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GLOBAL EXISTENCE AND DECAY RATE OF
STRONG SOLUTION TO INCOMPRESSIBLE

OLDROYD TYPE MODEL EQUATIONS

BAOQUAN YUAN AND YUN LIU

ABSTRACT. This paper investigates the global existence
and the decay rate in time of a solution to the Cauchy prob-
lem for an incompressible Oldroyd model with a deformation
tensor damping term. There are three major results. The
first is the global existence of the solution for small initial
data. Second, we derive the sharp time decay of the solution
in L2-norm. Finally, the sharp time decay of the solution of
higher order Sobolev norms is obtained.

1. Introduction. In this paper, we consider the incompressible
Oldroyd model with a deformation tensor damping term

(1.1)


∂tu− µ∆u+ u · ∇u+∇p = ∇ · (FFT ),

∂tF + νF + u · ∇F = ∇uF,

divu = 0

for any t > 0, x ∈ R3, where u = u(t, x) is the velocity of the flow,
µ > 0 the kinematic viscosity, ν > 0 a constant, p the scalar pressure
and F the deformation tensor of the fluid. We define (∇ ·F )i = ∂xjFij

for the matrix F . When ν = 0, equation (1.1) reduces to the classic
Oldroyd model which exhibits an incompressible non-Newtonian fluid.
Many hydrodynamic behaviors of complex fluids can be regarded as
a consequence of the interaction between fluid motions and internal
elastic properties. Physical background on this model may be found in
[1, 4, 10].
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Supposing divFT (0, x) = 0, it can be proven that divFT (t, x) = 0
almost everywhere for any time t > 0. In fact, from the second equation
in (1.1), we have

(1.2) ∂t(∇ · FT ) + ν∇ · FT + u · ∇(∇ · FT ) = 0.

Multiplying equation (1.2) by ∇ · FT , integrating over R3 and then
using the divergence-free condition of u yields:

d

dt
∥∇ · FT ∥2L2 + 2ν∥∇ · FT ∥2L2 = 0,

which implies ∥∇·FT ∥L2 = 0 for any time t > 0. Therefore, ∇· (FFT )
= (F·i · ∇)F·i, and system (1.1) can be written in an equivalent form

(1.3)


∂tu− µ∆u+ u · ∇u+∇p = F·i · ∇F·i,

∂tF·j + νF·j + u · ∇F·j = F·j · ∇u, j = 1, . . . , n,

divu = 0, divFT = 0.

If ν = 0, (1.3) is the classical incompressible Oldroyd model equa-
tion. For this model equation, existence of the local or global solution
is a concern. Lin, Liu and Zhang [14] proved the local existence of
smooth solutions and the global existence of classical solutions with
small initial data in both the entire space and the periodic domain,
if the initial data is sufficiently close to the equilibrium state for the
global existence case. Later, Lei, Liu and Zhou [12] established a sim-
ilar existence result for both local and global smooth solutions to the
Cauchy problem of incompressible Oldroyd model equations, provided
that the initial data is sufficiently close to the equilibrium state.

Theorem A. For the divergence-free smooth initial data (u0, F0) ∈ H2

(Rn) for n = 2 or 3, there exists a positive time T = T (∥u0∥H2 , ∥F0∥H2)
such that system (1.3) with ν = 0 and µ > 0 possesses a unique smooth
solution on [0, T ] with

u ∈ L∞([0, T ];H2(Rn)) ∩ L2([0, T ];H3(Rn)),

F ∈ L∞([0, T ];H2(Rn)).

Moreover, if T ∗ is the maximal time of existence, then∫ T∗

0

∥∇u∥2H2 ds = +∞.
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In a bounded domain, Lin and Zhang [15] showed the local well-
posedness of the initial-boundary value problem of the Oldroyd model
with Dirichlet condition and the global well-posedness of the initial-
boundary value problem when the initial data is sufficiently close to
the equilibrium state. Qian [19] obtained the local existence of the
solution with initial data in the critical Besov space and discovered
that, if the initial data is sufficiently close to the equilibrium state in
the critical Besov, the solution is global in time. For more results on
the topic of the Oldroyd model, the reader is referred to [2, 5, 6, 11,
13, 16, 18, 22, 23, 25].

Recently [24], we established a local well-posedness result in Hs(R3)
for s > 3/2 for the classical incompressible Oldroyd model equations by
virtue of a new commutator estimate proven by Fefferman, et al. [3],
that is:

Theorem B. Assume u0, F0 ∈ Hs(R3) with s > 3/2. Then, there ex-
ists a time T = T (∥u0∥Hs , ∥F0∥Hs) > 0 such that equations (1.3)
with ν = 0 and µ > 0 have a unique strong solution (u, F ) with
u, F ∈ C([0, T ];Hs(R3)).

This paper is dedicated to the study of the Cauchy problem for
system (1.3) with the initial condition

(1.4) (u, F )(0, x) = (u0(x), F0(x)) ∈ Hm(R3) for m ≥ 3.

The purpose of this paper is to obtain the global existence of a small
initial datum and the decay rate of the smooth solution for model (1.3).
For system (1.3) with ν = 0, the local in-time existence and uniqueness
of solution in Hs for s > 3/2 is derived. However, the global existence
of the small initial data solution is an open problem. If we have a
deformation tensor term F in the second equation of system (1.3),
the local existence of a strong solution in Hm for m ≥ 3 still holds,
formulated in the following theorem.

Theorem C. Assume u0, F0 ∈ Hs(R3) with s > 1 + 3/2. Then,
there exists a time T = T (∥u0∥Hs , ∥F0∥Hs) > 0 such that equations
(1.3) with ν > 0 and µ > 0 have a unique strong solution (u, F ) with
u, F ∈ C([0, T ];Hs(R3)). Moreover, the local solution (u, F ) satisfies
the following estimate

∥u(·, t)∥2Hs + ∥F (·, t)∥2Hs +

∫ t

0

∥F (·, τ)∥2Hs + ∥∇u(·, τ)∥2Hs dτ(1.5)

≤ C1(∥u0∥2Hs + ∥F0∥2Hs) for any t ∈ [0, T ].
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Remark 1.1. In Theorem C, if we only require s > 3/2, the local
existence of the strong solution also holds. In order to have the a priori
estimate (1.5), the condition s > 1 + 3/2 is required.

Towards this end, we state our main results as follows:

Theorem 1.2. Let m ≥ 3 be an integer and ν > 0, µ > 0. Assume
that (u0, F0) ∈ Hm(R3) and the initial data satisfies

∥u0∥Hm + ∥F0∥Hm ≤ δ0

for a small constant δ0 > 0. Then, there exists a unique, globally
smooth solution (u, F ) to the Cauchy problem (1.3) and (1.4) satisfying

∥(u, F )(·, t)∥2Hm +

∫ t

0

∥∇u(·, τ)∥2Hm + ∥F (·, τ)∥2Hm dτ≤ C1∥u0, F0∥2Hm

for all t > 0.

Theorem 1.3. Under the assumptions of Theorem 1.2, if, in addition,
(u0, F0) ∈ L1(R3)∩Hm(R3) for m ≥ 3, then the smooth solution (u, F )
has the following optimal decay rate:

∥u(t)∥2L2 + ∥F (t)∥2L2 ≤ C(t+ 1)−3/2.

The decay rate of the higher order derivative of the solution also
holds.

Theorem 1.4. Under the assumptions of Theorem 1.3, for any integer
j ≥ 0, there exists a T0 such that the small global in-time solution
satisfies

∥∇ju(t)∥2L2 + ∥∇jF (t)∥2L2 ≤ C(t+ 1)−3/2−j

for all t > T0, where C is a constant which depends upon j and the ini-
tial data.

This paper is organized as follows. In Section 2, we briefly recall
some lemmas which will be used in our proof. In Section 3, we prove
global existence of the smooth solution by the local existence result
and the a priori estimate. Section 4 is devoted to the proof of Theorem
1.3 by the classical Fourier splitting method first used by Schonbek in
[20]. In Section 5, an induction argument will be applied to obtain the
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optimal decay estimate of higher order derivative of the solution in the
L2 norm.

Throughout this paper, C denotes a generic positive constant which
may be different in each occurrence. Since the specific values of the
constants µ > 0 and ν > 0 are not important for our arguments, in the
following sections, we take µ = ν = 1.

2. Preliminaries. In this section, we present some lemmata which
will be used in the proof.

In the following sections, we will apply the following commutator
estimate and the product estimate of two functions; for details, readers
may refer to Kato and Ponce [8] and Kenig, Ponce and Vega [9] or
Majda and Bertozzi [17].

Lemma 2.1. Let 1 < p < ∞ and 0 < s. Then, there exists an abstract
constant C such that

(2.1) ∥[Λs, f ]g∥Lp ≤ C(∥∇f∥Lp1∥Λs−1g∥Lp2 + ∥Λsf∥Lp3∥g∥Lp4 )

for f ∈ Ẇ 1,p1 ∩ Ẇ s,p3 and g ∈ Ẇ s−1,p2 ∩ Lp4 ;

(2.2) ∥Λs(fg)∥Lp ≤ C(∥f∥Lp1∥Λsg∥Lp2 + ∥Λsf∥Lp3 ∥g∥Lp4 )

for f ∈ Lp1 ∩ Ẇ s,p3 , g ∈ Ẇ s,p2 ∩ Lp4 and 1 < p2, p3 < ∞, such that

1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
,

where [Λs, f ]g = Λs(fg)− fΛsg and Λ = (−∆)1/2.

We shall use the following L2 estimate of the Fourier transform of
the initial datum in a ball, which can be proved by the Hausdorff-Young
theorem. Readers may also refer to [7, Proposition 3.3], [21].

Lemma 2.2. Let u0 ∈ Lp(R3), 1 ≤ p < 2. Then:

(2.3)

∫
S(t)

|Fu0(ξ)|2dξ ≤ C(t+ 1)−3(2/p−1)/2,
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where S(t) = {ξ ∈ R3 : |ξ| ≤ g(t)} is a ball with

g(t) =

(
γ

t+ 1

)1/2

.

Here, γ > 0 is a constant which will be determined later and C is a con-
stant which depends upon γ and the Lp norm of u0.

Proof. Let Ff denote the Fourier transform of a function f . For
1 ≤ p < 2, by the Hausdorff-Young inequality, F is a bounded map
from Lp → Lq and

(2.4) ∥Fu0∥Lq ≤ C∥u0∥Lp , 1/p+ 1/q = 1.

Hence, the Hölder inequality yields

(2.5)

∫
S(t)

|Fu0|2dξ ≤
(∫

S(t)

|Fu0|qdξ
)2/q(∫

S(t)

dξ

)1−2/q

.

Combining (2.4) and (2.5), we have∫
S(t)

|Fu0|2dξ ≤ C

(∫
S(t)

dξ

)1−2/q

,

which implies estimate (2.3), and this completes the proof of Lemma
2.2. �

3. Proof of global existence. In order to prove the global exis-
tence of a smooth solution, we first prove the following a priori estimate.

Lemma 3.1. For an integer m ≥ 3, if there exists a small number
δ > 0 such that

(3.1) sup
0≤t≤T

∥u(·, t)∥Hm + ∥F (·, t)∥Hm ≤ δ,

then, for any t ∈ [0, T ], there exists a constant C1 > 1 such that

∥u(·, t)∥2Hm + ∥F (·, t)∥2Hm +

∫ t

0

∥F (·, τ)∥2Hm + ∥∇u(·, τ)∥2Hm dτ

≤ ∥(u0, F0)∥2Hm .
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Proof. We divide the a priori estimate into three steps.

Step 1. L2-norms of u, F . Taking the L2 inner product of the equa-
tions (1.3) with u and F , then summing, we obtain that

(3.2)
1

2

d

dt
(∥u∥2L2 + ∥F∥2L2) + ∥F∥2L2 + ∥∇u∥2L2 = 0,

where we have used (u · ∇u, u) = 0, (u · ∇F · j, F · j) = 0, (∇p, u) = 0
and (F·i ·∇F·i, u)+(F·j ·∇u, F·j) = 0 by the divergence free conditions
of u and F·j .

Step 2. L2-norms of ∇mu, ∇mF . Applying the operator ∇m to
both sides of (1.3) and taking the L2 inner product of the resulting
equations with ∇mu and ∇mF·j , respectively, adding and then inte-
grating over R3 by parts, we have

1

2

d

dt
(∥∇mu∥2L2 + ∥∇mF∥2L2) + ∥∇mF∥2L2 + ∥∇m+1u∥2L2

≤ −
∫
R3

∇m(u · ∇u) · ∇mudx+

∫
R3

∇m(F·i · ∇F·i) · ∇mudx

−
∫
R3

∇m(u · ∇F·j) · ∇mF·j dx+

∫
R3

∇m(F·j · ∇u) · ∇mF·j dx

(3.3)

,
4∑

i=1

Ii.

In what follows, we estimate each term on the right-hand side of the
above equation separately. For the term I1, we obtain

I1 = −
∫
R3

∇m(u · ∇u) · ∇mudx

= −
∑

0≤l≤m

Cl
m

∫
R3

(∇lu · ∇m−l∇u) · ∇mudx

≤
∑

0≤l≤m

Cl
m∥∇lu∇m−l∇u∥L6/5∥∇mu∥L6 dx.

For 0 ≤ l ≤ [m/2], applying the Gagliardo-Nirenberg inequality leads
to

∥∇lu∇m−l∇u∥L6/5 ≤C∥∇lu∥L3∥∇m−l+1u∥L2

≤C∥Λαu∥1−l/m
L2 ∥∇m+1u∥l/mL2 ∥∇u∥l/mL2 ∥∇m+1u∥1−l/m

L2 ≤Cδ∥∇m+1u∥L2 ,
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where α satisfies

l

3
− 1

3
=

(
α

3
− 1

2

)
×

(
1− l

m

)
+

(
m+ 1

3
− 1

2

)
× l

m

with

α =
m− 2l

2(m− l)
∈
[
0,

1

2

]
.

However, for [m/2] + 1 ≤ l ≤ m, we have

∥∇lu∇m−l∇u∥L6/5

≤ C∥∇lu∥L2∥∇m−l+1u∥L3

≤ C∥u∥1−l/(m+1)
L2 ∥∇m+1u∥l/(m+1)

L2 ∥Λαu∥l/(m+1)
L2 ∥∇m+1u∥1−l/(m+1)

L2

≤ Cδ∥∇m+1u∥L2 ,

where α satisfies

m− l + 1

3
− 1

3
=

(
α

3
− 1

2

)
×
(

l

m+ 1

)
+

(
m+ 1

3
− 1

2

)
×
(
1− l

m+ 1

)
with

α =
m+ 1

2l
∈
(
1

2
, 1

]
.

In both cases, we obtain

I1 ≤ Cδ∥∇m+1u∥2L2 .

For the term I2, an application of estimate (2.2) and integration by
parts directly yields

I2 =

∫
R3

∇m(F·i · ∇F·i) · ∇mudx

= −
∫
R3

∇m−1(F·i · ∇F·i) · ∇m+1u dx

≤ ∥F·i∥L∞∥∇m−1∇F·i∥L2∥∇m+1u∥L2

+ ∥∇m−1F·i∥L6∥∇F·i∥L3∥∇m+1u∥L2

≤ Cδ(∥∇m+1u∥2L2 + ∥∇mF·i∥2L2).
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For the term I3, we obtain

I3 = −
∫
R3

∇m(u · ∇F·j) · ∇mF·j dx

= −
∫
R3

∇m(u · ∇F·j) · ∇mF·j dx+

∫
R3

(u · ∇)∇mF·j · ∇mF·j dx

= −
∫
R3

([∇m, u · ∇]F·j) · ∇mF·j dx

≤ (∥∇u∥L∞∥∇mF·j∥L2 + ∥∇mu∥L6∥∇F·j∥L3)∥∇mF·j∥L2

≤ Cδ(∥∇m+1u∥2L2 + ∥∇mF·j∥2L2),

where use has been made of the fact∫
R3

(u · ∇)∇mF·j · ∇mF·j dx = 0

and the commutator estimate (2.1).

For the last term, by means of the estimate (2.2), it yields

I4 =

∫
R3

∇m(F·j · ∇u) · ∇mF·j dx

≤ C(∥F·j∥L∞∥∇m+1u∥L2 + ∥∇mF·j∥L2∥∇u∥L∞)∥∇mF·j∥L2

≤ Cδ(∥∇m+1u∥2L2 + ∥∇mF·j∥2L2).

Substituting the estimates I1–I4 into (3.3), the key estimate is obtained
by choosing δ small enough.

(3.4)
d

dt
(∥∇mu∥2L2 + ∥∇mF∥2L2) + ∥∇mF∥2L2 + ∥∇m+1u∥2L2 ≤ 0.

Step 3. Conclusion. Summing up (3.2) and (3.4), we thereby obtain

d

dt
(∥u∥2Hm + ∥F∥2Hm) + ∥F∥2Hm + ∥∇u∥2Hm ≤ 0.

Integrating the above inequality directly in time leads to

∥u(·, t)∥2Hm + ∥F (·, t)∥2Hm

+

∫ t

0

∥F (·, τ)∥2Hm + ∥∇u(·, τ)∥2Hmdτ ≤ ∥(u0, F0)∥2Hm .

We thus finish the proof of Lemma 3.1. �
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Combining the local existence Theorem 1.2 and the a priori estimate
Lemma 3.1, we will complete the proof of the global existence of the
smooth solution by a continuous extension argument.

Proof of Theorem 1.2. Assume

(3.5) E0 := ∥u0∥Hm + ∥F0∥Hm < δ/
√
C1,

where δ is defined in Lemma 3.1. By choosing δ0 = δ/
√
C1, we can

prove that there exists a global-in-time solution to system (1.3). Since
the initial data satisfies E0 < δ/

√
C1, then, according to Theorem C,

there exists a positive constant T1 > 0 such that the smooth solution
of (1.3) and (1.4) exists on [0, T1], and the following holds:

∥u(·, t)∥2Hm + ∥F (·, t)∥2Hm +

∫ t

0

∥F (·, τ)∥2Hm + ∥∇u(·, τ)∥2Hmdτ ≤ C1E
2
0

for t ∈ [0, T1], which implies

E1 := sup
0≤t≤T1

∥(u, F )(·, t)∥Hm ≤
√
C1E0 < δ.

For

(3.6) Ek := sup
0≤t≤kT1

∥(u, F )(·, t)∥Hm ≤
√

C1E0 < δ,

Lemma 3.1 and (3.5) yield Ek ≤ E0 < δ/
√
C1.

Considering (u, F )(x, kT1) as the initial data, Theorem C admits

∥u(·, t)∥2Hm + ∥F (·, t)∥2Hm +

∫ t

kT1

∥F (·, τ)∥2Hm + ∥u(·, τ)∥2Hm+1dτ

≤ C1(∥u(·, kT1)∥2Hm + ∥F (·, kT1)∥2Hm),

for t ∈ [kT1, (k + 1)T1]. Taking into account (3.6), we obtain

sup
kT1≤t≤(k+1)T1

∥(u, F )(·, t)∥Hm ≤
√
C1Ek < δ,

and thus,

Ek+1 := sup
0≤t≤(k+1)T1

∥(u, F )(·, t)∥Hm ≤ E0 < δ/
√
C1.

By the bootstrap argument, the proof of Theorem 1.2 is complete. �
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4. Proof of Theorem 1.3. In this section, we prove the decay rate
of the smooth solution to equations (1.3) in the L2 space. For ease of

presentation, we denote the Fourier transform of f by Ff or f̂ in the
subsequences.

In Section 3, we have already obtained

(4.1)
d

dt
(∥u∥2L2 + ∥F∥2L2) + ∥∇u∥2L2 + ∥F∥2L2 = 0.

Applying Plancherel’s theorem to (4.1) yields

d

dt

∫
R3

(|û(ξ)|2 + |F̂ (ξ)|2) dξ = −
∫
R3

(|ξ|2|û(ξ)|2 + |F̂ (ξ)|2) dξ.

By decomposing the frequency domain into two time-dependent sub-
sets, we obtain

d

dt

∫
R3

(|û(ξ)|2 + |F̂ (ξ)|2) dξ

≤ −
∫

|ξ|≥g(t)

g(t)2|û(ξ)|2dξ −
∫

|ξ|≤g(t)

|ξ|2|û(ξ)|2dξ −
∫
R3

|F̂ (ξ)|2dξ

= −
∫
R3

g(t)2|û(ξ)|2dξ +
∫

|ξ|≤g(t)

g(t)2|û(ξ)|2dξ −
∫
R3

|F̂ (ξ)|2dξ,

where g(t) is defined in Lemma 2.2 and γ is a constant to be determined
later. There exists a time T0 > 0 such that, when t > T0, we have

(4.2)
d

dt

∫
R3

|û(ξ)|2 + |F̂ (ξ)|2dξ + γ

1 + t

∫
R3

|û(ξ)|2 + |F̂ (ξ)|2dξ

≤ γ

1 + t

∫
|ξ|≤g(t)

|û(ξ)|2 + |F̂ (ξ)|2dξ.
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Multiplying (4.2) by the integrating factor (t+ 1)γ , it follows that

(4.3)
d

dt
((t+ 1)γ(∥u(t)∥2L2 + ∥F (t)∥2L2))

≤ γ(t+ 1)γ−1

∫
|ξ|≤g(t)

(|û(ξ)|2 + |F̂ (ξ)|2) dξ.

In order to finish the proof, we prove the estimates of |û(ξ)| and
|F̂ (ξ)| as follows.

Lemma 4.1. Let (u, F ) be a smooth solution to the Cauchy problem
(1.3) with the small initial data (u0, F0) ∈ L1 ∩ Hm, m ≥ 3. Then,
there exist

(4.4) |û(ξ, t)| ≤ C

(
|û0(ξ)|+

1

|ξ|

)
and

(4.5) |F̂ (ξ, t)| ≤ C(|F̂0(ξ)|+ |ξ|).

Proof. Taking the Fourier transform of equations (1.3), we have

(4.6) ût(ξ, t) + |ξ|2û(ξ, t) = H(ξ, t),

where H(ξ, t) = −û · ∇u(ξ, t)− ∇̂p(ξ, t) + ̂F · ∇F·i(ξ, t) and

(4.7) F̂t(ξ, t) + F̂ (ξ, t) = G(ξ, t),

where G(ξ, t) = −û · ∇F (ξ, t) + F̂ · ∇u(ξ, t). Multiplying (4.6) and

(4.7) by the integrating factors e|ξ|
2t and et, respectively, we have

(4.8)
d

dt
(e|ξ|

2tû(ξ, t)) ≤ e|ξ|
2tH(ξ, t)

and

(4.9)
d

dt
(etF̂ (ξ, t)) ≤ etG(ξ, t).

Integrating (4.8) and (4.9) in time from 0 to t yields

(4.10) û(ξ, t) ≤ e−|ξ|2tû0(ξ, t) +

∫ t

0

e−|ξ|2(t−τ)H(ξ, τ) dτ
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and

F̂ (ξ, t) ≤ e−tF̂0(ξ, t) +

∫ t

0

e−(t−τ)G(ξ, τ) dτ.

Now, we derive the estimates for H(ξ, t) and G(ξ, t). Taking the
divergence operator from the first equation of (1.3) and using the
divergence free condition of u and F , we have

△p = −∇ · div(u⊗ u) +∇ · div(F ⊗ F ).

Since the Fourier transform is a bounded map from L1 to L∞, this
leads to

|∇̂p(ξ, t)| ≤ |ξ||p̂(ξ, t)| ≤ |ξ|(∥u(t)u(t)∥L1 + ∥F (t)F (t)∥L1)(4.11)

≤ C|ξ|(∥u(t)∥2L2 + ∥F (t)∥2L2).

Similarly, for the convective terms, we also have

(4.12) |û · ∇u(ξ, t)| ≤ C|ξ|∥u(t)∥2L2

and

(4.13) |F̂ · ∇F (ξ, t)| ≤ C|ξ|∥F (t)∥2L2 ,

as well as the following estimates

(4.14) |û · ∇F (ξ, t)| ≤ C|ξ|(∥u(t)∥2L2 + ∥F (t)∥2L2)

and

(4.15) |F̂ · ∇u(ξ, t)| ≤ C|ξ|(∥u(t)∥2L2 + ∥F (t)∥2L2).

Combining the estimates (4.11)–(4.13) together, we get

(4.16) |H(ξ, t)| ≤ C|ξ|(∥u(t)∥2L2 + ∥F (t)∥2L2).

Combining the estimates (4.14)–(4.15), we obtain

|G(ξ, t)| ≤ C|ξ|(∥u(t)∥2L2 + ∥F (t)∥2L2).

Inserting |H(ξ, t)| into (4.10) and using the boundedness of L2 norms
of the solution, we deduce

|û(ξ, t)| ≤ |û0(ξ)|+
C

|ξ|
(∥u0∥2L2+∥F0∥2L2)(1−e−|ξ|2t) ≤ C

(
|û0(ξ)|+

1

|ξ|

)
.
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Using a similar argument, we have

|F̂ (ξ, t)| ≤ |F̂0(ξ)|+C|ξ|(∥u0∥2L2 + ∥F0∥2L2)(1− e−t) ≤ C(|F̂0(ξ)|+ |ξ|).

We thus derive the estimates of |û(ξ)| and |F̂ (ξ)|. �

Placing (4.4) and (4.5) into the right-hand side of (4.3) and applying
Lemma 2.2, we obtain

d

dt
((t+ 1)γ(∥u(t)∥2L2 + ∥F (t)∥2L2))

≤ C(t+ 1)γ−1

∫
|ξ|≤g(t)

(|û0(ξ)|2 + |F̂0(ξ)|2) dξ

+ C(t+ 1)γ−1

∫
|ξ|≤g(t)

1

|ξ|2
dξ + C(t+ 1)γ−1

∫
|ξ|≤g(t)

|ξ|2 dξ

≤ C(t+ 1)γ−1−3/2 + C(t+ 1)γ−1−1/2 + C(t+ 1)γ−1−5/2.

Integrating the above inequality in time from 0 to t leads to

∥u(t)∥2L2 + ∥F (t)∥2L2

≤ C((t+ 1)−γ + (t+ 1)−3/2 + C(t+ 1)−1/2 + C(t+ 1)−5/2).

By choosing γ > 1/2, we obtain

(4.17) ∥u(t)∥2L2 + ∥F (t)∥2L2 ≤ C(t+ 1)−1/2.

Again inserting the above estimate (4.17) of ∥u(t)∥2L2 + ∥F (t)∥2L2 into
estimate (4.16), it follows that∫ t

0

e−|ξ|2(t−τ)|H(ξ, τ)| dτ ≤ C|ξ|
∫ t

0

(τ + 1)−1/2dτ

≤ C|ξ|((t+ 1)1/2 − 1))(4.18)

≤ C(t+ 1)−1/2((t+ 1)1/2) ≤ C,

if |ξ| is in the ball S(t) defined in Lemma 2.2. Putting (4.18) into
(4.10), we get |û(ξ, t)| ≤ C(|û0(ξ)| + 1). Arguing similarly, we obtain

|F̂ (ξ, t)| ≤ C(|F̂0(ξ)|+1). Inserting these estimates of û(ξ, t) and F̂ (ξ, t)
into (4.3) and, by Lemma 2.2, we have

d

dt
((t+ 1)γ(∥u(t)∥2L2 + ∥F (t)∥2L2)) ≤ γ(t+ 1)γ−1(t+ 1)−3/2.



OLDROYD TYPE MODEL EQUATIONS 1717

Integrating the above estimate in time and choosing γ > 3/2 leads to

∥u(t)∥2L2 + ∥F (t)∥2L2 ≤ C(t+ 1)−3/2,

which completes the proof of Theorem 1.3. �

5. Proof of Theorem 1.4. This section is devoted to showing the
higher order derivative’s optimal decay estimate of a smooth solution
to equations (1.3) in the L2 norm.

Proof. As is standard, we denote S(t) = {ξ ∈ R3 : |ξ| ≤ f(t)}, with
f(t) = (γ/(t+ 1))1/2, where γ is a constant to be determined later. For
the order m+1 derivative term, again by the Fourier-splitting method,
it is deduced as

(5.1)

∥Λm+1u∥2L2 =

∫
R3

|ξ|2|FΛmu(ξ, t)|2dξ

≥
∫

|ξ|≥f(t)

|ξ|2|FΛmu(ξ, t)|2dξ

≥ f2(t)∥Λmu∥2L2 − f2(t)

∫
S(t)

|FΛmu(ξ, t)|2dξ

≥ f2(t)∥Λmu∥2L2 − f4(t)

∫
R3

|FΛm−1u(ξ, t)|2dξ,

where m ≥ 1 is an integer.

Inserting estimate (5.1) into (3.4), it follows that, for t > T0 with
some T0 > 0,

(5.2)
d

dt
(∥Λmu∥2L2 + ∥ΛmF∥2L2) +

γ

t+ 1
∥ΛmF∥2L2 +

γ

t+ 1
(t)∥Λmu∥2L2

≤
(

γ

t+ 1

)2

(∥Λm−1u∥2L2 + ∥Λm−1F∥2L2).

If m = 1, multiplying both sides of inequality (5.2) by (t+ 1)γ yields

d

dt
((t+ 1)γ(∥Λu∥2L2 + ∥ΛF∥2L2)) ≤ (t+ 1)γ−2(∥u∥2L2 + ∥F∥2L2)(5.3)

≤ C(t+ 1)γ−2−(3/2).
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Integrating inequality (5.3) from T0 to t, we have

(t+ 1)γ(∥Λu∥2L2 + ∥ΛF∥2L2)

≤ (T0 + 1)γ(∥Λu(T0)∥2L2 + ∥ΛF (T0)∥2L2) + C(t+ 1)γ−1−3/2.

Therefore, we can obtain, by choosing γ > 5/2,

(5.4) ∥Λu∥2L2 + ∥ΛF∥2L2 ≤ C(t+ 1)−3/2−1.

In order to finish the proof of Theorem 1.4, we use the argument of
induction by m. Assume that

(5.5) ∥Λm−1u∥2L2 + ∥Λm−1F∥2L2 ≤ Cm−1(t+ 1)−3/2−m−1.

After inserting (5.5) into (5.2), and multiplying (t+ 1)γ on both sides
of the resulting inequality, we derive

d

dt
((t+ 1)γ(∥Λmu∥2L2 + ∥ΛmF∥2L2)) ≤ γ2Cm−1(t+ 1)γ−3/2−m−1−2.

Integrating the above inequality in time from T0 to t, we get

(t+ 1)γ(∥Λmu∥2L2 + ∥ΛmF∥2L2)

≤ (T0 + 1)γ(∥Λmu(T0)∥2L2 + ∥ΛmF (T0)∥2L2)

+ γ2Cm−1(t+ 1)γ−3/2−m−1−1.

Similarly, by choosing γ > 3/2 +m, we obtain

∥Λmu∥2L2 + ∥ΛmF∥2L2 ≤ Cm(t+ 1)−3/2−m.

We thus have completed the proof of Theorem 1.4. �
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