takes a very simple shape. From these
expressions, under the mere assumption that the orthogonal
polynomials are from the Nevai class, we give the limiting
value of the density function away from their respective
sets where the orthogonality holds. In the case when {fj}
are orthogonal polynomials on the unit circle, the density
function shows that the expected number of zeros of Pn are
clustering near the unit circle. To quantify this phenomenon,
we give a result that estimates the expected number of
complex zeros of Pn in shrinking neighborhoods of compact
subsets of the unit circle.

1. Introduction. The study of the expected number of real zeros
of polynomials Pn(z) =

∑n
j=0 ηjz

j with random coefficients, called
random algebraic polynomials, dates back to the 1930s. In 1932,
Bloch and Pólya [3] showed that, when {ηj} are independent and
identically distributed (iid) random variables that take values from the
set {−1, 0, 1} with equal probabilities, the expected number of real zeros
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is O(
√
n). Other early advancements in the subject were later made by

Littlewood and Offord [25], Kac [21, 22], Rice [30], Erdős and Offord
[11], and many others. For a relevant history of the early progress
in this topic, we refer the reader to the books by Bharucha-Reid and
Sambandham [2] and by Farahmand [14].

It is common to refer to the density function for the expected number
of zeros of a random polynomial as the intensity function or the first
correlation function. In 1943, Kac [21] gave a formula for the intensity
function of the expected number of real zeros of Pn(z) when {ηj} are
real-valued iid normal Gaussian coefficients. Using that formula, he
was able to show that the expected number of real roots of the random
algebraic polynomial is asymptotic to 2π−1 log n as n → ∞. The error
term in his asymptotic was further sharpened by Hammersley [18],
Wang [39], Edelman and Kostlan [10] and Wilkins [40].

Remaining with the case when {ηj} are real-valued iid normal
Gaussian random variables, Shepp and Vanderbei gave a formula for
the intensity function for the expected number of complex zeros of
the random algebraic polynomial Pn in 1995. They were also able to
obtain a limit of the intensity function as n → ∞. Generalizations
to other types of real-valued random variables and to other random
polynomials with basis functions different than the monomials were
made by Ibragimov and Zeitouni [20], Feildheim [17] and Vanderbei
[38].

In 1996, Farahmand [13] produced a formula for the intensity func-
tion for a random algebraic polynomial when the random coefficients
are complex-valued iid standard Gaussian random variables. As an ap-
plication, Farahmand considered the spanning functions of the random
polynomial to be cosine functions. For extensions of Faramand’s result,
we refer the reader to the works by Farahmand [12], Farahmand and
Grigorash [16] and Farahmand and Jahangiri [15].

We will study a case of the expectation of the number zeros of
random polynomials of the form

(1.1) Pn(z) =

n∑
j=0

ηjfj(z), z ∈ C,

where n is a fixed integer, {fj}nj=0 are entire functions real-valued on the
real line, ηj = αj+iβj , j = 0, 1, . . . , n, with {αj}nj=0 and {βj}nj=0 being
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sequences of iid standard Gaussian random variables. The formula for
the intensity function associated to Pn is expressed in terms of the
kernels

Kn(z, w) =

n∑
j=0

fj(z)fj(w),(1.2)

K(0,1)
n (z, w) =

n∑
j=0

fj(z)f ′
j(w),

and

K(1,1)
n (z, w) =

n∑
j=0

f ′
j(z)f

′
j(w).(1.3)

We note that, since the functions fj(z) are entire functions that are
real-valued on the real line, by the Schwarz reflection principle, we
have fj(z) = fj(z) for all j = 0, 1, . . . , n, and all z ∈ C.

Let Nn(Ω) denote the (random) number of zeros of Pn(z) as defined
by (1.1) in a Jordan region Ω of the complex plane, and E denote the
mathematical expectation. Due to Edelman and Kostlan [10] (with
different proofs later given by Hough, et al., in [19], Feldheim [17], the
author [42], and Ledoan [23]) it is known that, for each Jordan region
Ω ⊂ {z ∈ C : Kn(z, z) ̸= 0}, we have that the intensity function ρn
associated to Pn satisfies:

E[Nn(Ω)] =

∫
Ω

ρn(x, y) dx dy,

with

(1.4) ρn(x, y) = ρn(z) =
K

(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2

π(Kn(z, z))2
,

where the kernels Kn(z, z), K
(0,1)
n (z, z) and K

(1,1)
n (z, z) are defined in

(1.2) and (1.3). We note that, since all of the functions that make up
ρn are real valued, the function ρn is real valued. The function ρn is,
also, in fact nonnegative. Furthermore, for (a, b) ⊂ R, it is known that
E[Nn(a, b)] = 0, so that ρn has no mass on the real line.

In the following results, we will be considering the case when the
spanning functions {fj} of (1.1) are polynomials either orthogonal on
the real line (OPRL), or polynomials orthogonal on the unit circle
(OPUC). We say that a collection of polynomials {pj}j≥0 are orthogonal
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on the real line with respect to µ, with suppµ ⊆ R, if∫
pn(x)pm(x)dµ(x) = δnm for all n,m ∈ N ∪ {0}.

We note that, when polynomials are orthogonal on the real line, they
have real coefficients, and thus, are real-valued on the real line.

As mentioned above, our other choice of the basis of the random sum
Pn will be from OPUC. These are orthogonal polynomials {φj}j≥0,
defined by a probability Borel measure µ on T such that∫

T
φn(e

iθ)φm(eiθ) dµ(eiθ) = δnm for all n,m ∈ N ∪ {0}.

When we restrict µ to be symmetric with respect to conjugation, the
sequence {φj} of OPUC will have real coefficients and, consequently,
be real-valued on the real line.

For analogs of our results concerning random linear combinations of
OPRL or OPUC with the random coefficients {ηj} of Pn being real-
valued standard iid Gaussian, the reader is referred to the research
of Das [8], Das and Bhatt [9], Lubinsky, Pritsker and Xie [26], [27,
Theorems 2.2, 2.3], and Yattselev and the author [41].

We note that there has also been work done in the higher-dimensional
analogs of the settings mentioned (cf., Shiffman and Zelditch [32]–[34],
Bloom [4, 5], Bloom and Shiffman [7], Bloom and Levenberg [6] and
Bayraktar [1]).

Using the Christoffel-Darboux formula, we show that the intensity
function from (1.4) greatly simplifies when the spanning functions are
orthogonal polynomials.

Theorem 1.1. Let Pn(z) =
∑n

j=0 ηjfj(z), where {ηj}nj=0 are complex-

valued iid standard Gaussian random variables, and {fj}nj=0 are orthog-
onal polynomials. Let ρn be defined as in (1.4).

(i) When fj = pj, j = 0, . . . , n, where the pj’s are OPRL, the
intensity function ρn simplifies as
(1.5)

ρn(z) =
1− hn(z)

2

4π(Im(z))2
, hn(z) =

Im(z)|a′n(z)|
Im(an(z))

, an(z) =
pn+1(z)

pn(z)
,

for z ∈ C.
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(ii) Let fj = φj, j = 0, . . . , n, where the φj’s are OPUC associated
to the conjugate-symmetric measure µ. When |z| ̸= 1, the intensity
function ρn reduces to
(1.6)

ρn(z)=
1−|kn(z)|2

π(1−|z|2)2
, kn(z)=

(1−|z|2)b′n(z)
1−|bn(z)|2

, bn(z)=
φn+1(z)

φ∗
n+1(z)

,

where φ∗
n(z) = znφn(1/z).

We note that

Im(an(z)) = 0 ⇐⇒ an(z) = an(z) = an(z) ⇐⇒ z ∈ R.

Thus, as written in the shape above (written as such for purposes of
the computation of the limit as n → ∞), the intensity function ρn
in (1.5) has singularities on the real axis due to Im(z) and Im(an(z))
in the denominators. However, these singularities exist only due to
the way the intensity function is written. For, in the form of ρn at
(1.4), the only potential singularity can come from Kn(z, z) = 0. In
the case of fj = pj , j = 0, 1, . . . , n, with {pj} being OPRL, it follows
that p0(z) ̸= 0 gives Kn(z, z) =

∑n
j=0 |pj(z)|2 > 0. Thus, the intensity

function (1.5) is well defined and continuous everywhere on C.

The restriction |z| ̸= 1 in (1.6) of Theorem 1.1 is present due to
the use, and hence, assumptions of the Christoffel-Darboux formula for
OPUC. This restriction is from the fact that only when |z| = 1 do we
have |φ∗

n+1(z)| = |φn+1(z)| (i.e., |bn(z)| = 1). Furthermore, it is known
that all of the zeros of φn+1(z) lie in D, and all the zeros of φ∗

n+1(z)
are outside of D. Thus, these two polynomials cannot simultaneously
vanish.

Our limiting results of ρn will be phrased in terms of assumptions
on the recurrence coefficients of the orthogonal polynomials. For
a sequence {pn} of OPRL, the three term recurrence relation [36,
Theorem 3.2.1] states

(1.7) xpn(z) = anpn+1(z) + bnpn(z) + an−1pn−1(z), n = 1, 2, . . . ,

where the recurrence coefficient sequences {an} and {bn} can be ex-
plicitly given in terms of the leading coefficient of pn and pn−1. Due
to Nevai [28, Theorem 13], (see also Totik [37]), the condition that
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an → a and bn → b as n → ∞, with a ≥ 0 and b ∈ R, is equivalent to

(1.8) lim
n→∞

pn+1(z)

pn(z)
=

z − b+
√
(z − b)2 − 4a2

2
,

with the convergence being locally uniformly valid for z /∈ supp µ.
When (1.8) holds for a sequence {pn} of OPRL, we say that the
sequence is in the Nevai class. We note that this class is sometimes
denoted as M(a, b).

The three term recurrence relation [35, Theorem 1.5.4] for a se-
quence {φn} of OPUC states

(1.9) φn+1(z) =
zφn(z)− αnφ

∗
n(z)√

1− |αn|2
, n = 0, 1, . . . ,

where the sequence of recurrence coefficients is {αn} ⊂ D, and φ∗
n(z) =

znφn(1/z). From the recurrence relation, it can be seen that, when
{αn} ⊂ (−1, 1), the sequence {φn} will be real-valued on the real
line. Furthermore, in this case, it is known that there exists a unique
conjugate-symmetric probability measure µ whose associated orthogo-
nal polynomials satisfy (1.9) [35, Theorem 1.7.11]. Hence, we can refer
to sequence {φn} of OPUC as defined by either the measure µ or the re-
currence coefficients {αn}. The ratio asymptotics [35, Theorem 1.7.4]
in this case are:

(1.10) lim
n→∞

αn = 0 ⇐⇒ lim
n→∞

φn(z)

φ∗
n(z)

= 0,

where the convergence holds locally uniformly for z ∈ D. When (1.10)
holds for a sequence {φn} of OPUC, we say that the sequence is from
the Nevai class.

Corollary 1.2. Let Pn(z) =
∑n

j=0 ηjfj(z), where {ηj}nj=0 are complex-

valued iid standard Gaussian random variables, and {fj}nj=0 are orthog-
onal polynomials.

(i) When {pj} are OPRL from the Nevai class, the intensity function
ρn from (1.5) for the random orthogonal polynomial satisfies
(1.11)

lim
n→∞

ρn(z) =
1

4π(Im(z))2
−

|z−b+
√

(z−b)2−4a2|2

4π|(z−b)2−4a2|(Im(z+
√
(z−b)2−4a2 ))2

,

locally uniformly for all z /∈ supp µ.
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(ii) Let {φj} be OPUC from the Nevai class such that the associated
recurrence coefficients satisfy {αj} ⊂ (−1, 1). Then, the intensity
function ρn in (1.6) for the random orthogonal polynomial possesses

lim
n→∞

ρn(z) =
1

π(1− |z|2)2
,(1.12)

locally uniformly for all z ∈ C \ T.

When a = 1/2 and b = 0 in the definition of the Nevai class for
the OPRL (1.8), it is known that this class contains the Chebyshev
polynomials. The result of (1.11) extends the limiting value given
by Farahmand and Grigorash [15, Section 4] in which the spanning
functions of their random trigonometric polynomial can be modified
to be the Chebyshev polynomials. We note that the result of (1.12)
extends the limiting value of the first correlation function given by
Peres and Virág [29] (i.e., taking n = 1 of their Theorem 1) when the
spanning functions were the monomials to that of a very general basis
of OPUC. The result further extends their work in that this limiting
value also holds for the exterior of the unit circle.

From (1.6) of Theorem 1.1 and (1.12) of Corollary 1.2 we see that
the intensity function and its limiting value for the random orthogonal
polynomial spanned by OPUC is singular on the unit circle. Assuming
a little more on the measure µ associated to the OPUC, we can quantify
how the zeros approach the unit circle.

Theorem 1.3. Let Pn(z) =
∑n

j=0 ηjφj(z), where {ηj} are complex-

valued iid standard Gaussian random variables, and {φj} are OPUC
such that their associated recurrence coefficients satisfy {αj} ⊂ (−1, 1)
with αj → 0 as j → ∞. Let S be a compact subset of T \ {±1}.
Assume, in addition, that the measure µ associated to the sequence
{φj} is absolutely continuous with respect to the arclength measure on
an open set containing S, and its Radon-Nikodym derivative is positive
and continuous at each point of S. Given −∞ < τ1 < τ2 < ∞, it
follows that

(1.13) lim
n→∞

1

n
E[N(Ω(S, τ1, τ2))] =

|S|
2π

(
H ′(τ2)

H(τ2)
− H ′(τ1)

H(τ1)

)
,
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where

Ω(S, τ1, τ2) :=

{
rz :z∈S, r ∈

(
1 +

τ1
2n

, 1 +
τ2
2n

)}
and

H(τ) :=
eτ − 1

τ
.

We note that H ′/H is increasing on the real line with

lim
τ→−∞

H ′(τ)

H(τ)
= 0 and

H ′(τ)

H(τ)
= 1− H ′(−τ)

H(−τ)
.

Thus, in the setting of Theorem 1.3, the zeros of a random orthogonal
polynomial spanned by OPUC approaching S are expected to be
contained in an annular band around S of width n−1+ϵ for any ϵ > 0.

We note that, when the coefficients of the random orthogonal poly-
nomial spanned by OPUC satisfying the conditions of Theorem 1.3 are
real-valued iid standard Gaussian random variables, the analog of the
above result was recently proven by Yattselev and the author (cf., [41,
Theorem 1.7]). Remarkably, both of the cases of random orthogonal
polynomials with real-valued or complex-valued coefficients yield the
same asymptotics in (1.13).

2. Proofs.

2.1. The intensity function for random orthogonal polyno-
mials. In this section, we use the Christoffel-Darboux formula for

OPRL and OPUC to simplify the kernels Kn(z, z), K
(0,1)
n (z, z) and

K
(1,1)
n (z, z), which make up the intensity function ρn from (1.4). For

the convenience of the reader, we state the Christoffel-Darboux formula
for OPRL [36, Theorem 3.2.2] for z, w ∈ C where z ̸= w, and {pj}j≥0

OPRL, with kj being the leading coefficient of pj , we have

(2.1)

n∑
j=0

pj(z)pj(w) =
kn

kn+1
· pn+1(z)pn(w)−pn(z)pn+1(w)

z−w
, z ̸= w.

Furthermore, on the diagonal z = w, the kernel takes the form

(2.2)
n∑

j=0

(pj(z))
2 =

kn
kn+1

· (p′n+1(z)pn(z)− p′n(z)pn+1(z)).
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For a collection of OPUC {φj}j≥0, the Christoffel-Darboux formula
for OPUC [35, Theorem 2.2.7] states that, for z, w ∈ C with wz ̸= 1,
we have

(2.3)
n∑

j=0

φj(z)φj(w) =
φ∗
n+1(w)φ

∗
n+1(z)− φn+1(w)φn+1(z)

1− wz
,

where φ∗
n(z) = znφn(1/z).

Before obtaining our representations of the kernels, let us note that,
since the polynomials {pj} are orthogonal on the real line, and since we
are assuming that the recurrence coefficients {αj} associated to {φj}
satisfy {αj} ⊂ (−1, 1), both classes of orthogonal polynomials have real

coefficients. Thus, when using conjugation, we have that pj(z) = pj(z)

and φj(z) = φj(z) for all j = 0, 1, . . ., and all z ∈ C.

Proof of Theorem 1.1 (1.5). For z ̸= w, taking derivatives of (2.1)
yields

n∑
j=0

pj(z)p
′
j(w)

(2.4)

=
kn

kn+1

(
pn+1(z)p

′
n(w)−pn(z)p

′
n+1(w)

z−w
+
pn+1(z)pn(w)−pn(z)pn+1(w)

(z−w)2

)

=
kn

kn+1
·
pn+1(z)p

′
n(w)−pn(z)p

′
n+1(w)

z−w
+

∑n
j=0 pj(z)pj(w)

z−w
,

and

n∑
j=0

p′j(z)p
′
j(w)

(2.5)

=
kn

kn+1

(
p′n+1(z)p

′
n(w)−p′n(z)p

′
n+1(w)

z−w
−
pn+1(z)p

′
n(w)−pn(z)p

′
n+1(w)

(z−w)2

+
p′n+1(z)pn(w)− p′n(z)pn+1(w)

(z − w)2

− 2(pn+1(z)pn(w)− pn(z)pn+1(w))

(z − w)2

)
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=
kn

kn+1
·
p′n+1(z)p

′
n(w)− p′n(z)p

′
n+1(w)

z − w
−
∑n

j=0 pj(z)p
′
j(w)

z − w

+

∑n
j=0 p

′
j(z)pj(w)

z − w
.

Setting w = z in (2.1), (2.4) and (2.5), since the coefficients of {pj}
are real, it follows that
(2.6)

Kn(z, z) =
n∑

j=0

pj(z)pj(z) =
kn

kn+1
· pn+1(z)pn(z)− pn(z)pn+1(z)

2iIm(z)
,

K(0,1)
n (z, z) =

n∑
j=0

pj(z)p′j(z)(2.7)

=
kn

kn+1
·
pn+1(z)p

′
n(z)− pn(z)p

′
n+1(z)

2iIm(z)
+

Kn(z, z)

2iIm(z)
,

K(1,1)
n (z, z) =

n∑
j=0

p′j(z)p
′
j(z)

(2.8)

=
kn

kn+1
·
Im(p′n+1(z)p

′
n(z))

Im(z)
− K

(0,1)
n (z, z)

2iIm(z)
+

K
(0,1)
n (z, z)

2iIm(z)
.

For our representation of Kn(z, z), we simply use (2.2), and again
that the coefficients of {pj} are real, to achieve

Kn(z, z) =

n∑
j=0

pj(z)pj(z) =

n∑
j=0

pj(z)pj(z)(2.9)

=
kn

kn+1
(p′n+1(z)pn(z)− p′n(z)pn+1(z)).

Using our derived expressions (2.6), (2.7), (2.8) and (2.9), the
numerator of the intensity function ρn from (1.4) simplifies as

K(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2 =
(Kn(z, z))

2 − |Kn(z, z)|2

4(Im(z))2
.
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Therefore, using the expression for the numerator above and recalling
relations (2.6) and (2.9), we see that the intensity function given by
(1.4) is

ρn(z) =
K

(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2

π(Kn(z, z))2

=
1

4π(Im(z))2

(
1− |Kn(z, z)|2

(Kn(z, z))2

)
=

1

4π(Im(z))2

(
1−

(2iIm(z))2|p′n+1(z)pn(z)− p′n(z)pn+1(z)|2

(pn+1(z)pn(z)− pn(z)pn+1(z))2

)
=

1

4π(Im(z))2

(
1− (2iIm(z))2|(pn+1(z)/pn(z))

′|2

((pn+1(z)/pn(z))− (pn+1(z)/pn(z)))2

)
=

1− hn(z)
2

4π(Im(z))2
,

where

hn(z) =
Im(z)|a′n(z)|
Im(an(z))

, an(z) =
pn+1(z)

pn(z)
,

which gives the result of (1.5) in Theorem 1.1. �

Proof of Theorem 1.1 (1.6). Applying the Christoffel-Darboux for-
mula for OPUC from (2.3), and making derivations analogously as
was done for the kernels for OPRL, our representations of Kn(z, z),

K
(0,1)
n (z, z) and K

(1,1)
n (z, z) are as follows:

(2.10) Kn(z, z) =
n∑

j=0

φj(z)φj(z) =
|φ∗

n+1(z)|2 − |φn+1(z)|2

1− |z|2
,

K(0,1)
n (z, z) =

n∑
j=0

φj(z)φ′
j(z)

(2.11)

=
φ∗ ′
n+1(z)φ

∗
n+1(z)− φ′

n+1(z)φn+1(z)

1− |z|2
+

zKn(z, z)

1− |z|2
,
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and

K(1,1)
n (z, z) =

n∑
j=0

|φ′
j(z)|2 =

|φ∗ ′
n+1(z)|2 − |φ′

n+1(z)|2

1− |z|2
(2.12)

+
zK

(0,1)
n (z, z) + zK

(0,1)
n (z, z) +Kn(z, z)

1− |z|2
.

Using (2.10), (2.11) and (2.12), the numerator of the intensity
function ρn of (1.4) reduces to

K(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2

=
(Kn(z, z))

2

(1− |z|2)2
−

|φ∗
n+1(z)φ

′
n+1(z)− φ∗ ′

n+1(z)φn+1(z)|2

(1− |z|2)2
.

From the above numerator and (2.10), the intensity function at (1.4)
becomes

ρn(z) =
K

(1,1)
n (z, z)Kn(z, z)− |K(0,1)

n (z, z)|2

π(Kn(z, z))2

(2.13)

=
1

π(1− |z|2)2

(
1−

|φ∗
n+1(z)φ

′
n+1(z)− φ∗ ′

n+1(z)φn+1(z)|2

(Kn(z, z))2

)
=

1

π(1− |z|2)2

×
(
1−

(1− |z|2)2|φ∗
n+1(z)φ

′
n+1(z)− φ∗ ′

n+1(z)φn+1(z)|2

(|φn+1(z)|2 − |φ∗
n+1(z)|2)2

)
=

1

π(1− |z|2)2

(
1−

(1− |z|2)2|(φn+1(z)/φ
∗
n+1(z))

′|2

(|φn+1(z)/φ∗
n+1(z)|2 − 1)2

)
=

1− |kn(z)|2

π(1− |z|2)2
,

where

kn(z) =
(1− |z|2)b′n(z)
1− |bn(z)|2

, bn(z) =
φn+1(z)

φ∗
n+1(z)

,

and hence, completes the proof of Theorem 1.1 (1.6). �
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2.2. The limiting value of the intensity function for random
orthogonal polynomials associated to the Nevai class.

Proof of Corollary 1.2 (1.11). Since the convergence of (1.8) is uni-
form on compact subsets away from the support of µ, for z /∈ supp µ,
we can differentiate to yield

lim
n→∞

a′n(z) = lim
n→∞

(
pn+1(z)

pn(z)

)′

=
d

dz

(
z−b+

√
(z−b)2−4a2

2

)
=

z−b+
√
(z−b)2−4a2

2
√
(z−b)2−4a2

.(2.14)

Also, from (1.8), we see that

lim
n→∞

Im(an(z)) = lim
n→∞

(pn+1(z)/pn(z))− (pn+1(z)/pn(z))

2i

=
z +

√
(z − b)2 − 4a2 − (z +

√
(z − b)2 − 4a2)

4i
.(2.15)

Combining (2.14) and (2.15) gives

lim
n→∞

hn(z)
2 = lim

n→∞

(Im(z))2|a′n(z)|2

(Im(an(z)))2

=
(Im(z))2|z − b+

√
(z − b)2 − 4a2|2

|(z − b)2 − 4a2|(Im(z +
√

(z − b)2 − 4a2 ))2
.

Therefore, using the representation of the intensity function in Theorem
1.1 (1.5), from the above limit, we see that

lim
n→∞

ρn(z) = lim
n→∞

1− h2
n(z)

4π(Im(z))2

=
1

4π(Im(z))2
−

|z−b+
√
(z−b)2−4a2|2

4π|(z−b)2−4a2|(Im(z+
√

(z−b)2−4a2))2
,

locally uniformly for z /∈ supp µ, and thus, the proof is complete. �

Proof of Corollary 1.2 (1.12). Under the assumption that {φj} are
OPUC in the Nevai class, (1.10) gives

(2.16) lim
n→∞

bn(z) = lim
n→∞

φn+1(z)

φ∗
n+1(z)

= 0,
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uniformly on compact subsets of D. Since the convergence is locally
uniform in D, within D, we can differentiate to achieve

(2.17) lim
n→∞

b′n(z) = lim
n→∞

d

dz

(
φn+1(z)

φ∗
n+1(z)

)
= 0.

Thus, combining (2.16) and (2.17), we see that

(2.18) lim
n→∞

kn(z) = lim
n→∞

(1− |z|2)b′n(z)
1− |bn(z)|2

= 0.

This gives that the intensity function in Theorem 1.1 represented by
(1.6) satisfies

lim
n→∞

ρn(z) = lim
n→∞

1− |kn(z)|2

π(1− |z|2)2
=

1

π(1− |z|2)2

locally uniformly on D.
To see that the same limit holds in the exterior of the disk, observe

that, for z−1 ∈ D \ {0},

(2.19) 0 = lim
n→∞

bn

(
1

z

)
= lim

n→∞

φn+1(z
−1)

φ∗
n+1(z

−1)
= lim

n→∞

φ∗
n+1(z)

φn+1(z)
,

where, on the second equality, we have appealed to the hypothesis that
the recurrence coefficients for the OPUC are such that {αj} ⊂ (−1, 1)
so that the coefficients of {φj} are real.

Note that, from (2.13), we can factor in a different manner to achieve

ρn(z)=
1

π(1−|z|2)2

(
1−

(1−|z|2)2|φ∗
n+1(z)φ

′
n+1(z)−φ∗ ′

n+1(z)φn+1(z)|2

(|φn+1(z)|2−|φ∗
n+1(z)|2)2

)
=

1

π(1−|z|2)2

(
1−

(1−|z|2)2|(φ∗
n+1(z)/φn+1(z))

′|2

(|φ∗
n+1(z)/φn+1(z)|2−1)2

)
=

1−|ln(z)|2

π(1−|z|2)2
,

where

ln(z) =
(1− |z|2)c′n(z)
1− |cn(z)|2

, cn(z) =
φ∗
n+1(z)

φn+1(z)
.

Using (2.19) and continuing analogously as was done for the case of the
unit circle, it follows that ln(z) → 0 locally uniformly for z ∈ C \ D as
n → ∞. Therefore,

lim
n→∞

1− |ln(z)|2

(1− |z|2)2
=

1

(1− |z|2)2



ZEROS OF RANDOM ORTHOGONAL POLYNOMIALS 2399

uniformly on compact subsets of C \ D, and hence, gives our desired
result. �

2.3. Zeros of random orthogonal polynomials spanned by
OPUC in shrinking neighborhoods of the unit circle. To prove
Theorem 1.3, we will rely on a universality result by Levin and Lu-
binsky [24]. One of the hypotheses of their result requires that the
measure µ associated to the OPUC {φj} is regular in the sense of
Ullman-Stahl-Totik, that is,

(2.20) lim
n→∞

log |κn|
n

= 0,

where κn is the leading coefficient of φn(z). We note that, using [35,
equation 1.5.22], it follows that

(2.21) κn =
n∏

j=0

(1− α2
j )

−1/2.

In our hypothesis of Theorem 1.3, since we are assuming that the
recurrence coefficients associated to {φj} satisfy αj → 0 as j → ∞,
appealing to (2.21) we see that

(2.22) lim
n→∞

log |κn|
n

= lim
n→∞

−(1/2)
∑n

j=0 log |1− α2
j |

n
= 0,

so that the measure µ is regular in the sense of Ullman, Stahl and Totik.
For the convenience of the reader, we will present the result by Levin
and Lubinsky:

Theorem 2.1 ([24, Theorem 6.3]). Let µ be a finite positive Borel
measure on [−π, π) that is Ullman-Stahl-Totik regular. Let J ⊂ (−π, π)
be compact and such that µ is absolutely continuous in an open interval
containing J . Assume, moreover, that w = µ′ is positive and continu-
ous at each point of J . Then, uniformly for a, b in compact subsets of
the plane and z = eiθ, θ ∈ J , we have

lim
n→∞

Kn(z(1 + (i2πa/n)), z(1 + (i2πb/n)))

Kn(z, z)
= eiπ(a−b) sinπ(a− b)

π(a− b)
.
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Changing the variables in the above by a = u/(2πi) and b = v/(2πi),
the conclusion of the above result can be restated as

lim
n→∞

Kn(z(1 + (u/n)), z(1 + (v/n)))

Kn(z, z)
=

eu+v − 1

u+ v
:= H(u+ v).

Proof of Theorem 1.3. It follows from the definition of the intensity
function that

1

n
E[Nn(Ω(S, τ1, τ2))] =

1

n

∫∫
Ω(S,τ1,τ2)

ρn(z) dA

=
1

n

∫
S

∫ 1+(τ2/2n)

1+(τ1/2n)

ρn(zr)r dr|dz|,

where, after a change of variables r = 1+ τ/(2n), the previous integral
becomes

1

2n2

∫
S

∫ τ2

τ1

ρn

(
z

(
1 +

τ

2n

))(
1 +

τ

2n

)
dτ |dz|.

Since
1

2

∫
S

|dz| = |S|
2
,

and, as n → ∞, we have 1 + τ/(2n) → 1 uniformly for τ on compact
subsets of the real line. To complete the proof, it suffices to show

(2.23) lim
n→∞

1

n2
ρn

(
z

(
1 +

τ

2n

))
=

1

π

(
H ′(τ)

H(τ)

)′

uniformly for z ∈ S and τ on compact subsets of the real line.

Under the conditions of the hypothesis, given (2.22), we can use
Theorem 2.1 to achieve

(2.24) lim
n→∞

Kn(zn,u, zn,v)K
−1
n (z, z) = H(u+ v)

uniformly for z ∈ S and u, v on compact subsets of C, where zn,a :=
z(1 + a/n). Since the above convergence is uniform for z ∈ S and u, v
on compact subsets of C, we can differentiate to yield

lim
n→∞

(∂i+j/∂ui∂vj)Kn(zn,u, zn,v)

Kn(z, z)
= lim

n→∞

zi−j

ni+j

K
(i,j)
n (zn,u, zn,v)

Kn(z, z)

= H(i+j)(u+ v),(2.25)
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where we retain the convergence uniformly for z ∈ S and u, v on com-
pact subsets of C. Therefore, using the representation (1.4) of ρn and
the two limits (2.24) and (2.25) yields

1

n2
ρn

(
z

(
1 +

τ

2n

))
=

1

π

Kn(zn,τ/2, zn,τ/2)K
(1,1)
n (zn,τ/2, zn,τ/2)−|K(0,1)

n (zn,τ/2, zn,τ/2)|2

n2Kn(zn,τ/2, zn,τ/2)2

=
1

π

[Kn(zn,τ/2, zn,τ/2)K
(1,1)
n (zn,τ/2, zn,τ/2)]/[n

2Kn(z, z)
2]

Kn(zn,τ/2, zn,τ/2)2/Kn(z, z)2

−
|K(0,1)

n (zn,τ/2, zn,τ/2)|2/[n2Kn(z, z)
2]

Kn(zn,τ/2, zn,τ/2)2/Kn(z, z)2

−→ 1

π

H(τ)H ′′(τ)−H ′(τ)2

H(τ)2
=

1

π

(
H ′(τ)

H(τ)

)′

, n → ∞,

and thus, completes the proof. �
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