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ON THE BOUNDEDNESS OF MINIMIZERS OF SOME
INTEGRAL FUNCTIONALS WITH DEGENERATE

ANISOTROPIC INTEGRANDS

S. BONAFEDE

ABSTRACT. In this paper, we obtain the boundedness
of minimizers for a class of integral functionals, defined in a
weighted anisotropic space.

1. Introduction. In this paper, we consider the following higher
order integral functional:

(1.1) I(u) =

∫
Ω

{A(x,∇2u) +A0(x, u)} dx

defined in a weighted space W̊ 1,q
2,p (ν, µ,Ω), where Ω is an open bounded

set of Rn, and ν = {να : |α| = 1} and µ = {µα : |α| = 2} are
sets of positive functions in Ω satisfying some hypotheses specified
later; ∇2u = {Dαu : |α| = 1, 2}. Working with the functional I(u)
instead of working with its Euler equation, we derive the boundedness
of function u(x) minimizing functional (1.1). The proof is based on
the application of a modification of the Moser method (see Lemma
3.3) which essentially consists of obtaining uniform Lr-estimates (at
r → +∞) for an auxiliary function φ(u) (see, also, [19], or more
recently, [11, 18]).

It is supposed that A(x, ξ) is a Carathéodory function, convex with
respect to ξ = {ξα : |α| = 1, 2}, and, for almost every x ∈ Ω and
every ξ, satisfying the following inequality:

(1.2) c1

{ ∑
|α|=1

να(x)|ξα|qα +
∑
|α|=2

µα(x)|ξα|pα

}
− f(x) ≤ A(x, ξ)

≤ c2

{ ∑
|α|=1

να(x)|ξα|qα +
∑
|α|=2

µα(x)|ξα|pα

}
+ f(x),
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where c1 and c2 are positive constants, f(x) is a nonnegative function,
f ∈ Lt∗(Ω), t∗ > 1, qα and pα are real numbers such that qα ∈ ]1, n[, if
|α| = 1, pα ∈ ]1, n/2[, if |α| = 2 (q = {qα : |α| = 1}, p = {pα : |α| = 2})
and 1/qγ + 1/qβ < 1/pγ+β , if |γ| = |β| = 1.

Moreover, A0(x, η) is a Carathéodory function, convex with respect
to η, and, for almost every x ∈ Ω and every η ∈ R, satisfying

−c4|η|q− − f0(x) ≤ A0(x, η) ≤ c3|η|q− + f0(x),

where c3 > 0, c4 ∈ [0, c1/c0[, q−= min|α|=1 qα, f0(x) is a nonnegative
function with summability in Ω to be made more specific later on.

A similar result was established in [5]; however, condition (1.2) is
more general than the corresponding condition in [5] by the presence
of the set of exponents qα, pα and of the sets of weighted functions.

We recall that a strengthened coercivity condition such as that pro-
vided on the left side of inequality (1.2) goes back to the pioneering
paper [19], wherein the authors established, for q > mp, the bounded-
ness and the Hölder continuity of generalized solutions from the class
Wm,p(Ω) ∩ W 1,q(Ω) for nonlinear elliptic equations of the divergent
form ∑

|α|≤m

(−1)|α|DαAα(x, u, . . . ,D
mu) = 0 in Ω.

Moreover, the study of regularity for solutions of a class of higher
order degenerate elliptic equations and variational inequalities in the
anisotropic case was treated in [4, 12]. Finally, for the non degenerate
case, the problem of regularity of minimizers of integral functionals was
studied in [6, 8, 13, 15] and, more recently, in [2, 3, 7, 14].

2. Preliminaries. We shall suppose that Rn, n > 2, is the n-dimen-
sional Euclidian space with elements x = (x1, x2, . . . , xn). Let Ω be a
bounded open set of Rn. Let, for every multiindex α, |α| = 1, qα be
numbers such that 1 < qα < n, and let, for every multiindex α, |α| = 2,
pα be numbers such that 1 < pα < n/2; we denote

q = {qα : |α| = 1}, p = {pα : |α| = 2}.

We assume that, for every multiindex β, |β| = 1 and γ, |γ| = 1,

(2.1)
1

qγ
+

1

qβ
<

1

pγ+β
.
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Hypothesis 2.1. Let, for every multiindex α, |α| = 1, να be a positive
measurable function in Ω such that

να(x) ∈ L1
loc(Ω),

(
1

να(x)

)1/(qα−1)

∈ L1
loc(Ω).

For more details, cf., [1, 9, 10, 16, 17].

We set ν = {να : |α| = 1}, q−= min|α|=1 qα, q+ = max|α|=1 qα, and

denote by W 1,q(ν,Ω) the set of all functions u ∈ Lq−(Ω), such that the
distribution derivatives Dαu, |α| = 1, satisfy

να|Dαu|qα ∈ L1(Ω).

W 1,q(ν,Ω) is a Banach space with respect to the norm

∥u∥1,q,ν =

(∫
Ω

|u|q−dx
)1/q−

+
∑
|α|=1

(∫
Ω

να|Dαu|qαdx
)1/qα

.

W̊ 1,q(ν,Ω) is the closure of C∞
0 (Ω) in W 1,q(ν,Ω).

Hypothesis 2.2. There exist numbers c̃ > 0 and q̃ > q+ such that, for

every u ∈ W̊ 1,q(ν,Ω),

(2.2)

(∫
Ω

|u|q̃dx
)1/q̃

≤ c̃
∑
|α|=1

(∫
Ω

να|Dαu|qαdx
)1/qα

.

Consequently,

(2.3) ∥u∥1,q,ν ≤ Γ
∑
|α|=1

(∫
Ω

να|Dαu|qαdx
)1/qα

,

and

(2.4)

∫
Ω

|u|q−dx ≤ c0
∑
|α|=1

(∫
Ω

να|Dαu|qαdx
)
+ c,

where Γ, c0, c are positive constants depending only upon n, c̃, q−, q+, q̃
and measΩ.
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Lemma 2.3. If Hypothesis 2.2 is satisfied, then the imbedding of
W̊ 1,q(ν,Ω) in Lq−(Ω) is compact.

Proof. Let {un} be a sequence of functions of W̊ 1,q(ν,Ω) with equi-
bounded norms, and let {Πk} be a sequence of pluri-intervals in Ω such
that:

(a) Πk ⊂ Πk+1, for any k ∈ N;

(b) limk→+∞ Π̊k = Ω;

(c) for any C closed, bounded set of Ω, there exists a k : C ⊂ Π̊k,
k ≥ k.

Then the norms of {un} inW 1,1(Π̊1) are equi-bounded. We can extract
from {un} a subsequence {u1,n} that converges almost everywhere in

Π̊1. Arguing as above, we can extract from {u1,n} a subsequence {u2,n}
that converges almost everywhere in Π̊2, etc. By the diagonal method,
we obtain that {un,n} converges almost everywhere in Ω and, from
(2.2), in Lq−(Ω). �

Hypothesis 2.4. Let, for every multiindex α, |α| = 2 , µα be a positive
function in Ω such that

µα(x) ∈ L1
loc(Ω),

(
1

µα(x)

)1/(pα−1)

∈ L1
loc(Ω).

We set µ = {µα : |α| = 2} and denote by W 1,q
2,p (ν, µ,Ω) the function

space of all real-valued functions u ∈W 1,q(ν,Ω) such that distribution
derivatives Dαu and |α| = 2 satisfy

µα|Dαu|pα ∈ L1(Ω).

W 1,q
2,p (ν, µ,Ω) is a Banach space with the norm

∥u∥ = ∥u∥1,q,ν +
∑
|α|=2

(∫
Ω

µα|Dαu|pαdx

)1/pα

.

We denote by W̊ 1,q
2,p (ν, µ,Ω) the closure in W 1,q

2,p (ν, µ,Ω) of the set

C∞
0 (Ω).
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Hypothesis 2.5. There exists a positive constant c such that, for every
multiindex β, |β| = 1 and γ, |γ| = 1

µ
1/pβ+γ

β+γ ≤ cν
1/qβ
β ν1/qγγ in Ω.

We note that our functional spaces are specific cases of the spaces
introduced in [12].

3. Auxiliary results. Let h ∈ C∞(R) be a non-decreasing function
such that h = 0 on ]−∞, 0] and h = 1 on [1,+∞[.

We set

c̃1 = max
R

|h′|, c̃2 = 2max
R

|h′|+max
R

|h′′|.

Let, for every s ∈ R, hs : R → R be the function such that

hs(η) = η + (s+ 1− η)h(η − s)− (s+ 1 + η)h(−η − s), η ∈ R.

We have {hs} ⊆ C∞(R) and, for every s ∈ R, the following property
holds:

hs(η) = η if |η| ≤ s

hs(η) = −s− 1 if η ≤ −s− 1

hs(η) = s+ 1 if η ≥ s+ 1.

Moreover, for every s ∈ N and η ∈ R, we have

|hs(η)| ≤ 2|η|, 0 ≤ h′s(η) ≤ c̃1,

|η|h′s(η) ≤ 2c̃1|hs(η)|, |h′′s (η)| ≤ c̃2,

|η||h′′s (η)| ≤ 2c̃2|hs(η)|.

For more details concerning the functions h and hs, see [11].

Due to the assumptions of Section 2 and the properties of the
function hs, we have the following:

Lemma 3.1. Let u ∈ W̊ 1,q(ν,Ω), s ∈ N, r > 0. Let

φ = u[1 + h2s(u)]
r

ψ = [1 + h2s(u)]
r + 2r[1 + h2s(u)]

r−1hs(u)h
′
s(u)u.



1786 S. BONAFEDE

Then, φ ∈ W̊ 1,q(ν,Ω) and, for every multiindex α, |α| = 1, Dαφ =
ψDαu almost everywhere in Ω.

Using Hypothesis 2.4 and properties of the function hs, we establish
the following:

Lemma 3.2. Let u ∈ W̊ 1,q
2,p (ν, µ,Ω), s ∈ N, r > 0. Let φ and ψ be

defined as in Lemma 3.1. Then, φ ∈ W̊ 1,q
2,p (ν, µ,Ω) and :

(a) for every multiindex α, |α| = 1, Dαφ = ψDαu almost every-
where in Ω;

(b) for every multiindex β, |β| = 1, and γ, |γ| = 1,

|Dβ+γφ− ψDβ+γu| ≤ 6c̃2(r + 1)2[1 + h2s(u)]
r|Dβu||Dγu|

almost everywhere in Ω.

We refer to [4] for more details concerning the proof of Lemmas 3.1
and 3.2. Finally, under Hypotheses 2.1 and 2.2, we shall prove the
following:

Lemma 3.3. Let m1,m2 > 0, t > q̃/(q̃ − q+), Φ ∈ Lt(Ω), and let

u ∈ W̊ 1,q(ν,Ω). Let, for every s ∈ N and r > 0,

(3.1)

∫
Ω

{ ∑
|α|=1

να|Dαu|qα
}
[1 + h2s(u)]

rdx

≤ m1(1 + r)m2

∫
Ω

{|u|q− +Φ}[1 + h2s(u)]
rdx.

Then,

(3.2) ess sup
Ω

|u| ≤M0

where the positive constant M0 depends only upon n, c̃, c̃1, q̃, q−, m1,
m2, ∥u∥1,q,ν , ∥Φ∥Lt(Ω) and measΩ.

Proof. We set t′ = t/(t− 1) and q ∈ ]q+, q̃[. By di, i = 1, 2,
. . . , we shall denote positive constants which depend only upon n, q−,
q+, q̃, c̃, c̃1 and measΩ.
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For all s ∈ N, r > 0, let

Ts(r) = 1 +

∫
Ω

[|u|q + g][1 + h2s(u)]
rdx,

where g = Φ+ 1. It results in

Ts(r) ≤ 1 +

∫
Ω

|ũ|qdx+ ||g||Lt(Ω)

(∫
Ω

(w̃1 + 1)q̃dx

)1/t′

,

where

ũ = u[1 + h2s(u)]
r/q,

w̃ = [1 + h2s(u)]
rt′/q̃ − 1.

Hence,

Ts(r) ≤ 1 +

(∫
Ω

|ũ|q̃dx
)q/q̃

(measΩ)(q̃−q)/q̃

+ ∥g∥Lt(Ω)2
q̃/t′

(∫
Ω

w̃q̃dx

)1/t′

+ ∥g∥Lt(Ω)2
q̃/t′(measΩ)1/t

′
.

The last inequality and Hypothesis 2.2 give:

(3.3)

Ts(r) ≤ d1 + d2

[ ∑
|α|=1

(∫
Ω

να|Dαũ|qαdx
)1/qα]q

+ d3

[ ∑
|α|=1

(∫
Ω

να|Dαw̃|qαdx
)1/qα]q̃/t′

.

Next, simple computations imply:

(3.4) |Dαũ| ≤ d4(r + 1)[1 + h2s(u)]
r/q|Dαu|,

(3.5) |Dαw̃| ≤ d5r[1 + h2s(u)]
rt′/q̃|Dαu|.
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From (3.3)–(3.5), we get
(3.6)

Ts(r)≤d1+d6(r+1)q
[ ∑
|α|=1

(∫
Ω

να|Dαu|qα [1+h2s(u)]rqα/qdx

)1/qα]q

+ d7(r+1)q̃
[ ∑
|α|=1

(∫
Ω

να|Dαu|qα [1+h2s(u)]t
′rqα/q̃dx

)1/qα]q̃/t′
.

We set θ ∈ R:
1 < θ < min

(
q

q+
,
q̃

t′q+

)
.

From the Hölder inequality and (3.6), for all s ∈ N, r > 0, we obtain:

Ts(r) ≤ d1 + d8(r + 1)q̃
∑
|α|=1

(∫
Ω

να|Dαu|qα [1 + h2s(u)]
r/θdx

)θ

,

where the positive constant d8 depends on known parameters and
∥u∥1,q,ν . Choosing r = r/θ in (3.1), from the last inequality, we have

(3.7) Ts(r) ≤ d9(r + 1)m3 [Ts(r/θ)]
θ for all r > 0,

where m3 = q̃(1 +m2/q+). We introduce a sequence {ρj} such that

ρj = σθj+1 for all j ∈ N0,

where

σ =
1

2θ
min

(
q̃ − q,

q̃

t′

)
.

We have ρj/θ = ρj−1. This and (3.7) yield

Ts(ρj) ≤ d9(ρj + 1)m3 [Ts(ρj−1)]
θ.

Recursion relation and the inequality

Ts(ρ0) ≤ d10 + d11

∫
Ω

|u|q̃dx

lead to the conclusion that, for all j = 1, 2, . . . ,

Ts(ρj) ≤ dθ
j

12,

where d12 depends upon the known parameters, ∥Φ∥Lt(Ω) and ∥u∥1,q,ν .
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Now, noting that hs(u) → u as s→ ∞, from the definition of Ts(r)
and Fatou’s lemma, it follows that∫

Ω

|u|q+ρjdx ≤ (d
1/(σθ)
12 + 1)q+ρj , j = 1, 2, . . . ,

and, thus, the inequality (3.2) is shown. �

4. Hypotheses and statement of the main result. In this sec-
tion, we give structural hypotheses on integrands in order to guarantee
the existence of integrals. The set of all multiindex α such that |α| = 1
or |α| = 2 is Λ; Rn,2 is the space of all sets ξ = {ξα : α ∈ Λ} of

real numbers; if u ∈ W 1,q
2,p (ν, µ,Ω), then ∇2u = {Dαu : α ∈ Λ}. We

shall study the boundedness of minimizers for the class of functionals
of higher order:

(4.1) I(u) =

∫
Ω

{
A(x,∇2u) +A0(x, u)

}
dx,

defined in the weighted space W̊ 1,q
2,p (ν, µ,Ω).

Hypothesis 4.1. Let the principal part A : Ω × Rn,2 → R of the
functional be a Carathéodory function, convex with respect to ξ ∈ Rn,2

almost everywhere x ∈ Ω; we suppose that there exist real positive
constants c1 and c2, t∗ > q̃/(q̃ − q+) and a nonnegative function
f ∈ Lt∗(Ω) such that almost everywhere in Ω and for all ξ ∈ Rn,2,
the following inequality holds:

(4.2) c1

{ ∑
|α|=1

να(x)|ξα|qα +
∑
|α|=2

µα(x)|ξα|pα

}
− f(x) ≤ A(x, ξ)

≤ c2

{ ∑
|α|=1

να(x)|ξα|qα +
∑
|α|=2

µα(x)|ξα|pα

}
+ f(x).

Hypothesis 4.2. Let A0 : Ω× R → R be a function such that, for all
η ∈ R, the function A0(·, η) is measurable in Ω, and A0(x, ·) is convex
in R for almost all x ∈ Ω. Also, there exist c3 > 0, c4 ∈ [0, c1/c0[,

t̂ > q̃/(q̃ − q+) and f0 ∈ Lt̂(Ω) nonnegative such that almost everywhere
in Ω and for all η ∈ R, the following inequality holds:

(4.3) −c4|η|q− − f0(x) ≤ A0(x, η) ≤ c3|η|q− + f0(x).
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We observe that the functional in (4.1) is well defined due to the
inequalities (4.2) and (4.3). Moreover, using well-known results of the
existence of convex and coercive functionals, due to the properties of
the functions A(x, ξ) and A0(x, η), as well as to the inequalities (2.2),

(4.2) and (4.3), for all closed and convex V ⊂ W̊ 1,q
2,p (ν, µ,Ω), there exists

a function u ∈ V which is a minimizer for the functional I in V .

Hypothesis 4.3. Let be V a nonempty, closed, convex set in W̊ 1,q
2,p

(ν, µ,Ω), satisfying the following property : if v ∈ V, φ : Ω → R, 0 ≤
φ ≤ 1 in Ω and φv ∈ W̊ 1,q

2,p (ν, µ,Ω), then v − φv ∈ V .

Remark 4.4. If, for example, V = W̊ 1,q
2,p (ν, µ,Ω) or

V = {u ∈ W̊ 1,q
2,p (ν, µ,Ω) : |u| ≤ 1},

then Hypothesis 4.3 is satisfied.

We shall prove the following:

Theorem 4.5. Let Hypotheses 2.1, 2.2, 2.4, 2.5, 4.1–4.3 be satisfied.
If u is a minimizer of the functional I in V , then

ess sup
Ω

|u| ≤M,

where M depends upon known constants, measΩ and ∥u∥.

5. Construction of a minimizer for I. In the general hypothesis,
V ⊂ W̊ 1,q

2,p (ν, µ,Ω), a closed and convex set, we want to construct

function u(x), a minimizer for I in V , using direct methods.

Let v ∈ W̊ 1,q
2,p (ν, µ,Ω). We set p−= min|α|=2 pα. From (2.1), it

follows that p−< qα for every qα, |α| = 1. This fact and (2.3) imply

(5.1) ∥v∥p− ≤ Γ1

(
1+

∑
|α|=1

∫
Ω

να|Dαv|qαdx+
∑
|α|=2

∫
Ω

µα|Dαv|pαdx

)
,

where Γ1 > 0 depends only upon p−, n and Γ.

On the other hand, from (2.4), (4.2) and (4.3) we have:

(5.2)

I(v) ≥ (c1 − c4c0)

( ∑
|α|=1

∫
Ω

να|Dαv|qαdx+
∑
|α|=2

∫
Ω

µα|Dαv|pαdx

)
− ∥f + f0∥L1(Ω) − c4c.
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Then, from (5.1) and (5.2), we derive:

(5.3) I(v) ≥ Γ2∥v∥p− − Γ3.

Here, and in the sequel, Γi, i = 2, 3, 4, denotes a positive constant
dependent upon known parameters. We set

(5.4) d = inf
v∈V

I(v).

From (5.3), we obtain:
d ≥ −Γ3.

Let {vk} be such that

(5.5) lim
k→∞

I(vk) = d.

We wish to prove that vk is bounded in W̊ 1,q
2,p (Ω, ν, µ). From (5.3) and

(5.5), we obtain:

(5.6) ∥vk∥p− ≤ Γ4 for all k ≥ k0.

Then, we can extract from {vk} a sequence, which we call {vki}, that
converges in Lq−(Ω) (cf., Lemma 2.3), almost everywhere in Ω and

weakly, to a function u ∈ W̊ 1,q
2,p (ν, µ,Ω). Next, as is well known, the

convexity of A(x, ξ) with respect to ξ is a sufficient condition for the
sequential weak lower semicontinuity of I. Hence,

(5.7) lim inf
i→∞

I(vki) ≥ I(u).

From (5.4) and (5.7), we have:

I(u) = inf
v∈V

I(v).

We have found that u is a minimizer for I in V . If I is strictly convex,
then the minimizer is unique.

6. Proof of Theorem 4.5. In this section, we prove the bounded-
ness of the minimizing function.

Proof of Theorem 4.5. We fix s ∈ N and r > 0, and define the fol-
lowing functions:

ω = [1 + h2s(u)]
ru,

z = [1 + h2s(u)]
r + 2r[1 + h2s(u)]

r−1hs(u)h
′

s(u)u.
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It is simple to prove that, in Ω:

(6.1) [1 + h2s(u)]
r ≤ z ≤ (1 + 4c̃1r)[1 + h2s(u)]

r.

We observe that Lemma 3.2 shows that the function ω ∈ W̊ 1,q
2,p (ν, µ,Ω);

moreover,

(6.2) Dαω = zDαu, almost everywhere in Ω, |α| = 1

and

|Dβ+γω − zDβ+γu| ≤ 6c̃2(r + 1)2[1 + h2s(u)]
r|Dβu||Dγu|(6.3)

almost everywhere in Ω,

for every multiindex β, |β| = 1, and γ, |γ| = 1.

Let Gα = 0 if |α| = 1 and Gα = Dαw − zDαu if |α| = 2, G =
{Gα : |α| = 1, 2}. From (6.2) and (6.3), it follows that:

(6.4) ∇2ω = z∇2u+G

and
(6.5)
|Gα| ≤ 6c̃2(r + 1)2[1 + h2s(u)]

r|Dβu||Dγu| almost everywhere in Ω,

for every multiindex α, α = β + γ, with |β| = |γ| = 1. Here, and
in the sequel, with ki, i = 1, 2, . . . , we intend to use positive constants
dependent only upon n, pα, qα, q̃, c, c1, c2, c3, c4, c̃, c̃1 and c̃2. Defining

λ =
1

(1 + 4c̃1r)[1 + (s+ 1)2]r
,

from (6.1), we deduce:

(6.6) 0 < λz ≤ 1.

We choose

φ =
[1 + h2s(u)]

r

[1 + (s+ 1)2]r(1 + 4c̃1r)
.

We have φu = λω. From Hypothesis 4.3, we have:

u− λω ∈ V.

Since
I(u) ≤ I(u− λω),
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we have ∫
Ω

A(x,∇2u) dx ≤
∫
Ω

A(x,∇2u− λ∇2ω) dx(6.7)

+

∫
Ω

A0(x, u− λω) dx−
∫
Ω

A0(x, u) dx.

Due to (6.4) and (6.6) as well as to the convexity of A(x, ξ), we have:

(6.8) A(x,∇2u− λ∇2ω) ≤ (1− λz)A(x,∇2u) + λzA

(
x,−G

z

)
.

From (4.2), we have:

(6.9) A

(
x,−G(x)

z(x)

)
≤ c2

∑
|α|=2

µα

∣∣∣∣Gα(x)

z(x)

∣∣∣∣pα

+ f(x).

We fix an arbitrary multiindex α, |α| = 2, and let β and γ be
multiindexes such that |β| = |γ| = 1 and α = β + γ. From Hypothesis
2.5, inequalities (6.1) and (6.5), we obtain

(6.10) µα

∣∣∣∣Gα(x)

z(x)

∣∣∣∣pα

≤ [6cc̃2(r + 1)2]pαν
pα/qβ
β |Dβu|pανpα/qγ

γ |Dγu|pα .

We set

(6.11) ρ =
qβqγ

qβqγ − pα(qγ + qβ)
,

and take ϵ ∈ (0, 1). Using (2.1), (6.11) and the Young inequality, from
(6.10) we derive

µα

∣∣∣∣Gα(x)

z(x)

∣∣∣∣pα

≤ ϵ

(r + 1)
{νβ |Dβu|qβ + νγ |Dγu|qγ}

+ ϵ1−ρ[6cc̃2(r + 1)2+1/qβ+1/qγ ]ρpα .

The last inequality and (6.9) imply

(6.12)
A

(
x,−G(x)

z(x)

)
≤ 2c2n

2ϵ

(r + 1)

∑
|χ|=1

νχ|Dχu|qχ

+ c2n
2ϵ−m0(1 + 6cc̃2)

m0(r + 1)3m0 + f(x),

where
m0 = max

|β|=|γ|=1

pβ+γqβqγ
qβqγ − pβ+γ(qγ + qβ)

.
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From (6.1), (6.8) and (6.12) we obtain:

A(x,∇2u− λ∇2ω) ≤ (1− λz)A(x,∇2u)

+ k1λϵ
∑
|χ|=1

νχ|Dχu|qχ [1 + h2s(u)]
r(6.13)

+ k2λ(1 + r)(3m0+1)ϵ−m0 [1 + h2s(u)]
r[1 + f(x)].

Using the convexity of the function A0(x, η) and (4.3), we have:

(6.14) A0(x, u− λω) ≤ A0(x, u) + λ[1 + h2s(u)]
r[c3|u|q

−
+ f0(x)].

Taking into account inequalities (6.13) and (6.14), from (6.7) we derive:∫
Ω

zA(x,∇2u) dx ≤ k3ϵ

∫
Ω

∑
|χ|=1

νχ|Dχu|qχ [1 + h2s(u)]
rdx

+ k4(1 + r)(3m0+1)ϵ−m0

∫
Ω

[1 + f(x)][1 + h2s(u)]
rdx

+

∫
Ω

[c3|u|q− + f0(x)][1 + h2s(u)]
rdx.

From Hypothesis 4.1, (6.1) and the previous inequality, we have:∫
Ω

∑
|α|=1

να|Dαu|qα [1 + h2s(u)]
rdx

≤ k5(1 + r)(3m0+1)

∫
Ω

[|u|q− + 1 + f(x) + f0(x)][1 + h2s(u)]
rdx.

Next, we set Φ = {1 + f + f0}. Taking into account that Φ ∈ Lt(Ω),

t = min(t∗, t̂) > q̃/(q̃ − q+), we can apply Lemma 3.3 and obtain that
u ∈ L∞(Ω). �

7. Example. We show an example where all of the assumptions on
weight functions are satisfied. Towards this aim, we use some ideas of
[12, Example 6.2].

Let n > 5, and let Ω = {x ∈ Rn : |x| < 1}. Let qα, |α| = 1, be
numbers such that

(7.1)
3n

n− 2
< q−, q+ < n,
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(7.2)
q+− q−
q−(q+− 1)

<
1

n
.

We set a number σ such that 2n/((n− 2)q−) < σ < 1 and define, for
every multiindex α, |α| = 2,

(7.3) pα = σ
qβqγ
qβ + qγ

,

where β and γ are multiindices such that |β| = |γ| = 1 and β + γ = α.
Since 1 < q− ≤ q+ < n and 2n/((n− 2)q−) < σ < 1, the numbers
qα, |α| = 1, and pα, |α| = 2, satisfy inequality (2.1) with pα > 1.

Note that, by virtue of the inequality q+ < n, we have∑
|α=1

1

qα
> 1,

and, by (7.2), we obtain

1

n

( ∑
|α|=1

1

qα
− 1

)
<

q−− 1

q−(q+− 1)
.

Let λα, |α| = 1, be positive numbers such that

(7.4)
1

n
max
|α|=1

λα
qα

<
q−− 1

q−(q+− 1)
− 1

n

( ∑
|α|=1

1

qα
− 1

)
.

For every multiindex α, |α| = 2, we set

(7.5) τα = σ
qβλγ + qγλβ
qβ + qγ

,

where β and γ are multiindices such that |β| = |γ| = 1 and β + γ = α.

Now, for every multiindex α, |α| = 1, let να be the function in Ω
defined by να(x) = |x|λα , and let, for every multiindex α, |α| = 2, µα

be the function in Ω defined by µα(x) = |x|τα . Using (7.1), (7.3)–(7.5)
and the inequality 2n/((n− 2)q−) < σ, we obtain that Hypotheses 2.1
and 2.4 are fulfilled. Moreover, from (7.3) and (7.5), it follows that
Hypothesis 2.5 holds.
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Finally, there exist real numbers c̃ > 0 and q̃, q̃ > (q−(q+− 1))/

(q−− 1) such that, for every u ∈ W̊ 1,q(ν,Ω),(∫
Ω

|u|q̃dx
)1/q̃

≤ c̃
∑
|α|=1

(∫
Ω

να|Dαu|qαdx
)1/qα

.

For more details concerning the above assertion, see [12]. Taking into
account that

q−(q+− 1)

q−− 1
≥ q+,

Hypothesis 2.2 is satisfied.
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