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ON THE BOUNDEDNESS OF MINIMIZERS OF SOME
INTEGRAL FUNCTIONALS WITH DEGENERATE
ANISOTROPIC INTEGRANDS

S. BONAFEDE

ABSTRACT. In this paper, we obtain the boundedness
of minimizers for a class of integral functionals, defined in a
weighted anisotropic space.

1. Introduction. In this paper, we consider the following higher
order integral functional:
(1.1) I(u) = /{A(x,vw) + Aoz, u)} d

Q

defined in a weighted space Wi’g(y, u, ), where  is an open bounded
set of R", and v = {v, : |a] = 1} and p = {pe : |of = 2} are
sets of positive functions in Q satisfying some hypotheses specified
later; Vou = {D%u : |a| = 1,2}. Working with the functional I(u)
instead of working with its Euler equation, we derive the boundedness
of function u(z) minimizing functional (1.1). The proof is based on
the application of a modification of the Moser method (see Lemma
3.3) which essentially consists of obtaining uniform L7-estimates (at

r — 4o0) for an auxiliary function ¢(u) (see, also, [19], or more
recently, [11, 18]).

It is supposed that A(z, &) is a Carathéodory function, convex with
respect to & = {&, : |a| = 1,2}, and, for almost every z € Q and
every &, satisfying the following inequality:

(1.2) { S va@lalt + 3 ua<x>5a|pa} = (@) < A ©)
la]=1 || =2

<o ¥ n@leal+ X w@leal }+ 1)

|al=1 |a|=2
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where ¢; and ¢, are positive constants, f(z) is a nonnegative function,
f e L*(Q), t. > 1, g, and p,, are real numbers such that g, € |1, n[, if
laf =1, pa €]1,n/2]if |o| =2 (¢ = {qa : [a] =1}, p={pa : [a| =2})
and 1/qy +1/q3 < 1/py4p, if Y| = B = 1.

Moreover, Ag(z,n) is a Carathéodory function, convex with respect
to n, and, for almost every x € Q and every n € R, satisfying

—caln|® = fo(z) < Ao(,n) < esln|™ + fo(),

where c3 > 0, ¢4 € [0,¢1/co[, ¢— = minjy|=1 ga, fo(x) is a nonnegative
function with summability in Q to be made more specific later on.

A similar result was established in [5]; however, condition (1.2) is
more general than the corresponding condition in [5] by the presence
of the set of exponents ¢, p, and of the sets of weighted functions.

We recall that a strengthened coercivity condition such as that pro-
vided on the left side of inequality (1.2) goes back to the pioneering
paper [19], wherein the authors established, for ¢ > mp, the bounded-
ness and the Holder continuity of generalized solutions from the class
Wmr(Q) N WhH4(Q) for nonlinear elliptic equations of the divergent
form

> (-)D*Au(z,u,...,D™Mu) =0 in Q.

loa|<m

Moreover, the study of regularity for solutions of a class of higher
order degenerate elliptic equations and variational inequalities in the
anisotropic case was treated in [4, 12]. Finally, for the non degenerate
case, the problem of regularity of minimizers of integral functionals was
studied in [6, 8, 13, 15] and, more recently, in [2, 3, 7, 14].

2. Preliminaries. We shall suppose that R™, n > 2, is the n-dimen-
sional Euclidian space with elements © = (21, a,...,2,). Let Q be a
bounded open set of R™. Let, for every multiindex «, |a| = 1, ¢, be
numbers such that 1 < g, < n, and let, for every multiindex «, |a| = 2,
Do be numbers such that 1 < p, < n/2; we denote

q:{qa:‘(ﬂ:l}v P:{Pa3|04|:2}-
We assume that, for every multiindex S, |5| =1 and v, || =1,
1 1 1

(2.1) —+—< .
Gy 48 Py+p




ON THE BOUNDEDNESS OF MINIMIZERS 1783

Hypothesis 2.1. Let, for every multiindex o, |a| = 1, v, be a positive
measurable function in £ such that

1/(ga—1)
n@ e th®. () €

For more details, cf., [1, 9, 10, 16, 17].

We set v = {1, @ |a] = 1}, ¢- = minjg|—1 ¢a, ¢+ = MaX|q|=1 Ga, and
denote by W14(v, Q) the set of all functions v € LI~ (Q2), such that the
distribution derivatives D%u, |a| = 1, satisfy

Vo |D%u|% € L*(Q).
Whd(v,Q) is a Banach space with respect to the norm
1/q- 1/qa
e = ([ iar) "+ S ([ valptugear)
@ lal=1 \/9
Wl’q(l/, Q) is the closure of C§°(Q) in Wh4(v, Q).

Hypothesis 2.2. There ezist numbers ¢ > 0 and ¢ > q4 such that, for
every u € Whi(v, Q),

(2.2) </§2|u|adx>1/(7§52 (/QuaDauwadx)l/%.

ler|=1

Consequently,

1/4a
(2.3) lull1gp <T > (/ V| D%u qadx) ’

|a]=1 a2
and
(2.4) / lul9=dz < ¢ Z (/ Va|D°‘u|qad1:> +7c,
Q Q
lee|=1

where I', ¢, ¢ are positive constants depending only upon n, ¢, ¢_, g+, q
and meas (2.



1784 S. BONAFEDE

Lemma 2.3. If Hypothesis 2.2 is satisfied, then the imbedding of
Whi(v, Q) in LI~ (Q) is compact.

Proof. Let {u,} be a sequence of functions of W4(v, Q) with equi-
bounded norms, and let {II;} be a sequence of pluri-intervals in 2 such
that:

(a) Iy C 41, for any k € N;
(b) 1imkﬁ+oo ﬁk = Q;
(c) for any C closed, bounded set of €, there exists a k : C C 11,

k> k.

Then the norms of {u,} in W1(Il,) are equi-bounded. We can extract
from {u,} a subsequence {u;,} that converges almost everywhere in
11,. Arguing as above, we can extract from {us ,,} a subsequence {us . }
that converges almost everywhere in ﬁQ, etc. By the diagonal method,

we obtain that {u,,} converges almost everywhere in Q and, from
(2.2), in L9~ (Q). O

Hypothesis 2.4. Let, for every multiindex o, |a] = 2, pq, be a positive
function in Q such that

1/(pa—1)
@ €@, () e b

We set p = {1q : || = 2} and denote by W;ﬁ’q(u,u, Q) the function
space of all real-valued functions u € W14(v, Q) such that distribution
derivatives D*u and |a| = 2 satisfy

fio|DulPe € L1(Q).
W;g(v, 1, §2) is a Banach space with the norm
1/pa
full =Vl + 3 ([ malDoirma)
|a]=2

We denote by Wi’;’(u,u,Q) the closure in W21”§(1/, 1, Q) of the set
C& ().



ON THE BOUNDEDNESS OF MINIMIZERS 1785

Hypothesis 2.5. There exists a positive constant ¢ such that, for every
multiindex B, || =1 and v, |y] =1

pg P < e/ Ul Q.

We note that our functional spaces are specific cases of the spaces
introduced in [12].

3. Auxiliary results. Let h € C*°(R) be a non-decreasing function
such that h =0 on |—00,0] and h =1 on [1, 4+o0].
We set

¢ = max|h/|, Co = 2max |I/| + max |h"|.
R R R

Let, for every s € R, hy : R — R be the function such that
hs(m) =n+(s+1=nh(n—s)—(s+1+n)h(-n—s), nek.

We have {hs} C C°°(R) and, for every s € R, the following property
holds:

hs(n) =n if [n] <s
hs(n)=—=s—1 ifn<—-s—1
hs(n)=s+1 ifn>s+1.

Moreover, for every s € N and n € R, we have
ha(m)] < 2[nl,  0< hi(n) < e,
Inlhi(n) < 2e1lhs(n)],  [RS()] < &,
Ik ()] < 2¢2|hs(n)].
For more details concerning the functions h and hs, see [11].

Due to the assumptions of Section 2 and the properties of the
function hg, we have the following:

Lemma 3.1. Let u € VeVl’q(V, Q),seN, r>0. Let
¢ = ul + h3(u)]"
¥ = [L+h3(w)]" + 2r[L+ h3(u)]"™ g (w) R (w)u.
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Then, ¢ € leq(m Q) and, for every multiinder «, |a] = 1, D%p =
YD almost everywhere in 2.

Using Hypothesis 2.4 and properties of the function hy, we establish
the following:

Lemma 3.2. Let u € Wi’q(u,u,ﬁ), s €N, r>0. Let o and Y be

P
defined as in Lemma 3.1. Then, ¢ € W;)f(mu, Q) and:
(a) for every multiindex a, |a| = 1, D% = D% almost every-
where in §2;

(b) for every multiindez 8, || =1, and ~, |v| =1,
|Dﬁ+7<p - ¢Dﬁ+7u\ < 6ca(r+ 1)2[1 + hg(u)]T\DBuHD'Yu\

almost everywhere in §2.

We refer to [4] for more details concerning the proof of Lemmas 3.1
and 3.2. Finally, under Hypotheses 2.1 and 2.2, we shall prove the
following:

Lemma 3.3. Let my,me > 0, t > q/(—q+), ® € LYQ), and let
u € Whi(v,Q). Let, for every s € N and r > 0,

L { S valpatr b+ s
(3.1) @ N al=1
<1+ [ {ult + BY1 ) e
Then,
(3.2) esssup |u| < My
Q

where the positive constant My depends only upon n, ¢, ¢1, q, q—, m1,
ma, ||ull1,q0, |®]Lt0) and meas .

Proof. We set t' = t/(t—1) and § € |gy,q]. By diy, i = 1,2,
..., we shall denote positive constants which depend only upon n, q_,
4+, q, ¢, ¢1 and meas ().
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For all s € N, r > 0, let
Tu(r)=1+ / [ufT + g1 + b2 (w)]" dz,
Q

where g = ® + 1. It results in

_ 1/t
TS(T‘) <1 —‘y—/ |ﬂ|qd(E + ||gHLt(Q) </ (ile + l)qdﬁ) R
Q Q
where

U= ull+ R ()],
W= [14 h2(w)]™/7 - 1.

Hence,

N q/q o
Ts(r) <14 </ ﬂ|qu> (meas Q)(@-D/a
Q
.y N 1/t
g2 ([ a7as)
Q
+ ||g||Lt(Q)2&/t/ (meas Q)l/t'.

The last inequality and Hypothesis 2.2 give:

I/Qa q
Ty(r) < dy +d2[ 3 (/ yaDamqadx) }
Q

|a]=1

1/‘10 fi/t’
+d3{ > (/ yaDauj|qadx> } .
Q

lee|=1

(3.3)

Next, simple computations imply:

(3-4) D] < da(r+ 1)1+ hZ(w)]"7| Dl

(3.5) |D®| < dsr[1 + h2(w)]™ /9| D).
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From (3.3)—(3.5), we get
(3.6) -

Ty(r) <d1+d6(r+1)q[ 3 (/QvalD“urh[1+h§(u)rqa/qd$>l/q°‘} 7

|a]=1
~ , _ 1/‘1& ﬁ/t/
rarre0| 3 ([ralprapnzo)enas) ]
la|=1 \ 7

We set 6 € R:

1<t9<min(q7 ,q )
q+ t'g4

From the Hoélder inequality and (3.6), for all s € N, r > 0, we obtain:
0
To(r) < dy +ds(r+1)7 Z (/ Ve |D%u|%[1 4+ hi(u)]”%m) ,
laj]=1 V7€

where the positive constant dg depends on known parameters and
lw|l1,4,0- Choosing r =r/6 in (3.1), from the last inequality, we have

(3.7 T.(r) < do(r +1)™2[T,(r/0)]° for all r > 0,
where m3 = ¢(1 4+ ma/q+). We introduce a sequence {p;} such that

pj = o6t for all j € Ny,

1 (. _q
0O = — min — — 1.
20 =9y

We have p;/0 = p;—1. This and (3.7) yield

To(pj) < do(p; + 1) [Ts(pj-1)]°

Recursion relation and the inequality

where

Ts(po) < dio+ d11/ [u|Tdz
Q
lead to the conclusion that, for all j =1,2,...,
Ts(pj) < d?;a

where di2 depends upon the known parameters, ||®[|1:(q) and [|ul[1,q,.-
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Now, noting that hs(u) — u as s — oo, from the definition of Ts(r)
and Fatou’s lemma, it follows that

/ ulT*Prde < (@7 + )T, j =12,
Q
and, thus, the inequality (3.2) is shown. O

4. Hypotheses and statement of the main result. In this sec-
tion, we give structural hypotheses on integrands in order to guarantee
the existence of integrals. The set of all multiindex « such that |a| =1
or |a] = 2 is A; R™? is the space of all sets £ = {&, : a € A} of
real numbers; if u € Wzl}’g(u,u,Q), then Vou = {D% : a € A}. We
shall study the boundedness of minimizers for the class of functionals
of higher order:

(4.1) I(u) = /Q {A(z, Vau) + Ag(z,u) }dz,

defined in the weighted space Vi/'gl,’g(u, 1, §2).

Hypothesis 4.1. Let the principal part A : Q x R™2 — R of the
functional be a Carathéodory function, convex with respect to & € R™?
almost everywhere x € €); we suppose that there exist real positive
constants ¢1 and ca, t. > q/(@—q4+) and a nonnegative function
f € L*(Q) such that almost everywhere in Q and for all ¢ € R™?,
the following inequality holds:

(1.2) { S va@lalt + 3 uamaav’a} (@) < A ©)

lo]=1 lov|=2

<o ¥n@ial + ¥ m@lal |+ o)

lo]=1 lor|=2

Hypothesis 4.2. Let Ay : Q2 x R — R be a function such that, for all
n € R, the function Ao(-,n) is measurable in Q, and Ag(x,-) is convex
in R for almost all x € Q. Also, there exist cg > 0, ¢4 € [0,¢1/c0],

t>G/(G—qy) and fo € LA(Q) nonnegative such that almost everywhere
in Q and for all p € R, the following inequality holds:

(4.3) —caln|® = fo(z) < Ao(z,n) < esln|® + fo(@).
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We observe that the functional in (4.1) is well defined due to the
inequalities (4.2) and (4.3). Moreover, using well-known results of the
existence of convex and coercive functionals, due to the properties of
the functions A(x,&) and Ag(z,n), as well as to the inequalities (2.2),
(4.2) and (4.3), for all closed and convex V' C Wzly’;f(l/, i, §2), there exists
a function uw € V' which is a minimizer for the functional I in V.

Hypothesis 4.3. Let be V' a nonempty, closed, convex set in W;g
(v, 1, ), satisfying the following property: if v € V, ¢ : Q — R,0 <
0 <1inQ and pv € W;’;)](V,,u,ﬂ), then v — v € V.
Remark 4.4. If, for example, V = Vi/i’;f(y,u,Q) or
V={ue W, (v,nQ): ul <1},
then Hypothesis 4.3 is satisfied.
We shall prove the following:

Theorem 4.5. Let Hypotheses 2.1, 2.2, 2.4, 2.5, 4.1-4.3 be satisfied.
If u is a minimizer of the functional I in V', then

esssup |u| < M,
Q
where M depends upon known constants, meas$) and ||ul|.

5. Construction of a minimizer for /. In the general hypothesis,

V C W;’g(u,u,Q), a closed and convex set, we want to construct

function u(z), a minimizer for I in V, using direct methods.

Let v € Vclfglj(u,u,ﬂ). We set p_ = minjq|—2 po. From (2.1), it
follows that p_ < g, for every qq, |a| = 1. This fact and (2.3) imply

(5.1) |Jv||P- <T4 (1—|— Z /Va|Dav\q°‘dx+ Z /uaDav|p°‘da:>,
la|=1"€ la]=2"€
where I'y > 0 depends only upon p_, n and I'.
On the other hand, from (2.4), (4.2) and (4.3) we have:

(5.2)

I(U) > (Cl _C4CO)< Z /VQ\DO‘UP”UZQ:—&— Z /Ma|Dav|p@dx>
Q Q

la|=1 |a]=2
—|If + follLr (@) — cae.
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Then, from (5.1) and (5.2), we derive:
(5.3) I(v) > T'g||v||P~ —Ts.

Here, and in the sequel, I';, i = 2,3,4, denotes a positive constant
dependent upon known parameters. We set

(5.4) d= 1}2‘f/ I(v).

From (5.3), we obtain:

d>—Ts.
Let {v} be such that
(5.5) lim I(vg) = d.
k— o0

We wish to prove that vy is bounded in VT/Q{’;I(Q, v, ). From (5.3) and
(5.5), we obtain:

(5.6) |log]|P~ < Ty for all k > ko.

Then, we can extract from {v;} a sequence, which we call {v, }, that
converges in L7 () (cf., Lemma 2.3), almost everywhere in Q and
weakly, to a function u € W;g(u,u7ﬂ). Next, as is well known, the
convexity of A(z,&) with respect to £ is a sufficient condition for the

sequential weak lower semicontinuity of I. Hence,
(5.7) liminf I(vg,) > I(uw).
1—> 00

From (5.4) and (5.7), we have:

I(u) = ngf/l(v)

We have found that w is a minimizer for I in V. If I is strictly convex,
then the minimizer is unique.

6. Proof of Theorem 4.5. In this section, we prove the bounded-
ness of the minimizing function.

Proof of Theorem 4.5. We fix s € N and r > 0, and define the fol-
lowing functions:
w=[L+h ()],

2= [+ R ()] + 2r[L + 2 (w)]" Ry (u) by (u)u.
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It is simple to prove that, in Q:
(6.1) [1+h2(w)]" <z < (1+4er) 1+ k2 (w)]".

We observe that Lemma 3.2 shows that the function w € W;’g(y, 1, §2);
moreover,

(6.2) Dw = zD%u, almost everywhere in €2, |a| =1
and

(6.3) |DPTYw — 2DP Y| < 625 (r + 1)%[1 + h2(u)]"| D u|| DVl

almost everywhere in 2,

for every multiindex S, |5| = 1, and v, |y| = 1.

Let G, = 01if |a] =1 and G, = Dw — zD%u if || = 2, G =
{Gq : la| = 1,2}. From (6.2) and (6.3), it follows that:

(6.4) Vow = zVou + G

and
(6.5)
|G| < 6E(r + 1)%[1 4 h2(w)]"|DPu||Du| almost everywhere in €,

for every multiindex a, a = 8+ ~, with |8| = |y| = 1. Here, and

in the sequel, with k;, i = 1,2, ..., we intend to use positive constants
dependent only upon n, pa, 9a, g, C, €1, C2, €3, C4, C, ¢1 and ¢a. Defining
1
A=

(1+4cr)[1+ (s+1)2]"
from (6.1), we deduce:
(6.6) 0< Az <1

We choose
[1+ R2(w)]"

1+ (s+1)2]7(1 +4eir)”
We have pu = A\w. From Hypothesis 4.3, we have:

YT

u—Aw €e€V.

Since
I(u) < I(u— M),
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we have

(6.7) / Az, Vau)dr < / A(z,Vou — AVaw) dz
Q Q

+/ Aoz, u — Iw) dxf/ Ap(x,u) dx.

Q Q

Due to (6.4) and (6.6) as well as to the convexity of A(z,¢&), we have:
(6.8)  A(z,Vau— AVaw) < (1 — Az2)A(x,Vau) + AzA (x, —C:)

From (4.2), we have:

p

G(x) Ga(z)|™
. Alz,——= ) < o ———= .
69 A(e-E) e I
We fix an arbitrary multiindex «, || = 2, and let 8 and v be

multiindexes such that |8] = |y| = 1 and @ = 8 + 7. From Hypothesis
2.5, inequalities (6.1) and (6.5), we obtain

Ga(x) Pe ~ 2 Pa/d48 | 1B /
(6.10) o ) < [6cca(r + 1)7 [P ™7 [ DPufPeybe/ 9| DY yu|Pe.
We set

p - 9
489y — Pa(ay + qp)

and take ¢ € (0,1). Using (2.1), (6.11) and the Young inequality, from
(6.10) we derive

Go(x)

z(x)

Pa €

T (r+1)
+ e P[6cca (1 + 1)2+1/qs+1/q~/]ppa.

{v| D ul® + vy | DVu| ™}

(03

The last inequality and (6.9) imply

T 7G(IL’) 262n2€ 5 X9
(6.12) A(’ z(ac))S r+1) Y nlDxul

[x|=1

+ con?e ™0 (1 4 6¢cy)™ (r 4 1)3™0 + f(x),

where
Pp+~+484y

mo = Imax .
1B1=171=1 484y — P34+~ (v + 45)
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From (6.1), (6.8) and (6.12) we obtain:
Az, Vau — AVaw) < (1 — A2)A(z, Vau)

(6.13) + k1)e Z vy | DXu| ™ [1 + h2(u)]"
Ix|=1
+ kg A(1 4 ) Bmoth) emmory 4 RA(w)]"[1 + f(z)].

Using the convexity of the function Ag(z,n) and (4.3), we have:
(6.14)  Ag(z,u — Iw) < Ag(z,u) + A[1 + h2(u)]"[csul? + fo(z)].
Taking into account inequalities (6.13) and (6.14), from (6.7) we derive:
/ zA(x, Vau) dx < k‘gG/ Z vy | DXu| ™ [1 + h2(u)]"dx
Q
Ix|=1

(1) | (1 f@)+ R )] de

+ / leslul®= + fo(@)][1 + h2(w)]"de.

From Hypothesis 4.1, (6.1) and the previous inequality, we have:

/Q S val Doul (1 + K2 (u)]" de

le|=1

< k(14 7)BmotD) /Q[IUIQ- + 1+ f(x) + fo(@)][L + h2(u)]"da.

Next, we set ® = {1+ f + fo}. Taking into account that ® € L(Q),

t = min(t«, t) > q/(¢ — q+), we can apply Lemma 3.3 and obtain that
u € L>(Q). O

7. Example. We show an example where all of the assumptions on
weight functions are satisfied. Towards this aim, we use some ideas of
[12, Example 6.2].

Let n > 5, and let @ = {z € R : |z| < 1}. Let ¢a,|a] = 1, be
numbers such that

(71) 7”/ <g-, q+ <mn,
n
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q+—q— 1
7.2 _ < -
(7.2) @-D  n

We set a number o such that 2n/((n — 2)g_) < o < 1 and define, for
every multiindex «, |a| = 2,

(7.3) Do = O———

where § and v are multiindices such that |3| =|y| =1 and f + 7 = a.
Since 1 < ¢g— < g4+ < n and 2n/((n —2)q-) < o < 1, the numbers
das || = 1, and pq, |a] = 2, satisfy inequality (2.1) with p, > 1.

Note that, by virtue of the inequality ¢+ < n, we have

1
— >1,
da

la=1

and, by (7.2), we obtain

A Z e )<y

|a]=1

Let A4, |a| = 1, be positive numbers such that

1 Ao ¢ -1 1 1
4 Smax 22 < T C (N ),
(7.4) max — < n( >

nlal=14¢a  ¢-(g+—1)
For every multiindex «, |a| = 2, we set

Ay g A
Uqﬁv dy 7B

7.5 Ta =
(7.5) qs + Gy

where 8 and 7 are multiindices such that |5| = |y| =1 and 8+ v = .

Now, for every multiindex «,|a| = 1, let v, be the function in Q
defined by v4(z) = |z|*>, and let, for every multiindex a, || = 2, q
be the function in Q defined by pq(x) = |z|™. Using (7.1), (7.3)—(7.5)
and the inequality 2n/((n — 2)g_) < o, we obtain that Hypotheses 2.1
and 2.4 are fulfilled. Moreover, from (7.3) and (7.5), it follows that
Hypothesis 2.5 holds.
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Finally, there exist real numbers ¢ > 0 and ¢, ¢ > (¢_(¢+—1))/
(q—— 1) such that, for every u € Wh4(v, Q),

o\ Ve 1/qa
(/ |u|qu) SEZ (/ VaDaU|q“dx) .
Q =1 N\

For more details concerning the above assertion, see [12]. Taking into
account that

Hypothesis 2.2 is satisfied.
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