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SEMIGROUP ASYMPTOTICS, THE FUNK-HECKE
IDENTITY AND THE GEGENBAUER COEFFICIENTS
ASSOCIATED WITH THE SPHERICAL LAPLACIAN

STUART DAY AND ALI TAHERI

ABSTRACT. A trace formulation of the Maclaurin spec-
tral coefficients of the Schwartzian kernel of functions of the
spherical Laplacian is given. A class of polynomials Pν

l (X)
(l ≥ 0, ν > −1/2) linking to the classical Gegenbauer poly-
nomials through a differential-spectral identity is introduced,
and its connection to the above spectral coefficients and their
asymptotics analyzed. The paper discusses some applications
of these ideas combined with the Funk-Hecke identity and
semigroup techniques to geometric and variational-energy in-
equalities on the sphere and presents some examples.

1. Introduction. Let (X , g) be a smooth compact n-dimensional
Riemannian manifold without boundary, and let ∆ = ∆g denote the
Laplace-Beltrami operator on X given in local coordinates via

∆g =
1√
det g

n∑
j=1

∂j

( n∑
k=1

√
det g gjk∂k

)
.

By basic spectral theory, there exists a complete orthonormal basis
(φk : k ≥ 0) of eigenfunctions of−∆g in L2(X , dvg) with the associated
eigenvalues (λk : k ≥ 0) verifying −∆gφk = λkφk. Each λk has finite
multiplicity, and the spectrum Σ(−∆g) can be arranged in ascending
order 0 = λ0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · with λj ↗ ∞. Moreover, by or-
thogonality, (φj , φk)L2(X ) = 0 for 0 ≤ j ̸= k whilst ∥φj∥L2(X ) = 1 for
all j ≥ 0 by suitable normalization.

Now, for a given function Φ = Φ(X) in the Borel functional calculus
of −∆g, the Schwartzian (or integral) kernel of the operator Φ(−∆g)
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can be expressed by the spectral sum
∑

Φ(λk)φk ⊗ φk, or more
specifically, by the sum

(1.1) KΦ(x, y) =
∞∑
k=0

Φ(λk)φk(x)φk(y), x, y ∈ X .

In the case of the heat semigroup with Φ(X) = e−tX (t > 0) the
analysis of the heat kernel and its asymptotics has been the subject of
numerous fruitful investigations in the past 60 years, leading to some
profound and deep results whose scope of applications range from direct
and inverse spectral theory, index theory, number theory and automor-
phic forms to quantum field theory, and many more. For instance, the
short time asymptotics of the heat kernel of a compact Riemannian
manifold as first studied and formulated by Minakshisundaram and
Pleijel [24] through the construction of the so-called heat parametrix
(more details follow) has resulted, by application of suitable Tauberian
theorems, in a precise formulation of the leading term in Weyl’s law, as
well as a complete description of the poles and residues of the spectral
zeta function ζX = ζX (s) on X (see [7, 13, 34] and the references
therein). As the heat semigroup is of trace class, it has a well-defined
and finite-valued trace whose short time asymptotics (t ↘ 0) takes the
form [24] (cf., also, [7, 13])
(1.2)

trT (t) = tr et∆g =

∫
X

Kt(x, x) dvg(x) =
∞∑
k=0

e−λkt ∼
∞∑
k=0

ank (X )tk

(4πt)n/2
.

The sequence of scalars (ank : k ≥ 0), called the heat coefficients or
the heat invariants (also known as the Minakshisundaram-Pleijel heat
coefficients), associated with (X , g) are geometric invariants that can
be entirely described through the Riemann curvature tensor R and its
successive covariant derivatives. For instance, the leading coefficient an0
is always the volume Volg(X ), an1 is a constant multiple of the total
scalar curvature (see below) and the further terms become increasingly
more complicated integrals of polynomial expressions in R and its
derivatives (see, e.g., [7, 8, 12, 13, 21, 29] for further details on
heat coefficients and local heat invariants, and, for some deep and far
reaching implications, see [10, 11, 17, 23, 28, 31, 32]). In particular,
and as a consequence, the first few terms in the heat trace expansion
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(1.2) can be written as (t ↘ 0)

Θ(t) = trT (t) =

∞∑
k=0

e−λkt

∼ 1

(4πt)n/2

{
Volg(X ) + t

∫
X

Scal

6
dvg(1.3)

+ t2
∫

X

5 Scal2−2|Ric|2+2|R|2

360
dvg +O(t3)

}
where R, Ric and Scal denote the Riemann curvature tensor, the Ricci
curvature tensor and the scalar curvature of (X , g), and |R|, |Ric| are
the norms of R, Ric, respectively, [21, 23].

In the case of a compact rank one symmetric space X = G/K of a
compact Lie group G and with K the isotropy group of a point in X ,
starting from the spectral sum (1.1) and using the addition formula
for the matrix coefficients of the irreducible unitary representations, it
can be seen that the Schwartzian kernel KΦ of the invariant operator
Φ(−∆) takes the form

(1.4) KΦ(θ) =
1

Vol(X )

∞∑
k=0

Mn
k Φk(θ;X )Φ(λn

k ),

where Φk = Φk(θ;X ) are the spherical functions on X , λn
k = λn

k (X )
are the numerically distinct eigenvalues of the Laplacian on X , Mn

k =
Mn

k (X ) is the dimension of the eigenspace associated with λn
k , θ =

θ(x, y) is the distance between the points x, y ∈ X and Vol(X ) denotes
the volume of X . Specializing further to the n-sphere X = Sn (note
the identification Sn = SO(n+ 1)/SO(n)) it is seen that the spherical
or zonal functions here can be expressed via the normalized Gegenbauer
polynomials (see Appendix A) as Φk = C ν

k (cos θ) (with ν = (n− 1)/2)
where, as eigenfunctions, −∆Φk = λn

kΦk while Φk(0) = 1 (cf., (A.4),
(A.6)). Hence, (1.4) leads to
(1.5)

KΦ(θ) =
∞∑
k=0

(k + n− 2)!

ωnk!(n− 1)!
(2k + n− 1)Φ(k(k + n− 1))C

(n−1)/2
k (cos θ),

where λn
k = k(k+ n− 1) with k ≥ 0 are the distinct eigenvalues of −∆

on Sn, Mn
k = (2k+n− 1)(k+n− 2)!/(k!(n− 1)!) is the multiplicity of

λn
k , cos θ = x · y and ωn = Vol(Sn) = 2π(n+1)/2/Γ((n+ 1)/2). Now, in
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view of the Schwartzian kernel KΦ being an even function, subject to
sufficient regularity, it admits a formal Maclaurin expansion about the
origin θ = 0 as

(1.6)

∞∑
l=0

∂2l

∂θ2l
KΦ

∣∣∣
θ=0

θ2l

(2l)!
=

1

ωn

∞∑
l=0

bn2l
(2l)!

θ2l.

The Maclaurin spectral coefficients bn2l = bn2l[Φ] can be explicitly
described by invoking a spectral-differential identity on the normalized
Gegenbauer polynomials, proven in Theorem 2.1 below. Indeed, it
follows as an immediate result that bn0 = trΦ(−∆), while, for l ≥ 1,
and with ν = (n− 1)/2,

bn2l = ωn
∂2l

∂θ2l
KΦ

∣∣∣∣
θ=0

=
∞∑
k=0

Mn
k Φ(λ

n
k )

l∑
j=1

clj [λ
n
k ]

j = tr[ΦPl](−∆),

(1.7)

where Pl = Pν
l (X) (with l ≥ 1) is the degree l polynomial in X

given explicitly by (2.3) below. The above identity and its variants,
including a representation by Jacobi theta series, are further explored
in Section 3. In Section 4, we study the asymptotics of the Maclau-
rin spectral coefficients through those of the heat invariants and theta
series that, in particular, enable us to recover some associated and
classical heat asymptotics. In Section 5, as a further application,
we study semigroups generated by functions of the spherical Lapla-
cian and a new class of geometric inequalities resulting from them.
Here, with the aid of the Funk-Hecke identity, we are able to gain
more insight into the nature of the associated Maclaurin spectral co-
efficients and the structure and form of the variational-energy inequal-
ities. For more motivation and discussion including applications to
kernel approximation, construction of continuous wavelets and others,
see [2, 4, 5, 14, 16, 20, 32, 34] and the references therein.

2. The differential action P(d/dθ)C ν
k (cos θ) and the associated

polynomials Pν
l = Pν

l (X). Let P = Pd(X) be a polynomial of
degree d ≥ 2 with a choice of coefficients A0, . . . ,Ad; specifically,
P(X) =

∑
AiX

i, with 0 ≤ i ≤ d, and the associated constant coefficient
differential operator L , defined formally by
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(2.1) L = P(d/dθ) =
d∑

i=0

Aid
i/dθi.

In the following, the differential operator L will be applied to the nor-
malized Gegenbauer polynomials which then results in an interesting
differential-spectral identity that motivates the introduction of a new
scale of polynomials.

Theorem 2.1. For L = P(d/dθ) as in (2.1), the normalized Gegen-
bauer polynomial C ν

k with k ≥ 1, ν > −1/2, satisfies the identity

P(d/dθ)C ν
k (cos θ)

∣∣
θ=0

= A0 +

[d/2]∑
l=1

A2l

l∑
j=1

clj(ν)[λ
ν
k]

j(2.2)

= A0 +

[d/2]∑
l=1

A2lP
ν
l (λ

ν
k),

where λν
k = k(k + 2ν) are the eigenvalues of the Gegenbauer operator

(A.4). Furthermore, the polynomial Pν
l = Pν

l (X) and its coefficients
cmj (ν) are given by

Pν
l (X) =

l∑
j=1

clj(ν)X
j ,(2.3)

clj(ν) =
l∑

m=j

2mΓ(ν +m)Γ(2ν)bmj
Γ(ν)Γ(2ν + 2m)

B2l,m(ζ),

where bmj are defined recursively as: bmm = 1, bm0 = 0 for m ≥ 1

and bm+1
j = bmj−1 − m(m + 2ν)bmj for 1 ≤ j ≤ m, B2l,m are the

Bell polynomials (see the Appendix), and ζ = (ζk) is the sequence
ζk = (−1)k/2 for k even and zero otherwise.

Proof. Since C ν
k (cos θ) is an even function, all of its odd derivatives

vanish at θ = 0, and so we are left with the task of calculating only
the even derivatives. Using Faà de Bruno’s formula (B.3) and (B.1),
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we have

[d2lCν
k (cos θ)/dθ

2l]
∣∣
θ=0

=
l∑

m=1

[dmCν
k (t)/dt

m]
∣∣
t=1

B2l,m(ζ)

for l ≥ 1 and, invoking the recursive relation (A.3) (with m ≥ 1), we
have, for ζ, as expressed in the statement of the proposition,

d2l

dθ2l
Cν

k (cos θ)
∣∣
θ=0

=
l∑

m=1

Γ(ν +m)

2−mΓ(ν)
Cν+m

k−m(1)B2l,m(ζ)(2.4)

=
l∑

m=1

alm
Γ(2ν + k +m)k!

Γ(2ν + k)(k −m)!
Cν

k (1).

Here, we have used Cν
k (1) = Γ(k + 2ν)/[Γ(2ν)k!] and have set

(2.5) alm =
2mΓ(ν +m)Γ(2ν)

Γ(ν)Γ(2ν + 2m)
B2l,m(ζ).

Now, it is a straightforward matter to show, using induction, that the
recursively defined scalars bmj satisfy

(2.6)
m−1∏
p=0

(X − p(p+ 2ν)) =
m∑
j=1

bmj Xj .

As a result, we can write the multiplicity functions as
(2.7)

Γ(2ν + k +m)k!

Γ(2ν + k)(k −m)!
=

m−1∏
p=0

(k+2ν+ p)
m−1∏
p=0

(k− p) =
m∑
j=1

bmj [k(k+2ν)]j .

Therefore, by combining (2.4) and (2.7), we arrive at the differential-
spectral identity

d2l

dθ2l
C ν
k (cos θ)

∣∣
θ=0

=

l∑
m=1

alm

m∑
j=1

bmj [k(k + 2ν)]j = Pν
l (λ

ν
k).(2.8)

Applying the differential operator P(d/dθ) by taking into account only
its even order terms, combined with the above, at once gives the desired
conclusion. �
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A straightforward set of calculations yield the first few polynomials
Pν

l , listed below for the convenience of the reader. Indeed, for 1 ≤
l ≤ 3, we have

Pν
1 (X) =

−X

(2 ν + 1)
, Pν

2 (X) =
3X2 − 4νX

4 ν2 + 8 ν + 3
,(2.9)

Pν
3 (X) =

−15X3 + 60νX2 − 16(4ν2 + ν)X

8 ν3 + 36 ν2 + 46 ν + 15
,(2.10)

while Pν
4 (X) is given by

(2.11)
105X4 − 840νX3 + 336(7ν2 + 2ν)X2 − 64(34ν3 + 24ν2 + 5ν)X

16ν4 + 128ν3 + 344ν2 + 352ν + 105
.

3. A trace formulation of the Maclaurin spectral coeffi-
cients. Being motivated to understand and describe the Macluarin
spectral coefficients more explicitly and, in particular, to formulate
and exploit their relationship to the well-known heat trace and the
Minakshisundaram-Plejel heat coefficients, we now specialize to func-
tions Φ = Φ(X) of the Laplace transform type

(3.1) Φ(X) =

∫ ∞

0

e−Xsf(s) ds, X ≥ 0,

for a suitable L1-integrable function f . For Φ, as above, using Fubini’s
theorem to commute the integral and the summation, we can write the
Maclaurin spectral coefficients bn2l in (1.7), by noting ν = (n− 1)/2, as

bn2l[Φ] =

∫ ∞

0

∞∑
k=0

Mn
k

l∑
j=1

clj [λ
n
k ]

je−λn
ksf(s) ds(3.2)

=

∫ ∞

0

l∑
j=1

clj(−1)jf(s)
dj

dsj
tr es∆ds

=

∫ ∞

0

f(s)

[
Pν

l

(
− d

ds

)]
tr es∆ds.

As a result, we can now write the Macluarin spectral coefficients in the
alternative and more suggestive trace form

(3.3) bn2l = tr[F ν
l (−∆)],
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where F ν
l is the function

F ν
l (X) :=

∫ ∞

0

f(s)Pν
l

(
− d

ds

)
e−sXds, X ≥ 0.(3.4)

Theorem 3.1. Let n≥2, and let Φ=Φ(X) be as defined by the Laplace
integral (3.1) for a suitable integrable f . Consider the Schwartzian
kernel of Φ(−∆) and its expansion

(3.5) KΦ(θ) =
1

ωn

∞∑
k=0

Mn
k Φ(λ

n
k )C

(n−1)/2
k (cos θ) =

1

ωn

∞∑
l=0

bn2l
(2l)!

θ2l.

Then, the Maclaurin spectral coefficients bn2l = bnl [Φ] can be described
by (3.2) or, equivalently, by the trace formulation (3.3)–(3.4).

Now that we have bridged between the Maclaurin spectral coeffi-
cients bn2l[Φ] of the Schwartzian kernel KΦ on one hand and an integral
involving the heat trace tr es∆ (cf., (3.2)–(3.3)) on the other, we go on
to exploit this further by showing that the coefficients bn2l[Φ] can be
described in terms of the classical Jacobi theta functions ϑ1, ϑ2. For
the sake of the reader’s convenience, we recall that these are defined
for s > 0, respectively, by the theta series (cf., e.g., [9, 27])

(3.6) ϑ1(s) = 1 +

∞∑
j=1

2e−j2s =
√
π/s

(
1 +

∞∑
j=1

2e−j2π2/s

)
,

(where the second equality results from an application of the Poisson

summation formula) with asymptotics ϑ1(s) =
√
π/s + O(e−1/s) as

s ↘ 0, and

(3.7) ϑ2(s) =
∞∑
j=0

(2j + 1)e−(j+(1/2))2s

with asymptotics

ϑ2(s) ∼ 1/s+
∞∑
k=0

Bks
k/k!

as s ↘ 0 with Bk as in (4.12). We will see below that, in odd dimensions,
it is the function ϑ1 that will naturally arise and, in even dimensions,
the function ϑ2.
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Theorem 3.2 (n ≥ 3 odd). Let Φ = Φ(X) be as in (3.1). Then, for
n ≥ 3 odd, the Maclaurin spectral coefficients bn2l = bn2l[Φ] in (3.2)–(3.3)
can be expressed by

(3.8) bn0 = trΦ(−∆) =

(n−3)/2∑
m=0

An
m(−1)m+1

(n− 1)!

∫ ∞

0

f(s)ϑ
(m+1)
1 (s) dµ(s),

where dµ(s) = es(n−1)2/4ds and, for l ≥ 1, by

bn2l =

∫ ∞

0

f(s)

[
Pν

l

(
− d

ds

)]
tr es∆ds(3.9)

=

(n−3)/2∑
m=0

l∑
j=1

j∑
i=0

An
mclj(−1)j+m+1

(n− 1)!

(
j

i

)
[(n− 1)/2)]2i

×
∫ ∞

0

f(s)ϑ
(m+j−i+1)
1 (s) dµ(s).

Here, clj are as in Theorem 2.1, An
m are scalars (see below) and ϑ

(k)
1 is

the kth derivative of the function ϑ1 as defined by (3.6).

Proof. We proceed by first writing the heat trace Θ(s) = tr es∆

in terms of the Jacobi theta function. Towards this end, it will be
convenient to express the multiplicity function Mk

n in the polynomial
form
(3.10)

Mn
k = (n+ 2k− 1)

(k + n− 2)!

(n− 1)!k!
=

(n−3)/2∑
m=0

2An
m

(n− 1)!
(k+ (n− 1)/2)2m+2,

where the scalars An
m are taken as the coefficients of the polynomial

identity∏
j

(X2 − j2) =
∑
m

An
mX2m+2 (0 ≤ j, m ≤ (n− 3)/2).

Using the observation that the sum on the right here vanishes if X is
an integer between 1 and (n− 3)/2, we can write the heat trace as

Θ(s) = tr es∆ =
∞∑
k=0

Mn
k e

−k(k+n−1)s(3.11)
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=

(n−3)/2∑
m=0

2An
m

(n− 1)!

∞∑
p=1

p2m+2e−s(p2−(n−1)2/4)

=

(n−3)/2∑
m=0

(−1)m+1An
m

(n− 1)!
ϑ
(m+1)
1 (s)es(n−1)2/4.

The proof of (3.8) and (3.9) can be completed by differentiating (3.11)
using the Leibniz rule and plugging this into (3.2). �

Theorem 3.3 (n ≥ 2 even). Let Φ = Φ(X) be as in (3.1). Then, for
n ≥ 2 even, the Maclaurin spectral coefficients bn2l = bn2l[Φ] in (3.2)–
(3.3) can be expressed by

bn0 = trΦ(−∆) =

(n−2)/2∑
m=0

Bn
m(−1)m

(n− 1)!

∫ ∞

0

f(s)ϑ
(m)
2 (s) dµ(s),(3.12)

where dµ(s) = es(n−1)2/4ds and, for l ≥ 1, by

bn2l =

∫ ∞

0

f(s)

[
Pν

l

(
− d

ds

)]
tr es∆ds(3.13)

=

(n−2)/2∑
m=0

l∑
j=1

j∑
i=0

Bn
mclj(−1)j+m

(n− 1)!

(
j

i

)
[(n− 1)/2]2i

×
∫ ∞

0

f(s)ϑ
(m+j−i)
2 (s) dµ(s).

Here, clj are as in Theorem 2.1, Bn
m are scalars (see below) and ϑ

(k)
2 is

the kth derivative of the function ϑ2 as defined by (3.7).

Proof. The proof of (3.12) and (3.13) when n is even is very similar
to those in the previous theorem, and thus, below, we focus on the main
differences only. Indeed, here, we proceed by writing the multiplicity
function Mk

n as a polynomial
(3.14)

Mn
k =

2k + n− 1

(n− 1)!

n−2∏
j=1

(k+j) =
(2k + n− 1)

(n− 1)!

(n−2)/2∑
m=0

Bn
m(k+(n−1)/2)2m,
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where the scalars Bn
m are taken as coefficients of the polynomial identity∏
j

[X2 − (j − 1/2)2] =
∑
m

Bn
mX2m

(with 1 ≤ j ≤ (n − 2)/2, 0 ≤ m ≤ (n − 2)/2) when n ≥ 4, whilst,
for n = 2, the identity on the second line holds trivially with B2

0 = 1.
Using the observation that the sum on the right here vanishes if X is
an integer between 1 and (n− 2)/2, we can write the heat trace as

Θ(s) = tr es∆ =

∞∑
k=0

Mn
k e

−k(k+n−1)s(3.15)

=

(n−2)/2∑
m=0

2Bn
m

(n− 1)!

∞∑
p=1/2

p2m+1e−s(p2−(n−1)2/4)

=

(n−2)/2∑
m=0

(−1)mBn
m

(n− 1)!
ϑ
(m)
2 (s)es(n−1)2/4.

The remainder of the argument is similar to that given in Theorem 3.2,
and hence, is abbreviated. �

For the sake of future reference, note that, in the case of the heat
kernel (with Φs(X) = e−sX) proceeding directly from (3.11)–(3.15)
and using the relation bn2l[Φs] = bn2l(s) = Pν

l (−d/ds) tr es∆, we have,
for l ≥ 1:

• for n ≥ 3 odd, bn2l is given by
(3.16)
(n−3)/2∑
m=0

l∑
j=1

j∑
i=0

An
mclj(−1)m+j+1

(n− 1)!

(
j
i

)
[(n− 1)/2]2iϑ

(m+j−i+1)
1 es(n−1)2/4;

• for n ≥ 2 even, bn2l is given by
(3.17)

(n−2)/2∑
m=0

l∑
j=1

j∑
i=0

Bn
mclj(−1)m+j

(n− 1)!

(
j
i

)
[(n− 1)/2]2iϑ

(m+j−i)
2 es(n−1)2/4.

Naturally, here, we have bn0 (s) = Θ(s) = tr es∆ as in (3.11) and (3.15),
respectively.
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4. Asymptotic analysis of Schwartzian kernels via Jacobi
functions. Following from the discussion and representation results
in the previous section, here, we consider a one-parameter family of
functions Φσ = Φσ(X) (with σ > 0, X ≥ 0) defined through a Laplace
type integral

Φσ(X) =

∫ ∞

0

e−Xsfσ(s) ds, X ≥ 0,(4.1)

where fσ = fe−σs while |f | ≤ c(1 + sa) for some c > 0, a ≥ 1 and
all s > 0. We aim to describe the asymptotics of bn2l(σ) = bn2l[Φσ] as
σ ↗ ∞ by connecting firstly to the short time behavior of the heat
trace Θ(t) = tr et∆ and invoking the Minakshisundaram-Pleijel heat
coefficients and secondly to the previously encountered Jacobi theta
series and their short time asymptotics, respectively.

Theorem 4.1. The Maclaurin spectral coefficients bn2l(σ) = bn2l[Φσ],
with Φσ as in (4.1), satisfy the asymptotics as σ ↗ ∞

(4.2) bn0 (σ) = trΦσ(−∆) ∼
∞∑
k=0

ank
(4π)n/2

∫ ∞

0

f(s)sk−n/2e−σsds,

and, for l ≥ 1 with ν = (n− 1)/2,

bn2l(σ) = tr[ΦσPν
l ](−∆)

(4.3)

∼
l∑

j=1

∞∑
k=0

(−1)jclj(ν)Γ(k − n/2 + 1)ank
(4π)n/2Γ(k − n/2− j + 1)

∫ ∞

0

f(s)sk−j−n/2e−σsds.

Proof. Starting from the short time asymptotics of the heat trace
(1.2), see [24] for s > 0, we have

Θ(s) = tr es∆ =
∞∑
k=0

(2k + n− 1)
(k + n− 2)!

k!(n− 1)!
e−sk(k+n−1)(4.4)

=

∞∑
k=0

anks
k

(4πs)n/2
+O(e−1/s).
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Therefore, successive differentiation with respect to the s-variable re-
sults in the expression(
− d

ds

)j

tr es∆ =

∞∑
k=0

(−1)jΓ(k − n/2 + 1)ank
(4π)n/2Γ(k − n/2− j + 1)

sk−j−n/2 +O(e−1/s).

Now, referring to the trace formulation of the Maclaurin spectral
coefficients bn2l(σ) = bn2l[Φσ] as in (3.2), we obtain, upon using this
last heat trace derivative identity, the description and asymptotics
as σ ↗ ∞

bn2l(σ) =

∫ ∞

0

fσ(s)

[
Pν

l

(
− d

ds

)]
tr es∆ds

(4.5)

=

∫ ∞

0

fσ(s)
l∑

j=1

clj(ν)

(
− d

ds

)j

tr es∆ds

∼
l∑

j=1

(−1)jclj(ν)

(4π)n/2

∞∑
k=0

Γ(k−n/2+1)ank
Γ(k−j−n/2+1)

∫ ∞

0

f(s)sk−j−n/2e−σsds.

Indeed, to justify the last line, we proceed as follows. First, by using
the bound on the derivatives of the heat trace |djΘ(s)/dsj | ≤ cs−j−n/2

(see Appendix C for a proof of this bound) we write, for fixed t > 0,∣∣∣∣{ ∫ ∞

0

−
∫ t

0

}
fσ(s)

dj

dsj
tr es∆ds

∣∣∣∣ ≤ ∫ ∞

t

|f(s)|s−j−n/2e−σsds.

Next, bounding the integral on the right using the bound on f , we can
write

∫ ∞

t

|f(s)|s−j−n/2e−σsds ≤ ce−bt

∫ ∞

t

sa−j−n/2e−s(σ−b) ds

(4.6)

≤ ce−bt

(σ − b)a−j−n/2+1

∫ ∞

(σ−b)t

ua−j−n/2e−udu

where, upon taking b =
√

|σ|, t = 1, it is seen that this is of order

O(e−
√

|σ|). Substituting for es∆ and its derivatives in (0, t), using (1.2)
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and then bounding the remaining integral in an analogous manner,
gives the desired conclusion. �

Theorem 4.2. Let n ≥ 3 be odd, and let Φσ be defined by (4.1) with
fσ as above. Then, the Maclaurin spectral coefficients bn2l(σ) = bn2l[Φσ]
satisfy, as σ ↗ ∞:
(4.7)

bn0 (σ) = trΦσ(−∆) ∼
(n−3)/2∑
m=0

An
mΓ(m+ 3/2)

(n− 1)!

∫ ∞

0

f(s)s−m−3/2e−σsdµ,

where dµ(s) = es(n−1)2/4ds and, for l ≥ 1,

bn2l(σ) = tr[ΦσPν
l ](−∆) ∼

(n−3)/2∑
m=0

l∑
j=1

j∑
i=0

An
mclj(−1)i

(n− 1)!

(
j

i

)
[(n− 1)/2]2i

(4.8)

× Γ(m+ j − i+ 3/2)

∫ ∞

0

f(s)s−m−j+i−3/2e−σsdµ,

where An
m are the scalars as defined Theorem 3.2.

Proof. Referring to (3.6), we have the asymptotics ϑ1(s) =
√
π/s+

O(e−1/s) as s ↘ 0. As a result, by successive differentiation for m ≥ 0,
we have, for s ↘ 0

ϑ
(m+1)
1 (s) = (−1)m+1 (2m+ 1)!!

2m+1

√
πs−m−3/2 +O(e−1/s)(4.9)

= (−1)m+1Γ(m+ 3/2)s−m−3/2 +O(e−1/s).

Upon substituting these into (3.9) and using the assumptions on fσ,
the required asymptotics follow by invoking the same argument as in
Theorem 4.1. �

Theorem 4.3. Let n ≥ 2 be even, and let Φσ be defined by (4.1) with
fσ as above. Then, the Maclaurin spectral coefficients bn2l(σ) = bn2l[Φσ]
satisfy, as σ ↗ ∞

bn0 (σ) = trΦσ(−∆) ∼
(n−2)/2∑
m=0

Bn
m

(n− 1)!
(4.10)
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×
∫ ∞

0

f(s)

[
m!

s1+m
+

∞∑
k=m

(−1)mBks
k−m

Γ(k −m+ 1)

]
e−σsdµ,

where dµ(s) = es(n−1)2/4ds, and, for l ≥ 1,

bn2l(σ)=tr [ΦσPν
l ](−∆) ∼

(n−2)/2∑
m=0

l∑
j=1

j∑
i=0

Bn
mclj(−1)j+m

(n− 1)!

(
j

i

)
[(n−1)/2]2i

(4.11)

×
{∫ ∞

0

f(s)
(−1)(m+j−i)(m+ j − i)!

sm+j−i+1eσs
dµ

+

∫ ∞

0

f(s)
∞∑

k=(m+j−i)

Bks
k−m−j+ie−σs

Γ(k −m− j + i+ 1)
dµ

}
,

where Bk are the Bernoulli numbers as defined by (4.12), and Bn
m are

the scalars defined in Theorem 3.3.

Proof. It is sufficient here to use the fact that the theta series defining
ϑ2 satisfies the asymptotics as s ↘ 0

ϑ2(s) ∼
1

s
+

∞∑
k=0

Bks
k

k!
,(4.12)

Bk =
(−1)k

(k + 1)
B2k+2(1− 2−2k−1),

where Bm are the well-known Bernoulli numbers, and likewise, by
further differentiating that

(4.13) ϑ
(m)
2 (s) ∼ (−1)mm!

s1+m
+

∞∑
k=m

Bks
k−m

Γ(k −m+ 1)

as s ↘ 0 (cf., [9, 27]). Substituting these into (3.13) and using the
assumptions on fσ leads to (4.11). �

4.1. Trace asymptotics and resolvent powers. As an application,
here we discuss the asymptotics of powers of the resolvent correspond-
ing to taking fσ(s) = sa−1e−sσ/Γ(a) for a > 1. Through a limiting pro-
cess, these will then be used to obtain the asymptotics for the Maclaurin
spectral coefficients of the heat kernel, that is, bn2l[Φ = e−tX ]. Indeed,



806 STUART DAY AND ALI TAHERI

let

(4.14) Φσ(X) =

∫ ∞

0

sa−1e−sσ

Γ(a)
e−sXds = (σ +X)−a.

Then, Φσ(−∆) := Ra
σ is the resolvent operator to the power a. By

applying the theorems of Section 4, we can obtain the asymptotics
of the Maclaurin spectral coefficients bn2l(σ, a) = bn2l[R

a
σ] as σ ↗ ∞.

Towards this end, note that Theorem 4.1 gives (for l ≥ 1)
(4.15)

bn2l(σ, a) ∼
l∑

j=0

∞∑
k=0

(−1)jclj(ν)Γ(k − n/2 + 1)Γ(a+ k − j − n/2)

(4π)n/2Γ(k − n/2− j + 1)Γ(a)σa+k−j−n/2
ank .

Alternatively, by invoking the theta function description of the Maclaur-
in spectral coefficients, we have the following asymptotics by consider-
ing the cases of odd and even n separately.

• For n ≥ 3 odd, Theorem 4.2 yields:
(4.16)

bn0 (σ, a) ∼
(n−3)/2∑
m=0

An
mΓ(m+ 3/2)

(n− 1)!Γ(a)
Γ(a−m−3/2)(σ−(n−1)2/4)m−a+3/2,

and, for l ≥ 1,

bn2l(σ, a) ∼
(n−3)/2∑
m=0

l∑
j=1

j∑
i=0

An
mclj(−1)i

(n−1)!Γ(a)

(
j

i

)
[(n−1)/2]2iΓ(m+j−i+3/2)

(4.17)

× Γ(a+ i−m− j − 3/2)(σ − (n− 1)2/4)m+j−i−a+3/2.

• For n ≥ 2 even, Theorem 4.3 yields

bn0 (σ, a) ∼
(n−2)/2∑
m=0

Bn
m

(n− 1)!Γ(a)

(4.18)

×
{
m!Γ(a− 1−m)(σ − (n− 1)2/4)1−a+m

+
∞∑

k=m

(−1)m
BkΓ(a+k−m)

Γ(k−m+1)
(σ−(n−1)2/4)−a−k+m

}
,

and, for l ≥ 1,
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bn2l(σ, a)

(4.19)

∼
(n−2)/2∑
m=0

l∑
j=1

j∑
i=0

Bn
mclj(−1)j+m

(n− 1)!Γ(a)

(
j

i

)
[(n− 1)/2]2i

×
{
(−1)(m+j−i)(m+j−i)!Γ(a−1−m−j+i)(σ−(n−1)2/4)1−a+m+j−i

+
∞∑

k=(m+j−i)

BkΓ(a+k−m−j+i)

Γ(k−m−j+i+1)
(σ−(n−1)2/4)−a−k+m+j−i

}
.

The asymptotics of bn0 (σ, a) as σ ↗ ∞ now give the short time
asymptotics of the heat trace. Indeed, this follows by first noting
Θ(s) = tr es∆ = lim(k/s)k trRk

k/s = lim(k/s)kbn0 (k/s, k) as k ↗ ∞
for s > 0 and then recalling e−x = lim(1 + x/k)−k and limΓ(k +
α)/[Γ(k)kα] = 1 as k ↗ ∞ for α ∈ R. Now, for n ≥ 3 odd using (4.16),
this leads to (as s ↘ 0)

(4.20) tr es∆ ∼ es(n−1)2/4

(n−3)/2∑
m=0

An
mΓ(m+ 3/2)

(n− 1)!
s−m−3/2,

and, in a similar fashion for n ≥ 2 even using (4.19), this leads to (as
s ↘ 0)

tr es∆ ∼ es(n−1)2/4 +

(n−2)/2∑
m=0

Bn
m(−1)m

(n− 1)!
(4.21)

×
{
(−1)m(m!)s−m−1 +

∞∑
k=m

Bks
k−m

Γ(k −m+ 1)

}
.

Compare with (3.11)–(3.15) and (3.16)–(3.17).

5. Dirichlet energy and extension by semigroups. In this
section, we apply some of the tools developed earlier to build and
study extension operators out of semigroups (Tt : t > 0) generated
by functions of the spherical Laplacian and some energy inequalities
resulting from them. Here, the extension operator extends functions
on the n-sphere S, seen as the boundary of the open unit ball B =
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{(x1, . . . , xn+1) : |x| < 1} to functions inside the ball by a fixed
semigroup, and the aim is to examine the associated energy inequalities
by invoking the Maclaurin spectral coefficients and the classical Funk-
Hecke identity. For the sake of this exposition, we confine to the
Dirichlet energy and the Dirichlet principle, asserting that, for all
f ∈ H1/2(S) ⊂ L2(S) and with uH denoting the harmonic extension of
f to B, we have

(5.1)

∫
B
|∇u|2 ≥

∫
B
|∇uH |2 for all u ∈ H1(B) : u|∂B = f.

Towards this end, let F = F (X) be a non-negative function in
the Borel functional calculus of the spherical Laplacian ∆, and, for
0 < r ≤ 1, consider the associated one-parameter family of functions
Φr = Φr(X), defined as

(5.2) Φr(X) = rF (X).

The operator family (Φr(−∆) : 0 < r ≤ 1) is then a semigroup
in L2(S); in fact, the substitution r = e−t shows that Φr(−∆) is a
re-parametrization of the semigroup (Tt = e−tF (−∆) : t ≥ 0). Now,
writing the expansion of f in spherical harmonics f =

∑∞
k=0 Yk, where

Yk are the spherical harmonics of degree k, we define the extension uF

of f to be

uF (rx) = Φr(−∆)f(x) =

∞∑
k=0

rF (λn
k )Yk(x)(5.3)

=

∫
S
KΦr (x, y)f(y) dHn(y), x ∈ S, 0 < r ≤ 1,

where KΦr is the Schwartzian kernel of Φr(−∆) (cf., (5.9) for a
formulation). Note that, upon taking F = H with H, the function

(5.4) H(X) :=

(
X +

(
n− 1

2

)2)1/2

− n− 1

2
, X ≥ 0,

we have H(λn
k ) = k for all k ≥ 0, and subsequently, uH is precisely the

harmonic extension of f to the unit ball. Now, using the identity

(5.5)

∫
B
|∇uF |2 =

∫ 1

0

∫
S

[
|∂ruF |2 −

1

r2
uF∆SuF

]
rndHndr,
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it can be seen that the Dirichlet energy of uF as defined by (5.3) can
be expressed as

(5.6)

∫
B
|∇uF |2 =

∞∑
k=0

[
F (λn

k )
2 + λn

k

2F (λn
k ) + n− 1

] ∫
S
|Yk|2dHn.

In particular, the energy of the harmonic extension uH can be seen to
be ∫

B
|∇uH |2 =

∞∑
k=0

[
H(λn

k )
2 + λn

k

2H(λn
k ) + n− 1

] ∫
S
|Yk|2dHn(5.7)

=
∞∑
k=0

k

∫
S
|Yk|2dHn = ∥f∥2H1/2(S).

Thus, in view of uF = uH = f , on ∂B, the Dirichlet principle is a
formulation of the inequality

(5.8)
∞∑
k=0

[
F (λn

k )
2 + λn

k

2F (λn
k ) + n− 1

] ∫
S
|Yk|2dHn ≥

∞∑
k=0

k

∫
S
|Yk|2dHn.

Now, we make use of the Funk-Hecke identity to give an alternative
description of the Dirichlet energy of uF by invoking the Maclaurin
spectral coefficients. Towards this end, the Schwartzian kernel of
Φr(−∆) may be written via Gegenbauer polynomials as

KΦr (x, y) =
1

ωn

∞∑
k=0

Mn
k Φr(λ

n
k )C

(n−1)/2
k (cos θ)

(5.9)

=
1

ωn

∞∑
k=0

(2k + n− 1)
(k + n− 2)!

k!(n− 1)!
rF (λn

k )C
(n−1)/2
k (cos θ),

where, as before, θ = cos−1(x · y) is the geodesic distance between x
and y. By formally writing the Maclaurin expansion of the kernel KΦr ,
we have

∞∑
k=0

(2k + n− 1)
(k + n− 2)!

k!(n− 1)!
rF (λn

k )C
(n−1)/2
k (cos θ) =

∞∑
l=0

bn2l(r)

(2l)!
θ2l,

(5.10)
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where the Maclaurin spectral coefficients bn2l(r) = bn2l[Φr], by referring
to the earlier trace formulation, can be described as

bn2l(r) =
∞∑
k=0

Mn
k Φr(λ

n
k )

l∑
j=1

clj [λ
n
k ]

j =
∞∑
k=0

Mn
k [ΦrPl](λ

n
k ).(5.11)

Using the Funk-Hecke formula on the integral operator below (cf., [18]
or [19, 22]), we have:

uF (rx) =

∫
Sn

KΦr (x, y)f(y) dHn(y)(5.12)

=

∞∑
l=0

∞∑
k=0

bn2l(r)

ωn(2l)!

∫
Sn
[cos−1(x · y)]2lYk(y) dHn(y)

=
∞∑
l=0

∞∑
k=0

µl
kb

n
2l(r)

ωn(2l)!
Yk(x), x ∈ S, r < 1,

where the coefficients µl
k are explicitly given by the weighted integral

(5.13) µl
k = ωn−1

∫ 1

−1

[cos−1 t]2lC
(n−1)/2
k (t)(1− t2)(n−2)/2dt, l ≥ 0.

Invoking (5.1) and (5.5) and directly comparing the expansions in
spherical harmonics of the extension uF given by (5.3) with (5.12) leads
at once to the following statement.

Theorem 5.1. Given F = F (X) as above and f ∈ H1/2(S), let
uF = rF (−∆)f denote the extension of f as defined by (5.3). Then,
the Dirichlet energy of uF can be written as the weighted sum:

(5.14)

∫
B
|∇uF |2 =

∞∑
k=0

∫ 1

0

[
γ′2
k (r) +

1

r2
γ2
k(r)λ

n
k

]
rndr

∫
S
|Yk|2dHn,

where the functions γk = γk(r) and the Maclaurin spectral coefficients
bn2l(r) = bn2l[r

F (−∆)] satisfy the trace formulation

(5.15) γk(r) =
∞∑
l=0

bn2l(r)

(2l)!
µl
k = tr

[ ∞∑
l=0

µl
k

(2l!)
rF (−∆)Pl(−∆)

]
= rF (λn

k ),
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with the sequence µl
k given by (5.13). Furthermore, we have the energy

inequality
(5.16)

∞∑
k=0

∫ 1

0

[
γ′2
k (r) +

1

r2
γ2
k(r)λ

n
k

]
rndr

∫
S
|Yk|2dHn ≥

∞∑
k=0

k

∫
S
|Yk|2dHn.

In particular, in view of the arbitrariness of the boundary function
f ∈ L2(S), or else a direct variational argument, the above energy
inequality results in the following.

Corollary 5.2. Let γk = γk(r) be as given by the trace formulation
(5.15), and set hk(r) = rk. Then, for all k ≥ 0, we have Ek[γk] ≥
Ek[hk], that is,

(5.17)

∫ 1

0

[
γ′2
k (r) +

λn
k

r2
γ2
k(r)

]
rndr ≥

∫ 1

0

[
h′2
k (r) +

λn
k

r2
h2
k(r)

]
rndr.

Here, λn
k = k(n + k − 1) are the distinct eigenvalues of the spherical

Laplacian, while, by direct verification, Ek[hk] = k.

Proof. Fix k ≥ 0, and let g in H1(0, 1) satisfy g(0) = 0, g(1) = 1.
Then, firstly, for h = hk, as above, it is seen that −d/dr[rnh′

k(r)] +
λn
kr

n−2hk(r) = 0. Secondly, upon writing g = h+ ϕ with ϕ ∈ H1
0 (0, 1)

and invoking the quadratic nature of the energy, we can write Ek[g] =
Ek[h + ϕ] = Ek[h] + Ek[ϕ] ≥ Ek[h] = k with the last inequality being
strict for non-zero ϕ. Thus, h = hk is the unique minimizer of Ek with
respect to its own boundary conditions. �

Now, to finish off the section, we give a few examples to illustrate
the above discussion of energy inequalities in some specific cases.

• If F (X) ≡ s for some fixed s ∈ [0,∞), then uF is the homogeneous
degree s extension of f , that is, uF (rx) = rsf(x) and∫

B
|∇uF |2 =

∞∑
k=0

s2 + λn
k

2s+ n− 1

∫
S
|Yk|2dHn(5.18)

=
s2∥f∥2L2(S) + ∥∇f∥2L2(S)

2s+ n− 1
≥

∞∑
k=0

k

∫
S
|Yk|2dHn.
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Interestingly, taking the infimum on the left over s ≥ 0 and rearranging
terms leads to the inequality

√
(n− 1)2∥f∥4L2(S) + 4∥∇f∥2L2(S)∥f∥

2
L2(S) ≥

∞∑
k=0

(2k + n− 1)

∫
S
|Yk|2.

• If F (X) = X, then F (−∆) is the spherical Laplacian, and uF =
et∆f with t = log 1/r is the heat extension of f . Here, γk(r) =
rk(k+n−1), and

(5.19)

∫
B
|∇uF |2 =

∞∑
k=0

λn
k (1 + λn

k )

2λn
k + n− 1

∫
S
|Yk|2dHn ≥

∞∑
k=0

k

∫
S
|Yk|2dHn.

• Choose Fs(X) such that Fs(λ
n
k ) = sk for some fixed s ∈ [0,∞).

(Note that uF1
= uH is the harmonic extension of f .) Then, γk(r) =

rsk, and we have∫
B
|∇uFs |2 =

∞∑
k=0

k(s2k + k + n− 1)

2 sk + n− 1

∫
S
|Yk|2dHn ≥

∞∑
k=0

k

∫
S
|Yk|2dHn.

Remark 5.3. The last inequality is saturated, that is, it turns to an
equality when s = 1.

APPENDIX

In this appendix, we gather together some of the results and calcu-
lations relating to the Gegenbauer and Bell polynomials that appeared
earlier in the paper.1

A. Gegenbauer polynomials Cν
k (k ≥ 0, ν > −1/2). The Gegen-

bauer, or ultraspherical polynomial, Cν
k (t) (k ≥ 0, ν > −1/2) is defined

by the coefficient of αk in the generating function relation

(A.1)
1

(1− 2tα+ α2)ν
=

∞∑
k=0

Cν
k (t)α

k.
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It has a truncated series representation resulting from the series solution
to the Gegenbauer differential equation (see below) in the form

(A.2) Cν
k (t) =

∑
0≤l≤k/2

(−1)l
Γ(k − l + ν)

Γ(ν)l!(k − 2l)!
(2t)k−2l,

and, most notably, the derivatives satisfy the recursive relation

(A.3)
dm

dtm
Cν

k (t) = 2m
Γ(ν +m)

Γ(ν)
Cν+m

k−m(t).

The polynomial y = Cν
k (t) is a solution to the second-order homogenous

differential equation (the Gegenbauer equation)

(A.4) (1− t2)
d2y

dt2
− (2ν + 1)t

dy

dt
+ k(k + 2ν) y = 0,

that constitute a regular Sturm-Liouville system on the interval (−1, 1).
The corresponding Gegenbauer operator is seen to be a positive self-
adjoint second order differential operator in the weighted Lebesgue-
Hilbert space L2(−1, 1; (1 − t2)ν−1/2dt) having the discrete spectrum
λk = k(k + 2ν) : k ≥ 0 with associated eigenfunctions y = Cν

k (t). In

particular, upon setting dµ = (1−t2)ν−1/2dt, we have the orthogonality
relations

(Cν
k , C

ν
m)L2(dµ) =

∫ 1

−1

Cν
k (t)C

ν
m(t)(1− t2)ν−1/2dt(A.5)

=
π21−2νΓ(2ν +m)

m!(m+ ν)Γ(ν)2
δkm, k,m ≥ 0,

where δkm denotes the Kronecker delta. By direct evaluation, using
(A.2) or otherwise, we have the pointwise identities Cν

k (1) = (2ν)k/k!
and Cν

k (−t) = (−1)kCν
k (t), where (x)k = Γ(x + k)/Γ(x). When

necessary, we use the normalized form of the polynomial defined by

(A.6) C ν
k (t) =

Cν
k (t)

Cν
k (1)

, Cν
k (1) =

Γ(2ν + k)

Γ(2ν)k!
.

B. The Bell polynomial Bm,j and the vanishing of B2l,j for
l ≥ 1, j ≥ l + 1. In order to describe the action of the differential
operator L = P(d/dθ) associated with the polynomial P = Pd(X) of
degree d ≥ 2 on the Gegenbauer polynomials, we will make use of Faà
di Bruno’s formula, a generalized chain rule, to write derivatives of C ν

k
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in terms of the (incomplete) Bell polynomials. Recall that, for a pair
of positive integers m, j, the Bell polynomial Bm,j is the multi-variable
polynomial defined for x = (x1, . . . , xm−j+1) as

(B.1) Bm,j(x) =
∑ m!

k1!k2! · · · km−j+1!

m−j+1∏
i=1

(
xi

i!

)ki

,

where the sum is taken over all sequences of non-negative integers
k1, . . . , km−j+1 such that2

(B.2) k1 + · · ·+ jm−j+1 = j,

and
k1 + 2k2 + · · ·+ (m− j + 1)km−j−1 = m.

For smooth functions f, g and m ≥ 1, Faà di Bruno’s formula then
asserts that
(B.3)

dm

dxm
f(g(x)) =

m∑
j=1

f (j)(g(x)) · Bm,j(g
′(x), g′′(x), . . . , g(m−j+1)(x)).

We now make the following, useful observation which will simplify
certain applications of Faà di Bruno’s formula.

Lemma B.1. B2l,j(0, x2, x3, . . . , x2l−j+1) ≡ 0 for l ≥ 1 when j ≥ l+1.

Proof. It suffices to show that, here, the terms in B2l,j depend
on the first variable. This amounts to showing that, if j ≥ l + 1,
(ki : 1 ≤ i ≤ 2l− j+1) satisfy (B.2) with m = 2l, then k1 ̸= 0. Indeed,
let (ki : 1 ≤ i ≤ 2l− j+1) be non-negative integers such that (B.2) are
satisfied but k1 = 0. Then,

∑
ki = j ≥ l + 1 with 2 ≤ i ≤ 2l − j + 1.

On the other hand, due to the second condition in (B.2) being true, we
have

(B.4)

2l−j+1∑
i=2

iki =

2l−j+1∑
i=2

(i− 2)ki + 2

2l−j+1∑
i=2

ki ≥ 2(l + 1) > 2l,

an evident contradiction. This, therefore, completes the proof. �
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C. Bounds on the derivatives of tr et∆. Letting M be a complete
Riemannian manifold, we recall that there exists a c > 0 such that

(C.1) | tr ez∆| ≤ cℜ(z)−n/2

for all ℜ(z) > 0. We also recall that the trace of the heat kernel
is analytic in z for ℜ(z) > 0. Let γ be the circle in C with center
s ∈ (0,∞) and radius s/2. Then, if z ∈ γ, we have s/2 ≤ ℜ(z) ≤ 3s/2.
Therefore, using Cauchy’s integral formula, we have∣∣∣∣ djdsj

tr es∆
∣∣∣∣ = ∣∣∣∣ 1

2πi

∮
γ

tr e−z∆

(z − s)j+1
dz

∣∣∣∣(C.2)

≤ c

2πsj+1

∮
γ

ℜ(z)−n/2dz ≤ c

(
3

2

)−n/2

s−n/2−j .

ENDNOTES

1. For more details on Gegenbauer polynomials and applications,
see [1, 26, 34].

2. The coefficients of the Bell polynomials relate to the number of
ways a given set can be partitioned, and thus, have many applications
in combinatorics (cf., [6] for more details).
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