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DOMINATING SETS IN
INTERSECTION GRAPHS OF FINITE GROUPS

SELCUK KAYACAN

ABSTRACT. Let G be a group. The intersection graph
T'(G) of G is an undirected graph without loops and multiple
edges, defined as follows: the vertex set is the set of all
proper non-trivial subgroups of G, and there is an edge
between two distinct vertices H and K if and only if
HNK # 1, where 1 denotes the trivial subgroup of G. In this
paper, we study the dominating sets in intersection graphs of
finite groups. We classify abelian groups by their domination
number and find upper bounds for some specific classes
of groups. Subgroup intersection is related to Burnside
rings. We introduce the notion of an intersection graph of
a G-set (somewhat generalizing the ordinary definition of
an intersection graph of a group) and establish a general
upper bound for the domination number of I'(G) in terms
of subgroups satisfying a certain property in the Burnside
ring. The intersection graph of G is the 1-skeleton of
the simplicial complex. We name this simplicial complex
intersection complex of G and show that it shares the same
homotopy type with the order complex of proper non-trivial
subgroups of G. We also prove that, if the domination
number of I'(G) is 1, then the intersection complex of G
is contractible.

1. Introduction. Let F be the set of proper subobjects of an object
with an algebraic structure. In [34], the intersection graph of F is
defined in the following way: there is a vertex for each subobject in F
other than the zero object, where the zero object is the object having
a unique endomorphism, and there is an edge between two vertices
whenever the intersection of the subobjects representing the vertices is
not the zero object. In particular, if F is the set of proper subgroups of
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a group G, then the zero object is the trivial subgroup. The intersection
graph of (the proper subgroups of) G will be denoted by T'(G).

Intersection graphs were first defined for semigroups by Bosdk [3].
Let S be a semigroup. The intersection graph of the semigroup S
is defined in the following way: the vertex set is the set of proper
subsemigroups of .S, and there is an edge between two distinct vertices A
and B if and only if ANB # &. Interestingly, this definition is not in the
scope of the abstract generalization given in the preceding paragraph.
Later on, in [9], Csdkdny and Polldk adapted this definition for groups
in the standard manner. However, there are analogous definitions to be
used. For example, in [7], the authors studied the intersection graphs
of ideals of a ring. In particular, they determined the values of n for
which the intersection graph of the ideals of Z,, is connected, complete,
bipartite, planar or has a cycle. For the corresponding literature, the
reader may also refer to [18, 19, 23, 30, 36], and some of the references
therein.

As is well known, subgroups of a group G form a lattice L(G) ordered
by set inclusion. Some of the structural properties of a group may
be inferred by studying its subgroup lattice. Intersection graphs of
groups are natural objects and are intimately related with subgroup
lattices. In actuality, given the subgroup lattice, we can recover the
intersection graph, but not vice versa, in general. Intuitively, by
passing from L(G) to I'(G), a certain amount of knowledge would
be lost. In [21], the authors showed that finite abelian groups can
sometimes be distinguished by their intersection graphs. The same
result was previously proven for subgroup lattices in [2] (see, also,
[27, Corollary 1.2.8]). Therefore, rather surprisingly, subgroup lattices
and intersection graphs hold the same amount of information on the
subgroup structure if the group is abelian.

By defining intersection graphs, we attach a graph to a group, as
in the case of Cayley graphs. Thus, there are two natural directions
we may follow. First, we may study the graph theoretical properties
of intersection graphs by means of group theoretical arguments. This
is straightforward. For example, we may ask for which groups their
intersection graphs are planar [1, 22] or connected [20, 24, 30].
Second, we may study the algebraic properties of groups by means of
combinatorial arguments applied to the intersection graphs, although
this path seems to require more ingenuity.
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In this paper, we study the dominating sets in intersection graphs. A
dominating set D of a graph I' is a subset of the vertex set V' such that
any vertex not in D is adjacent to some vertex in D. The domination
number v(I') of T is the smallest cardinal of the dominating sets for T.
Vizing’s conjecture from 1968 asserts that, for any two graphs I' and
IV, the product v(I')y(I") is, at most, the domination number of the
Cartesian product of I' and IV. Despite the efforts of many math-
ematicians, this conjecture is still open, see [4]. Given a graph T’
and an integer n, the dominating set problem asks whether there is a
dominating vertex set of size at most n. It is a classical instance of an
N P-complete decision problem. There are many papers on domination
theory covering algorithmic aspects, as well. More may be found on
this subject, for example, in [5, 11, 16], and the references therein.

It is easy to observe that a subset D of the vertex set V(G) of the
intersection graph of the group G is a dominating set if and only if,
for any minimal subgroup A of G, there exists an H € D such that
A < H. This, in turn, implies that D be a dominating set if and
only if the union of the subgroups in D were to contain all of the
minimal subgroups of G as a subset, or equivalently, if and only if the
union of the subgroups in D were to contain all of the elements of G
of prime order. In particular, the set of minimal subgroups and the set
of maximal subgroups are dominating sets. We denote the domination
number of I'(G) simply by v(G) and call this invariant of the group the
domination number of G. Let G be a finite group. We shall note that a
dominating set D of minimal size may be assumed to consist of maximal
subgroups since any proper subgroup of a finite group is contained in a
maximal subgroup. In particular, there exists a dominating set D such
that each element of D is a maximal subgroup, and the cardinality of
D is v(G).

In [8], Cohn defined a group as an n-sum group if it can be written
as the union of n of its proper subgroups and is of no smaller number.
Let G be an n-sum group. In light of the previous paragraphs, it is
clear that v(G) < n. Note that any non-trivial finite group can be
written as the union of its proper subgroups unless it is cyclic; hence,
it is reasonable to call the cyclic group C), of order m an Rg-sum group.
On the other hand, a cyclic group of order p® with p a prime contains
a unique minimal subgroup; therefore, v(Cp:) = 1, provided s > 1.
The intersection graph I'(G) is the empty graph whenever G is trivial
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or isomorphic to a cyclic group of prime order and, in such a case, we
adopt the convention v(G) = Rg. The reason for this will be justified
when we prove Lemma 2.5.

Let G be an n-sum group. It can easily be observed that v(G) = n
if G is isomorphic to one of the following groups:

Cp, Cp x Cp, Cp x Cy, Cp x Cy,

where p and ¢ are some distinct prime numbers. The reader may refer,
for example, to [8, 10, 13] for literature on n-sum groups.

Classifying groups by their domination number is a difficult problem.
Even the determination of groups with domination number 1 seems to
be intractable. In Sections 3, 4, and 5, we determine upper bounds for
the domination number of particular classes of groups. For example,
abelian groups can be classified by their domination number (see
Theorem 3.1), and the domination number of a supersolvable group is
at most p+ 1 for some prime divisor p of its order (see Proposition 4.5).
It turns out that symmetric groups form an interesting class in our
context. In Section 5, we find some upper bounds for the symmetric
groups by their degree (see Theorem 5.2) and show that those bounds
are also applicable for the primitive subgroups containing an odd
permutation (see Corollary 5.3).

In Section 6, we introduce intersection graphs of G-sets. This notion,
in a sense, generalizes the ordinary definition of intersection graphs of
groups (see Proposition 6.2). Subgroup intersection is related to the
multiplication operator of Burnside rings, and the ultimate aim in this
section is to incorporate the Burnside ring context into our discussion.
We show that the domination number «(G) can be bounded by the sum
of the indices of normalizers of some subgroups in G satisfying a certain
property, such as a collection in the Burnside ring (see Proposition 6.3).

There is extensive literature on combinatorial objects associated
with algebraic structures. An alternative path in this direction is to
introduce order complexes of subgroups and thereby render the use of
topological terms possible (see, for example, [6, 15, 25, 31]). Similar
work using subgroup lattices, frames, coset posets and quandles has
also appeared in the literature (see, [12, 17, 28, 29]).

A natural construction in which a simplicial complex K (G) is associ-
ated with a group G is the following: the underlying set of K(G) is the
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vertex set of I'(G) and, for each vertex H in I'(G), there is an associated
simplex o in K(G), which is defined as the set of proper subgroups
of G containing H. Clearly, the common face of oy and ok is oy k-
Alternatively, K(G) is the simplicial complex whose faces are the sets
of proper subgroups of G which intersect non-trivially. Observe that
I'(G) is the 1-skeleton of K(G). By an argument due to Welker [33],
K (@) shares the same homotopy type with the order complex of proper
non-trivial subgroups of G (see Proposition 7.3). In Section 7, we study
the intersection complexr K(G) and prove that, if the domination num-
ber of I'(G) is 1, then the intersection complex of G is contractible (see
Corollary 7.7).

2. Preliminaries. First, we recall some of the basic facts from
standard group theory.

Remark 2.1.

(a) (Product formula, see [26, Theorem 2.20]). |XY|[|[X NY| =
| X Y| for any two subgroups X and Y of a finite group.

(b) (Sylow’s theorem, see [26, Theorem 4.12]).

(i) If P is a Sylow p-subgroup of a finite group G, then all Sylow
p-subgroups of G are conjugate to P.

(i) If there are r Sylow p-subgroups, then r is a divisor of |G| and
r=1 (mod p).

(¢) (Hall’s theorem, see [14, Theorem 4.1]). If G is a finite solv-
able group, then any w-subgroup is contained in a Hall w-subgroup.
Moreover, any two Hall m-subgroups are conjugate.

(d) (Correspondence theorem, see [26, Theorem 2.28]). Let N < G,
and let v: G — G/N be the canonical morphism. Then, S — v(S) =
S/N is a bijection from the family of all of those subgroups S of G
which contain N to the family of all of the subgroups of G/N.

(e) (Dedekind’s lemma, see [26, Exercise 2.49]). Let H, K and L
be subgroups of G with H < L. Then, HKNL = H(KNL).
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Let G be a finite group. We denote by Ng the subgroup of G gen-
erated by its minimal subgroups. Obviously, N¢g is a characteristic
subgroup. If G = €}, with p a prime, then we take Ng = G. Adapting
the module theoretical parlance, we might call a subgroup of a group
essential, provided that it contains all minimal subgroups. Thus, Ng is
the smallest essential subgroup. Note that, if G is abelian and G 2 C),
then Ng is the socle of G.

Lemma 2.2. For a finite group G, the following statements are equiv-
alent:

(i) The domination number of T'(G) is 1.
(ii) Ng is a proper (normal) subgroup of G.
(iii) G is a (non-split) extension of Ng by a non-trivial group H.

Proof.

(i) = (ii). There must be a proper subgroup H of G such that
H N K # 1 for any non-trivial subgroup K of G. In particular, H
non-trivially intersects, and hence, contains, any minimal subgroup in
Ng, that is, H > Ng. However, H is a proper subgroup of G; thus, so
is NG.

(ii) = (iii). Since N¢ is a proper normal subgroup, G is an extension
of Ng by a non-trivial group U. Note that this extension cannot split
since, otherwise, there would be a subgroup of GG isomorphic to H which
intersects N¢ trivially. However, this contradicts the definition of Ng.

(iii) = (i). Clearly, N is a proper subgroup non-trivially intersect-
ing any subgroup; hence, { Ng} is a dominating set for I'(G). O

Corollary 2.3. If G is a finite simple group, then v(G) > 1.

In general, there is no relation between the domination number of
a group and its subgroups. As a simple example, consider the dihedral

group
Dg = {(a,b | a* = b* =1, bab = a®)

of order 8. It has three maximal subgroups (a?,b), (a2, ab), (a),
and the combination of the first two dominate I'(Dg). Moreover, as
Ds = {(ab,b), we have v(Dg) = 2 by Lemma 2.2. On the other
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hand, {(a?,b) = Cy x Cy and, since its intersection graph consists of
isolated vertices, we have v((a?,b)) = 3; whereas, v({(a)) = 1 since it is
isomorphic to the cyclic group of order four. However, by imposing
some conditions on the subgroup H of G, it is easy to prove that
~v(H) < v(G) holds.

Lemma 2.4. Let H be a subgroup of G, and let D be a dominating set
of T'(GQ). Then, v(H) < |D|, provided that none of the elements of D
contains H. In particular, v(H) < v(G), if there is such a dominating
set with cardinality v(G).

Proof. Observe that, if none of the elements of D contains H, then
the set Dy := {D N H: D € D} is a dominating set for I'(H). O

The next result will be very useful in our later arguments.

Lemma 2.5. Let N be a normal subgroup of G. If G/N % Cp, then
v(G) < ~v(G/N). Moreover, the condition G/N 2 C, can be removed
if G is a finite group.

Proof. Let D be a dominating set for I'(G/N), and set D := {N <
W < G: W/N € D}. By the Correspondence theorem, |D| = |D|. We
want to show that D is a dominating set for I'(G). Let H be a proper
non-trivial subgroup of G. If H N N # 1, then any element of D non-
trivially intersects H. Suppose that HNN = 1. Take W € D such that
(NH/N)YNW =Y # 1. If Y = NH/N, then clearly, W contains H
where W € D is such that W /N = W. Suppose that Y # NH/N, and
let Y/N =Y. Obviously, Y < W. Moreover, from Dedekind’s lemma,
Y = NK, where K :=Y N H, that is, WNH > K # 1. Since H is
an arbitrary subgroup, D dominates I'(G). This proves the first part.
The second part follows from the convention v(Cp) = No. O

Corollary 2.6. Let G = H x K be a finite group. Then, v(G) <
min{y(H),y(K)}.

Let S be a subset of the vertex set V(G) of T'(G). It is natural to
define the intersection graph T'(S) of the vertex set S in the following
manner. There is an edge between two vertices H, K € S if and only
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it HNK € §. We denote the domination number of I'(S) simply
by ¥(S). Let V(G)sny be the set of proper subgroups of G strictly
containing the normal subgroup N of G. From the Correspondence
theorem, I'(V(G)>n) = T'(G/N); hence, v(V(G)s=n) = ~(G/N).
Moreover, from the proof of Lemma 2.5, a (non-empty) subset of
V(G)>n dominates I'(G), provided that it dominates I'(V(G)sn). Let

PN V(G) U {13G} — V(G)>N U {Nv G}

be the map taking H to NH, and let D be a dominating set of I'(G)
consisting of maximal subgroups. Note that, even if (D) C V(G)sn,
the image set ¢ (D) may not be a dominating set for I'(V(G)s ).

Let S,(G) be the set of all proper non-trivial p-subgroups of G.
Observe that, if G is a p-group, I'(G) and I'(S,(G)) coincide. It is also
true, in general, that there is an edge between two vertices of I'(S,(G))
if and only if there is an edge between the corresponding vertices in

I(G).

Lemma 2.7. Let G be a finite group, and let N be a normal p-subgroup
of G such that the set Sp(G)sn is non-empty. Then:

’Y(SP(G)) < ’Y(Sp(G)>N)-

Proof. Let D be a dominating set of S,(G)sn. Similarly to the
proof of Lemma 2.5, we want to show that D dominates I'(S,(G)). Let
H e S§,(G). If HN N # 1, then clearly, HNW # 1 for any W € D.
Suppose that H NN = 1. Then, NH € §,(G)>ny U{G}. Let Y be
a minimal subgroup in S,(G)>n contained by NH, and let W € D
contain Y. If Y = NH, then H < W. Suppose that Y # NH. Since
N <Y <NHand NNH =1,YNH € S§,(G) by the Product formula;
hence, WN H € S5,(G), as well. O

3. Abelian groups. In this section, we classify finite abelian groups
by their domination number. Recall that the exponent of a group G,
denoted exp(G), is the least common multiple of the orders of elements
of G. Let G be a finite group, and consider the function f from the set
of non-empty subsets of G to the set of positive integers taking X C G
to the lowest common multiple of the orders of elements of X. Clearly,
the image of the whole group G is exp(G). By a renowned theorem
of Frobenius, if X is a maximal subset of G satisfying the condition
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oF =1 for all x € X with k a fixed integer dividing |G|, then k divides
|X|. Let g be the function taking the integer k to the maximal subset
Xy = {z € G: 2¥ = 1}. Then, f and g define a Galois connection
between the poset of non-empty subsets of G and the poset of positive
integers ordered by the divisibility relation. In general, such a maximal
subset may not be a subgroup. For example, if the Sylow p-subgroup
P of G is not a normal subgroup of GG, then the union of conjugates of
P cannot be a subgroup. However, if G is an abelian group, then, for
any integer k, the subset X, is actually a subgroup.

For a finite group G, we denote by sfp(G) the square-free part of |G|,
i.e., sfp(@) is the product of distinct primes dividing |G|. Note that a
collection of proper subgroups dominates the intersection graph if and
only if their union contains X;, where t = sfp(G).

Theorem 3.1. Let G be a finite abelian group with proper non-trivial
subgroups. Then:

(i) v(G) =1 if and only if stp(G) < exp(G);
(ii) v(G) = 2 if and only if sftp(G) = exp(G) and stp(G) is not a
prime number;
(iii) Y(G) = p+ 1 if and only if p = stp(G) = exp(G) is a prime
number.

Proof. Let t be the square-free part of |G| and m the exponent of G.

Assertion (i). Observe that Ng = {z € G: 2! = 1}. By Lemma 2.2,
~v(G) = 1 if and only if Ng is a proper subgroup, which is the case if
and only if t < m.

For Assertions (ii) and (iii), it is enough to prove the sufficiency
conditions since 2 # t + 1 for any prime number £.

Assertion (ii). Suppose that ¢ = m, and ¢ is not a prime number.
Then, there exist two distinct primes p and ¢ dividing ¢. Clearly, the
subgroups

H={heG: /" =1}
and

K={keG:k/"=1}
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dominate T'(G). Since there is no dominating set of cardinality one (by
virtue of Assertion (i)), v(G) = 2.

Assertion (iii). Suppose that ¢ = m, and t is a prime number.
We consider G to be a vector space over the field F; of ¢ elements of
dimension d > 2 and fix a basis for this vector space in a canonical
manner. Let H; = (h;), 1 <4 < t+ 1, where h; = (1,0,...,0,4) for
i <tand hyr = (0,...,0,1). Then,

{K;:==H:1<i<t+1}

is a dominating set for I'(G). In order to see this, first observe that,
for any g € G, there exists an h; such that g- h; = 0, i.e., g € K; for
some 1 <4 < ¢+ 1. Next, suppose that there exists a dominating set
D = {M,...,M,} with cardinality s < t + 1. We want to derive a
contradiction. Without loss of generality, elements of D can be taken
as maximal subgroups. Let A; = MjL, 1 < j < s. Suppose that the
A; are generated by linearly independent vectors (if not, we may take
a maximal subset of {A1,..., A} with this property and apply the
same arguments). Using a change of basis, if necessary, we may take

A; = H;. However, that means g = (1,0, ...,0) is not contained in any
M;e€Dasg-hj #0, for 1 <j <s. This contradiction completes the
proof. O

Remark 3.2. We may prove the first and second assertions by regard-
ing G as a Z-module (compare with [34, Theorem 4.4]). In addition,
for the third assertion, we may argue as follows. By Lemma 2.5,

V(@) <t+1 asv(CpxCp) =t+1,

and the rank of G, say r, is greater than or equal to two. On the other
hand, any non-identity element of G belongs to exactly one minimal
subgroup, and there are t" — 1 of them. Any maximal subgroup of G
contains ¢"~! — 1 non-identity elements, and ¢ maximal subgroups may
cover at most t" — ¢ elements; hence, there is no dominating set for G
of size <t + 1.

From the fundamental theorem of finite abelian groups, any finite
abelian group can be written as the direct product of cyclic groups of
prime power orders; thus, we may restate Theorem 3.1 as:
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1 if a; > 2 for some 1 <1 < k;

Y(Coor XX Con) = 2 ifa;=1foralll1 <i<kand

n . Pj, 7é Pj, for some .jl 7& jQ;
p+1 ifay=1land p;,=pforall 1 <i<Ek;
where p1, ..., pr are prime numbers and «jq, .. ., o are positive integers

with k£ =1, implying oy > 1.

4. Solvable groups. Although finite abelian groups can be classi-
fied by their domination number, in general this is not possible. Nev-
ertheless, we may use the structural results to find upper bounds for
the domination number of groups belonging to larger families.

Proposition 4.1. Let G be a finite nilpotent group and p a prime
number. Suppose that G 2 Cp. Then:

(i) Y(G) <p+1if G is a p-group.
(ii) v(G) <2 if G is not a p-group.

Proof.

Assertion (i). There is a normal subgroup N of G of index p? such
that the quotient group G/N is isomorphic to either C)2 or C), x Cp.
The assertion follows from Lemma 2.5.

Assertion (ii). Let G be the internal direct product of P, @ and N,
where P and @ are the non-trivial Sylow p- and ¢- subgroups of G.
Clearly, NP and NQ form a dominating set of I'(G). O

Let G be a finite group. We denote by Rg the intersection of
the subgroups in the lower central series of G. This subgroup is the
smallest subgroup of G in which the quotient group G/ R¢ is nilpotent.
Obviously, the nilpotent residual Rq is a proper subgroup whenever G
is a solvable group.

Corollary 4.2. Let G be a finite group such that G/Rg has proper
non-trivial subgroups. Then:

(1) v(G) <p+1if G/Rg is a p-group.
(ii) v(G) <2 if G/Rg is not a p-group.
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Let D5, denote the dihedral group of order 2n. Then, Rp,, = D5,
>~ (C,, and so, the quotient Ds,/Rp,, has no proper non-trivial sub-
groups; thus, Corollary 4.2 does not apply in this case. Nevertheless,
the structure of dihedral groups is fairly specific, allowing us to deter-
mine the exact formulas for their domination number, depending upon
the order 2n.

Lemma 4.3. Let p be the smallest prime dividing n. Then:

p if p* | n,
p+1 otherwise.

Proof. Let Dy, = (a,b| a™ = b?> = 1,bab = a~!). Elements of D,
can be listed as

{1, a, a®, ...,a"" ", b, ab, a®b,...,a" " b}.

It can be easily observed that the latter half of these elements are
all of order two, and hence, the minimal subgroups of Ds, consist of
subgroups of (a) that are of prime order and subgroups (a’b), where
j€{0,1,...,n—1}. In addition, the maximal subgroups of Ds,, consist
of (a) and subgroups of the form (a’,a"b), where ¢ | n is a prime
number. Fix a prime ¢ | n. Observe that any element of the form a’b is
contained in exactly one of the maximal subgroups 7T, := (a‘, a”b) with
r€{0,1,...,t—1}. Let p be the smallest prime dividing n. Obviously,
the union of the subgroups P, := (a?,a"b) with r € {0,1,...,p — 1}
contains all minimal subgroups of the form (a’b), j € {0,1,...,n— 1},
and there is no possible way to cover them with fewer than p subgroups.
Finally, if p? | n, the subgroups contain all minimal subgroups of (a);
and, if p? { n, we must take P., r € {0,1,...,p — 1}, together with
a subgroup containing (a"/ Py to form a dominating set with least
cardinality. (|

Remark 4.4. It is difficult to find an n-sum group G such that v(G) =
n and sfp(G) < exp(G). One example satisfying those conditions is the
dihedral group of order 36. By Lemma 4.3, v(D3g) = 3. Moreover, any
cyclic subgroup of Dsg is contained by those three subgroups that are
of index two, and hence, D3¢ is a 3-sum group.
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Consider the normal series of subgroups
G=Go>G > >Gp=1
From the third isomorphism theorem and Lemma 2.5,

(G

) — (Go/Gr) = (G Ca).

In addition, by repeated applications, we have

YG) <(G/Gr-1) < -+ <A(G/Gy).

Proposition 4.5. Let G be a finite supersolvable group with proper
non-trivial subgroups. Then, v(G) < p+ 1 for some prime divisor p of
G-

Proof. Since G is a finite supersolvable group, it has a normal
subgroup N of index m, where m is either a prime square or a product
of two distinct primes. In the first case, v(G/N) is at most p+ 1, where
p = /m, and, in the latter case, v(G/N) is at most 2. The proof
follows from Lemma 2.5. (]

At this stage, it is tempting to conjecture that the assertion of
Proposition 4.5 holds more generally for solvable groups. However,
we may construct a counterexample in the following way. Let G = NH
be a Frobenius group with a complement H such that the kernel N
is a minimal normal subgroup of G. Further, suppose that H = C,
for some prime g. Note that, since Frobenius kernels are nilpotent, G
must be a solvable group. On the other hand, since N is a minimal
normal subgroup, N has no characteristic subgroup and, in particular,
N =2 (), x -+ x (), for some prime p. Suppose that the rank r of N is
greater than 1. Now, since Ng(H) = H, and N is a minimal normal
subgroup, each conjugate of H is a maximal subgroup. This means
that there are wholly |G : H| = p” isolated vertices in I'(G) which, in
turn, implies that v(G) = p” + 1. Since p” = 1 + kq for some integer k
by Sylow’s theorem, the domination number ~v(G) is greater than both
p+1and g+ 1.
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Proposition 4.6. Let G be a finite solvable group and H, K a pair of
mazimal subgroups such that (|G : H|,|G : K|) = 1. Then, v(G) <
|G : Ng(H)| + |G : N(;(K)|

Note that Hall’s theorem guarantees the existence of such a pair of
maximal subgroups, provided that G is not a p-group. Also, note that
one of the summands in the stated inequality can always be taken as 1.

Proof. Take a minimal subgroup A. If |A| | |G : H|, then, by Hall’s
theorem, a conjugate of K contains A. And, if |A| { |G : H|, then,
clearly, a conjugate of H contains A. O

5. Permutation groups. We denote by Sx the group of permuta-
tions of the elements of X. If X = [n] := {1,2,...,n}, we simply write
Sy, and A,, will be the group of even permutations on n letters. Note

that Sn/RSn = Sn/An = CQ.
Lemma 5.1. v(S,) # 1 and v(A,) # 1.

Proof. Since So = Cy, we see that v(S3) # 1. For n > 3, since any
transposition generates a minimal subgroup of the symmetric group,
and, since adjacent transpositions generate the entire group, v(S,) # 1
by Lemma 2.2. Similarly, 7(A3) # 1, and, for n > 4, since 3-cycles
generate A,, 7(A,) # 1 by the same lemma. O

Let G be a permutation group faithfully acting on X = {1,2,...,n}.
An element g € G is called homogeneous if the associated permutation
has a cycle of type (p¥,1"7P*) with p a prime. Since any minimal
subgroup of G is a cyclic group of prime order, in order for D C V(QG)
to be a dominating set of T'(G), the union of the elements of D must
contain every homogeneous element of G, and vice versa.

Theorem 5.2. Let ¥: N — N be the function given by

I(n) = n+1 z.fn:Qk—i—l,
n if n = 2k.
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Proof. Let D be a dominating set for I'(.S,,) of minimal size. Without
loss of generality, we may assume that the elements of D are maximal
subgroups of S;,. We know that every homogeneous element of \S;, must
belong to some subgroup in D, in particular, every involution (elements
of order 2) must be covered by D. Observe that, if some collection of
subgroups covers all involutions of type (2!, 1"~2!), with [ odd, but not
all homogeneous elements, then, by adding A, to this collection, we
obtain a dominating set for T'(S,,), for A,, which contains all cycles of
prime length > 2.

For n = 2k + 1, any involution must fix a point and, hence, must
belong to some point stabilizer. Thus, together with A,, we have a
dominating set of cardinality n + 1.

For n = 2k, we consider the 2-set stabilizers of S,,. Let X; = {1, j}
and Y; = [n] \ X;, where 2 < j < n. Observe that the union of the
subgroups Sx; x Sy, of Sj, contains all involutions. Therefore, together
with A,,, we have a dominating set of cardinality n. ]

Corollary 5.3. Let G be a primitive subgroup of S,, containing an odd
permutation, and let ¥ be the function defined in Theorem 5.2. Then,
the inequality v(G) < ¥(n) holds.

Proof. Since G is a primitive subgroup, it is not contained by any
imprimitive subgroup. The proof follows from Lemma 2.4 and the fact
that the only primitive subgroup used to form dominating sets in the
proof of Theorem 5.2 is A,,. O

6. Intersection graphs of G-sets. Asis well known, any transitive
G-set ) is equivalent to a (left) coset space G/G,, where G, is the
stabilizer of a point € Q. Thus, for example, if  is a regular G-set,
then it can be represented with G/1, and, if Q is the trivial G-set,
it is represented with G/G. Since any G-set is the disjoint union of
transitive G-sets, given a G-set (), it can be represented as the sum of
coset spaces. For a subgroup H of G, we denote by (H) the conjugacy
class of H in G, and by [G/H] the isomorphism class of the transitive
G-set G/H. It is well known that [G/H| = [G/K]if and only if H = 9K
for some g € G.

The Burnside ring B(G) of G is the ring generated by the isomor-
phism classes of G-sets, where addition is the disjoint union and prod-
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uct is the Cartesian product of G-sets. Therefore, a typical element of
B(G) is of the form
> a;lG/H;),
J

where a; are the integers, and H; are the representatives of the conju-
gacy classes of subgroups of G. Let A and B be normal subgroups of a
group G. Then, the canonical map gANB +— (gA, ¢gB) from G/(ANB)
to G/A x G/B is an injective group homomorphism. Now, we consider
two (not necessarily normal) arbitrary subgroups: H; and Hs of G. In
this case, G/H; and G/Hj are still G-sets, and the diagonal action of
G on the Cartesian product G/H; x G/H; yields the map:

¢I G/(Hl QHQ) — G/Hl X G/H2
ng N H2 — (ngagHQ)a

which is an injective G-equivariant map, that is to say, subgroup
intersection is related with the multiplication operator of the Burnside
ring.

Let ©; and Q5 be two G-sets, and let R(q, o,) be a set of representa-
tive elements for the orbits of €1 x 5. The Cartesian product Q1 x Q5
decomposes into the disjoint union of transitive G-sets in a non-trivial
fashion. More precisely,

Oy x Qy || G/(G.nG,y),
(z,9)€ER(Q;,99)
where G, and G, are stabilizers of the points = € €y and y € (O,
respectively. Let Ry, i) be a set of representatives for the equivalence
classes of (H, K)-double cosets. Setting & = G/H, Qs = G/K, and
using sigma notation for disjoint union, we may write

(G/HG/K] = ) [G/(HNK)]

as the orbits of G/H x G/K parametrized by the (H, K)-double cosets.
For more information, the reader may refer to [32, Chapter IJ.

Let G be a fixed finite group. The following definition was suggested
by Yaraneri [35]. The intersection graph T'[] of a G-set 2 is the simple
graph with a vertex set containing the proper non-trivial stabilizers of
points in 2, and there is an edge between two distinct stabilizers if
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and only if their intersection is non-trivial. In this notation, we used
“brackets” instead of “parentheses” to emphasize that the argument is a
G-set. Observe that, since G is a finite group, there are at most finitely
many intersection graphs I'[Q?] that can be associated with G-sets. Note
that both I'[G/1] and I'[G/G] are empty graphs by definition.

Example 6.1. Take Q := {1,2,...,n} as the vertex set of a regular n-
gon on a plane with n an odd number. Since the automorphism group
of this polygon is isomorphic to the dihedral group Ds,, considered a
stabilizer of a point of 2 corresponding to a unique involution of Ds,,.
Those involutions form a single conjugacy class, and I'[Q] consists of n
isolated vertices. Let G be a finite group and H a subgroup of G. As
a general fact, I'[G/H] consists of |G : H| isolated vertices if and only
if G is a Frobenius group with a complement H.

We denote by C(G) the set of conjugacy classes of subgroups of G.
From the next proposition, intersection graphs of groups can be seen
as particular cases of intersection graphs of G-sets.

Proposition 6.2. Let G be a finite group and
2= || [G/H]
(H)eC(G)

Then:

Proof. Since there is an edge between two vertices of I'[¥] if and only
if their intersection is non-trivial, it is enough to show that the vertex
set of I'[X] is V(G). However, this is obvious since the set of subgroups
of GG can be partitioned into the conjugacy classes of subgroups:

V(G)U{1,G} ={9H: (H) € C(G), g € G}.
Note that no vertices associated with 1 and G are in I'[X], by definition.

O

Let G be a finite group. We denote by A(G) the set of minimal
subgroups of G, and by M(G) the set of maximal subgroups. The
following characterizations are easy to deduce:
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e NaG & [G/K]|[G/N] = |G:NK|[G/(NNK)] for every K < G.
e A e AG)U{l} & for any K < G there are non-negative
integers a and b such that [G/K]|[G/A] = a[G/A] + b|G/1].

e H ¢ M(G) & [G/K][G/H] does not contain [G/H] as a

summand unless K = G or K € (H).

Let A be a minimal subgroup and H a maximal subgroup of G. Observe
that, in the case where G is abelian, the following equality holds:

|| H|G/A] if A<H,
(G/H]IG/A] = {[0/1] if A¢H.

Theorem 3.1 may be restated:

(i) v(G) =1 if and only if
(%) there exists an H € M(G) such that, for every A € A(G),
the equality [G/H]|[G/A] = |G : H|[G/A] holds.
(ii) v(G) = 2 if and only if
(xx) for every H € M(G), there exists an A € A(G) such that
G < H|[[G/A]l
(iii) v(G) = p + 1 if and only if neither () nor (xx) holds and
p=|G: H| =|A| where H € M(G) and A € A(G).

Proposition 6.3. Let G be a finite group, and let H = {H; € V(G) :
1 <i < s} be a set with the property that, for any K € V(Q), there
exists an H; € H such that [G/K]|G/H;] # k[G/1] for every positive
integer k. Then:

16 <316 Ne(H)|.

Moreover, v(G) = 1 if and only if there exists an H < G such that
[G/K][G/H] # k|G/1] for every K € V(G).

Proof. Let H be a set, as in the statement of the proposition. We
want to show that D := {9H;: H; € H,g € G} is a dominating
set for T'(G). However, this is obvious since, for any K € V(G),
[G/K|[G/H;] # k|G/1] implies that K N 9H,; # 1 for some g € G.
This completes the first part of the proof.
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Now, suppose that v(G) = 1. Let L < G be such that LN K # 1
for every K € V(G). Obviously,

(G/KG/L] =Y [G/(K L) =Y [G/(* 'KNL)

contains no regular summand since L non-trivially intersects every
conjugate of K. Take a conjugate *L of L. Since “L also forms a
dominating set,

(G/KNG/(LND)] =Y [G/(* " KNLN L)

contains no regular summand, either. Let

H::ﬂgL.

By repeated applications of the above argument, we see that [G/K][G/H]|
has no regular summand. However, H is a normal subgroup, which
means that [G/K]|[G/H] # k[G/1].

Conversely, suppose that there exists an H < G such that
(G/K||G/H] # k|G/1]

for every K € V(G). Since H is normal, this means that [G/K][G/H]
has no regular summand which, in turn, implies that {H} is a domi-
nating set for I'(G). This completes the proof. a

Remark 6.4. Clearly, the elements of the set H in the statement of
Proposition 6.3 can be taken as maximal subgroups. Then, Proposi-
tion 4.6 states that there exists such a 2-element set if G is a solvable
group but not a p-group.

7. Intersection complexes. Recall that an (abstract) simplicial
compler S over a set X is a finite collection of subsets of X such
that the union of those subsets is X and, if o is an element of S, so
is every subset of 0. The element ¢ of S is called a simpler of S,
and each subset of ¢ is called a face of 0. The k-skeleton of § is the
subcollection of elements of S having cardinality at most k + 1; hence,
the 0-skeleton of S is the underlying set X plus the empty set. For a
group G, we define the intersection complex K(G) of G as the simplicial
complex whose faces are the sets of proper subgroups of G which non-
trivially intersect. As a graph, the l-skeleton of K(G) is isomorphic
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to the intersection graph I'(G). This notion can be compared with the
other two notions in the literature, namely, the order complex and the
clique complex. In the first case, we begin with a poset (poset of proper
non-trivial subgroups of a group in our case) and construct its order
complex by declaring chains of the poset as the simplices. And, in the
latter case, we take a graph (i.e., the intersection graph of a group), and
the underlying set of the corresponding clique complex is the vertex set
of the graph with simplices being the cliques.

Example 7.1.

(1) The quaternion group (s has three maximal subgroups, say
(1), (7) and (k), of order four intersecting at the unique minimal sub-
group {—1,1}. Thus, I'(Qs) is a complete graph K4, depicted in Figure
1 (A). Moreover, K(Qsg) is a tetrahedron since those four vertices form
a simplex. However, the order complex of the poset of proper non-
trivial subgroups of Qg is isomorphic to the star graph K, 3 as a graph.
Hence, order complexes and intersection complexes are different, in
general. Note that the clique complex of I'(Qs) is the same as K(Qsg).

(2) The intersection graph of the elementary abelian group of order
eight is represented in Figure 1 (B). Here, the vertices on the outer circle
represent the minimal subgroups, and the vertices on the inner circle
are the maximal subgroups. By the Product formula, any two maximal
subgroups intersect at a subgroup of order 2. Therefore, the vertices
in the inner circle form a complete subgraph, and those vertices form a
simplex in the clique complex, whereas they do not in K(Cy x Cy x C3).
Thus, intersection complexes and clique complexes are not the same,
in general. Note that T'(Cy x Cy x C3) is symmetrical enough to reflect
the vector space structure of the group.

An important result of the subject for our purposes (see Lemma 7.2
below) uses the definitions of algebraic topology adapted to ‘poset’
context. By a covering C of a finite poset P, we mean a finite collection
{C;}ier of subsets of P such that P = U;c;C;. The nerve N(C) of C
is the simplicial complex whose underlying set is I, and the non-empty
simplices are the J C I such that C; := N;c;C; # @. The covering C
is called contractible if each C'; is contractible, considered as an order
complex, where J is a simplex in N(C). We say that C' is a downward
closed covering if each C;, ¢ € I, is a closed subset of P, i.e., for each
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FIGURE 1. Intersection graphs of some groups of order 8.

C;, if the condition: whenever
z € C; and 2’ <p z, then 2’ € C;

is satisfied. Of course, we may define upward closed coverings dually.

Lemma 7.2 ([31, Theorem 4.5.2]). If C is an (upward or downward)
closed contractible covering of a poset P, then the order complex of P
is homotopy equivalent to nerve N'(C) of C.

Let = be an element of a poset P. We denote by P<, the set of
elements x’ of P satisfying 2’ <p x. Similarly,

P>y :={a’ € P:a’ >z}

The sets P<, and P>, are called cones in poset terminology, and it is
a standard fact that they are contractible. Consider the set:

C :={P>,: x is a minimal element in the ordering of P}.

Clearly, C is a contractible, upward, closed covering of P; hence, by
Lemma 7.2 the nerve N'(C') of C is homotopy equivalent to the order
complex of P. In Example 7.1 (1), we remarked that order complexes
and intersection complexes are different in general. However, they are
equivalent up to homotopy.

Proposition 7.3. For a group G, the intersection complex K(G) and
the order complex of the poset of proper non-trivial subgroups of G are
homotopy equivalent.
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Proof. Consider the face poset F of K(G), i.e., the poset of simplices
ordered by inclusion. For a proper non-trivial subgroup H of G, let Cy
be the subset F> gy of F. Then, the collection

C:={Cy:1< H<G}

is an upward, closed, contractible covering of F, as the singletons {H}
are exactly the minimal elements of F. Therefore, the order complex
of F and the nerve of C are of the same homotopy type by Lemma 7.2.
Observe that N(C) is exactly the intersection complex K(G) of G.
Since the order complex of F is the barycentric subdivision of K(G),
we see that K (G) is homotopy equivalent to the order complex of the
poset of proper non-trivial subgroups of G. O

Remark 7.4.

(1) Intersection complexes can be considered as a special instance
of a more general construction in which, given a poset P, we form a
simplicial complex K (P) by declaring simplices as the subsets of the
poset having a well-defined meet. It is easy to see that the above
proof can be adapted to work in this frame. Recall that, in Section 2,
we defined S,(G) as the set of proper non-trivial p-subgroups of G.
Considered a poset order complex, S,(G) shares the same homotopy
type with K(S,(G)).

(2) An alternative argument to prove Proposition 7.3, due to Welker
[33], is as follows: consider the face poset F of K(G). By the
identification H — oy, the poset of proper non-trivial subgroups of
G becomes a subposet (after reversing the order relation) of F. We
want to show that F and the poset of the proper non-trivial subgroups
of G are of the same homotopy type as order complexes. Let f be the
map taking a simplex ¢ in F to o, where K is the intersection of all
maximal subgroups containing the intersection of all of the elements in
o as subgroups. Then, f is a closure operator on F. Let g be the map
taking H to K, where K is the intersection of all maximal subgroups
containing H. Then, ¢ is a closure operator on the poset of proper
non-trivial subgroups of G. Since closure operations on posets preserve
the homotopy type of the order complex and, since the images of f and
g are isomorphic by the identification K +— ok, the proof is complete.

Let G be a finite group. For a proper non-trivial subgroup H of G,
we denote by V(G)>p the set of proper subgroups of G containing H.
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Similarly, V(G)<g is the set of non-trivial subgroups of G contained
by H. Consider the following collections:

A :={V(GQ)>p: H is a minimal subgroup of G},
M :={V(G)<pu: H is a maximal subgroup of G}.

Since A is an upward, closed, contractible covering of V(G) considered
as a poset under set theoretical inclusion, and M is a downward closed
contractible covering, by Lemma 7.2, N(A), N (M) and the order
complex of proper non-trivial subgroups of G share the same homotopy
type. Recall that the Frattini subgroup ®(G) of G is the intersection
of all maximal subgroups of G.

Theorem 7.5. Let G be a finite group. Then:
(i) (G) # 1 if and only if N(M) is a simplex.
(i) v(G) = 1 if and only if N(A) is a simplex.
Proof.

Assertion (i). Clearly, N (M) is a simplex if and only if, for any
subset S of N'(M), the intersection of the subgroups in § is non-trivial,
which is the case if and only if the intersection of all of the maximal
subgroups of G is non-trivial.

Assertion (ii). Similar to the previous case, N'(A) is a simplex if
and only if Ng is a proper subgroup of G. The assertion follows from
Lemma 2.2. O

Remark 7.6. Using Theorem 3.1, we may conclude that, for abelian
groups, v(G) =1 if and only if ®(G) # 1. Let P be a p-group with p
a prime number. It is also true that v(G) = 1 implies ®(G) # 1; for,
if P is a non-cyclic p-group and v(P) = 1, then P/®(P) is elementary
abelian of rank > 1, and v(P/®(P)) = p+ 1 in that case. However,
the converse statement is not true, even for p-groups. For example,
CI)(Dg) = CQ, but ’}/(Dg) =2

Since N'(A) and K (G) are of the same homotopy type by Lemma 7.2
and Proposition 7.3, as a consequence of Theorem 7.5, we have the
following.

Corollary 7.7. Let G be a finite group. If v(G) = 1, then K(G) is
contractible.
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