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ON THE ALGEBRA OF WCE OPERATORS

YOUSEF ESTAREMI

ABSTRACT. In this paper, we consider the algebra of
WCE operators on Lp-spaces, and we investigate some al-
gebraic properties of it. For instance, we show that the set
of normal WCE operators is a unital finite Von Neumann
algebra, and we obtain the spectral measure of a normal
WCE operator on L2(F). Then, we specify the form of
projections in the Von Neumann algebra of normal WCE
operators, and we obtain that, if the underlying measure
space is purely atomic, then all projections are minimal. In
the non-atomic case, there is no minimal projection. Also,
we give a non-commutative operator algebra on which the
spectral map is subadditive and submultiplicative. As a con-
sequence, we obtain that the set of quasinilpotents is an
ideal, and we get a relation between quasinilpotents and
commutators. Moreover, we give some sufficient conditions
for an algebra of WCE operators to be triangularizable, and
consequently, that its quotient space over its quasinilpotents
is commutative.

1. Introduction. Let (X,F , µ) be a complete σ-finite measure
space. All sets and function statements are to be interpreted as holding
up to sets of measure zero. We denote the collection of (equivalence
classes modulo sets of zero measure of) F-measurable complex-valued
functions on X by L0(F). For a σ-subalgebra A of F , the conditional
expectation operator associated with A is the mapping

f −→ EAf,

defined for all non-negative functions f as well as for all

f ∈ Lp(F) = Lp(X,F , µ), 1 ≤ p ≤ ∞,
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where EAf is the unique A-measurable function, satisfying∫
A

(EAf) dµ =

∫
A

fdµ, for all A ∈ A.

Throughout, we write E for EA. This operator will play a major role
in our work, and we list here some of its useful properties:

• If g is A-measurable, then E(fg) = E(f)g.
• If f ≥ 0, then E(f) ≥ 0; if E(|f |) = 0, then f = 0.

• |E(fg)| ≤ (E(|f |p))1/p(E(|g|p′
))1/p

′
; p−1 + p′−1 = 1.

• For each f ≥ 0, S(E(f)) is the smallest A-set containing S(f),
where S(f) = {x ∈ X : f(x) ̸= 0}.

A detailed discussion and verification of most of these properties may
be found in [10]. We are concerned here with linear operators acting on
Lp(F) = Lp(X,F , µ), especially on L2(F). We recall that an A-atom
of the measure µ is an element A ∈ A with µ(A) > 0 such that, for each
F ∈ A, if F ⊆ A, then either µ(F ) = 0 or µ(F ) = µ(A). A measure
space (X,F , µ) with no atoms is called a non-atomic measure space. It
is a well-known fact that every σ-finite measure space (X,A, µ|A) can
be uniquely partitioned as

X =

( ∪
n∈N

An

)
∪B,

where {An}n∈N is a countable collection of pairwise disjoint A-atoms
and B, being disjoint from each An, is non-atomic (see [11]).

We continue our investigation regarding the class of bounded linear
operators on Lp-spaces having the form MwEMu, where E is the con-
ditional expectation operator, Mw and Mu are, possibly unbounded,
multiplication operators, and called a weighted conditional expectation
operator (WCE operator). Our interest in WCE operators stems from
the fact that such forms tend to appear often in the study of those
operators related to conditional expectation. WCE operators appeared
in [2], where it was shown that every contractive projection on certain
L1-spaces can be decomposed into an operator of the formMwEMu and
a nilpotent operator. For stronger results concerning WCE operators,
the reader may refer to [1, 5, 7, 8]. In these papers, it can easily be
seen that large classes of operators are of the form of WCE operators.
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In Section 2, we consider the algebra of WCE operators on Lp-spaces,
and we investigate some of its algebraic properties. For instance, we
show that the set of normal WCE operators is a unital finite Von Neu-
mann algebra, and we obtain the spectral measure of a normal WCE
operator on L2(F). In addition, we show that the Von Neumann alge-
bra of normal WCE operators is generated by the spectral projections
of its elements. Then, we compute and specify the form of the inverse of
λI+T for WCE operator T , and we show that the set of operators of the
form λI + T is inversely closed. Moreover, we give a non-commutative
operator algebra on which the spectral map is subadditive and submul-
tiplicative. As a consequence, we obtain that the set of quasinilpotents
is an ideal, and we get a relation between quasinilpotents and commu-
tators.

In Section 3, first we give an equivalence condition for a WCE op-
erator to be quasinilpotent. In addition, we obtain a non-commutative
operator algebra of WCE operators on which the spectral map is sub-
additive and submultiplicative. As a consequence, we obtain that the
set of quasinilpotents is an ideal, and we obtain a relation between
quasinilpotents and commutators. Moreover, we give some sufficient
conditions for an algebra of WCE operators to be triangularizable, and
consequently, that its quotient space over its quasinilpotents is commu-
tative.

2. Some operator algebra structures. In this section, first we
give the definition of weighted conditional expectation operators on
Lp-spaces.

Definition 2.1. Let (X,F , µ) be a σ-finite measure space, and let A
be a σ-subalgebra of F such that (X,A, µA) is also σ-finite. Let E be
the conditional expectation operator relative to A. If 1 ≤ p, q ≤ ∞
and u,w ∈ L0(F) such that uf is conditionable and

wE(uf) ∈ Lq(F) for all f ∈ D ⊆ Lp(F),

where D is a linear subspace, then the corresponding weighted condi-
tional expectation (or briefly WCE) operator is the linear transforma-
tion

MwEMu : D −→ Lq(F)

defined by
f −→ wE(uf).
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As was proven in [4], the WCE operator MwEMu on Lp(F) is

bounded if and only if (E(|u|p′
))1/p

′
(E(|w|p))1/p ∈ L∞(A), where

1/p + 1/p′ = 1. Also, MwEMu on L1(F) is bounded if and only if
uE(|w|) ∈ L∞(F).

Now, we define some notation. Let 1 < p < ∞ and

Wp = Wp(A)

= {MwEMu : (E(|u|p
′
))1/p

′
(E(|w|p))1/p ∈ L∞(A) u,w ∈ D(E)}.

In addition, for u,w ∈ D(E), we set

Ww,p = {MwEMu : (E(|w|p))1/p(E(|u|p
′
))1/p

′
∈ L∞(A)},

Wp,u = {MwEMu : (E(|w|p))1/p(E(|u|p
′
))1/p

′
∈ L∞(A)}.

Hence, if we suppose 1 as a constant function, then

W1,p = {EMu : (E(|u|p
′
))1/p

′
∈ L∞(A)},

Wp,1 = {MwE : (E(|w|p
′
))1/p

′
∈ L∞(A)}.

Similarly, for p = 1, we have

W1 = {MwEMu : uE(|w|) ∈ L∞(F) u,w ∈ D(E)},
Ww,1 = {MwEMu : uE(|w|) ∈ L∞(F)},
W1,u = {MwEMu : uE(|w|) ∈ L∞(F)}.

These observations and the reflexivity of Lp(F) for 1 < p < ∞ show
that Ww,p is the adjoint of Wp,w as a subset of the Banach algebra
B(Lp(F)) (the algebra of all bounded linear operators on Lp(F)), where
w ∈ D(E). In addition, (Ww,p)

∗∗ = Ww,p and (Wp,w)
∗∗ = Wp,w. For

case p = 1, we have W∗
w,1 = W1,w and W∗

1,w = Ww,1; however, W∗∗
1,w

̸= W1,w and W∗∗
w,1 ̸= Ww,1, since L1(F) is irreflexive. Here, we have

the conditional-type Minkowski inequality as follows:

Lemma 2.2. For measurable functions f, g ∈ D(E) and 1 ≤ p < ∞,
we have

(E(|f + g|p))1/p ≤ (E(|f |p))1/p + (E(|g|p))1/p.

Proof. Let 1 < p, p′ < ∞ be such that p−1 + p′−1 = 1 (or p′

(p− 1) = p). Suppose that f > 0, g > 0 almost everywhere. Then, by
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using the conditional-type Hölder inequality, we have

E((f + g)p) = E((f + g)p−1(f + g))

≤ E((f + g)p−1f) + E((f + g)p−1g)

≤ (E((f + g)p
′(p−1)))1/p

′
(E(fp))1/p

+ (E((f + g)p
′(p−1)))1/p

′
(E(gp))1/p.

Since f + g > 0 almost everywhere, then E(f + g) > 0 almost
everywhere. Hence,

(E(f + g)p)1/p ≤ (E(fp))1/p + (E(gp))1/p.

Case p = 1 is clear. �

Let u, u′, w, w′ ∈ D(E) and α ∈ C. Then, we have αw,wE(uw′) ∈
D(E) and the following:

MwEMu ◦Mw′EMu′ = MwE(uw′)EMu′ ,

MwEMu +MwEMu′ = MwEMu+u′ ,

αMwEMu = MαwEMu = MwEMαu.

Now, by using conditional-type Hölder and Minkowski inequalities for
1 < p < ∞, we have the following:

(E(|αw|p))1/p(E(|u|p
′
))1/p

′
= |α|(E(|w|p))1/p(E(|u|p

′
))1/p

′
,

(E(|w|p))1/p(E(|u+ u′|p
′
))1/p

′

≤ (E(|w|p))1/p[(E(|u|p
′
))1/p

′
+ (E(|u′|p

′
))1/p

′
],

(E(|wE(uw′)|p))1/p(E(|u′|p
′
))1/p

′

≤ (E(|u|p
′
))1/p

′
(E(|w|p))1/p(E(|w′|p))1/p(E(|u′|p

′
))1/p

′
.

Therefore,

∥MwE(uw′)EMu′∥

= ∥(E(|wE(uw′)|p))1/p(E(|u′|p
′
))1/p

′
∥∞

≤ ∥(E(|u|p
′
))1/p

′
(E(|w|p))1/p(E(|w′|p))1/p(E(|u′|p

′
))1/p

′
∥∞

≤ ∥(E(|u|p
′
))1/p

′
(E(|w|p))1/p∥∞∥(E(|w′|p))1/p(E(|u′|p

′
))1/p

′
∥∞,
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and
∥MwEMu+u′∥ = ∥E(|w|p))1/p(E(|u+ u′|p

′
))1/p

′
∥∞

≤ ∥(E(|w|p))1/p(E(|u|p
′
))1/p

′
∥∞

+ ∥(E(|w|p))1/p(E(|u′|p
′
))1/p

′
∥∞.

Also, if uE(|w|), u′E(|w′|) ∈ L∞(F), then

∥u′E(|wE(uw′)|)∥∞ ≤ ∥uE(|w|)∥∞∥u′E(|w′|)∥∞,

since E(|wE(uw′)|) ≤ E(|u|E(|w|)|w′|). These observations imply
that:

• Wp is closed with respect to the scalar and operator product
for all 1 ≤ p < ∞.

• The spaces Ww,p and Wp,u are operator algebras, for all w, u ∈
D(E) and 1 ≤ p < ∞.

If V is an algebra of bounded operators, then its commutant V ′ is
the set of all bounded operators which commute with every element
in V. In symbols (and in the text of WCE operators):

(Alg(W2))
′ = W ′

2 = {T ∈ B(L2(F)) : ST = TS for all S ∈ W2},

in which, Alg(W2) is the operator algebra generated by W2.

Now, we recall that (W1,2)
′ = L∞(A) where

L∞(A) = {Ma : a ∈ L∞(A)}.

In the next proposition, we obtain the commutant of Alg(W2).

Proposition 2.3. Alg(W2)
′ = L∞(A).

Proof. Let v ∈ L∞(A). Then, for MwEMu ∈ W2 and f ∈ L2(F),
we have

MvMwEMu(f) = vwE(uf) = wE(uvf) = MwEMuMvf.

Hence, MvMwEMu = MwEMuMv, and thus, L∞(A) ⊆ W ′
2. In ad-

dition, since W1,2 ⊆ W2, then

W ′
2 ⊆ (W1,2)

′ = L∞(A).

Therefore, L∞(A) = W ′
2 = Alg(W2)

′. �
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From Proposition 2.3, we obtain that L∞(A)′ = W ′′
2 , and thus,

L∞(A)′ = Alg(W2)
′′. Hence, using [7, Theorem 3.2, Corollary 3.3],

we have the next proposition that characterizes the double commutant
of W2.

Proposition 2.4. Let T be a continuous linear transformation on
L2(F). Then the following are equivalent :

• T ∈ W ′′
2 = Alg(W2)

′′;
• there is a constant C such that, for every f ∈ L2(F)

E(|Tf |2) ≤ C · E(|f |2) almost everywhere;

• for each f ∈ L2(F), there is a constant Cf such that

E(|Tf |2) ≤ Cf · E(|f |2) almost everywhere;

• for each f ∈ L2(F), S(Tf) ⊆ S(E(|f |));
• for each f ∈ L2(F), define the measure µf on A by

dµf = |f |2dµ|A.

Then, for all f , µTf ≪ µf .

From Proposition 2.4, we obtain that S(T (χAf)) ⊆ S(E(χAf)) for
A ∈ A, f ∈ L2(F) and T ∈ W ′′

2 . Since W2 ⊆ W ′′
2 , then, for MwEMu

∈ W2, we have

S(MwEMu(χAf)) ⊆ S(E(χAf)) = S(χAE(f)) ⊆ A.

This implies that L2(A) = L2(A,FA, µFA) is invariant under MwEMu,
where FA = {A ∩ C : C ∈ F}. Thus, Alg(W2) is a reducible operator
algebra. If T = MwEMu ∈ W2, then T ∗ = MuEMw. Therefore, T ∗ ∈
W2 and (W2)

∗ = W2. Thus, L2(A) is also invariant under the adjoint
of MwEMu. Hence, the set

{L2(A) : A ∈ A}

is a subset of Lat(W2), i.e., it is a collection of reducing subspaces for
W2. We easily obtain (W1,2)

∗=W2,1. Let WN
1,2={EMu : u∈L∞(A)}.

Here, we recall a fundamental lemma from general operator theory.



508 YOUSEF ESTAREMI

Lemma 2.5. Let T ∈ B(L2(F)), and let S be a closed operator on
L2(F). If T = S on a dense subset of L2(F), then S is bounded and
T = S.

A ∗-subalgebra of B(L2(F)) is called a Von Neumann algebra on the
Hilbert space L2(F) if it is closed in strong operator topology (SOT).

In the next theorem, we prove that WN
1,2 is a unital commutative

Von Neumann algebra.

Theorem 2.6. If (X,F , µ) is a finite measure space and A ⊂ F is a
σ-subalgebra, then WN

1,2 is a unital commutative Von Neumann algebra
with unit E.

Proof. It is easy to see thatWN
1,2 is a self-adjoint operator subalgebra

of B(H). Then, we only need prove that WN
1,2 is strongly closed. Let

{EMuα}α ⊆ WN
1,2 and T ∈ B(L2(F)) be such that

∥E(uαf)− T (f)∥L2 −→ 0 for all f ∈ L2(F).

Hence, for the constant function 1, we have

∥uα − T (1)∥L2 −→ 0,

and thus, T (1) is A-measurable. In addition, for every f ∈ L∞(F)
and α, we have

∥T (1)E(f)− T (f)∥L2

≤ ∥T (1)E(f)− E(uαf)∥L2 + ∥E(uαf)− T (f)∥L2

≤ ∥T (1)− uα∥L2∥f∥∞ + ∥E(uαf)− T (f)∥L2 .

This implies that T = EMT (1) on L∞(F). Since L∞(F) is dense in

L2(F) and EMT (1) is closed, then, by Lemma 2.5, we get that EMT (1)

is bounded and T = EMT (1). Therefore, WN
1,2 is strongly closed and,

consequently, is a unital commutative Von Neumann algebra with
unit E. �

Therefore, WN
1,2 is a finite Von Neumann algebra. Let EMuα be the

approximate unit for WN
1,2. Then, we obtain that

∥uα − 1∥∞ = ∥EMuα−1∥ = ∥EMuα − E∥ −→ 0.
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Thus, a net EMuα of WN
1,2 is an approximate unit if and only if

∥uα − 1∥∞ −→ 0.

In the next proposition, we specify the form of the projections and
minimal projections in WN

1,2(A).

Proposition 2.7. An element P ∈ WN
1,2(A) is a projection if and only

if P = EMχA
for some A ∈ A. The projection P is an atom (minimal

projection) if and only if P = EMχA , in which A is an A-atom. For
each projection P of WN

1,2, we have P ≤ E, which means that E is

a maximal projection in WN
1,2. If (X,A, µ) is a non-atomic measure

space, then there is no minimal projection in WN
1,2 and, if (X,A, µ) is a

purely atomic measure space, then all projections in WN
1,2 are minimal.

Proof. Let A ∈ A. Then, it is easy to see that EMχA is a projection.
Also, if P ∈ WN

1,2 is a projection, then we obtain that u ∈ L∞(A) is
real valued and P = EMS(u). For every A ∈ A, we have EMχA ≤ E;
hence, E is the maximal projection. In addition, if A ∈ A is an atom,
then there is no A-measurable subset of A with positive measure. Thus,
EMχA

is a minimal projection. If B ∈ A is a non-atomic measurable
set, then, for every 0 < α < µ(B), there is a measurable subset C
of B with µ(C) = α. This implies that EMχB

cannot be a minimal
projection. �

It is known that, if a, b are elements of a unital algebra A, then 1−ab
is invertible if and only if 1 − ba is invertible. A consequence of this
equivalence is that

σ(ab) \ {0} = σ(ba) \ {0}.

Now, in the next theorem, we compute the spectrum of MwEMu,
and we also give a formula for the inverse of λI −MwEMu.

Theorem 2.8. Let MwEMu ∈ Wp for 1 ≤ p < ∞ or MwEMu ∈ U .
Then,

σ(MwEMu) \ {0} = ess range(E(uw)) \ {0}.

Moreover, for each λ ∈ C \ σ(MwEMu) ∪ {0}, we have

(λI −MwEMu)
−1 =

1

λ
I −M(w/λ(E(wu)−λ))EMu.
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Proof. We know that σ(EMu) \ {0} = ess range(E(u)) \ {0} [3].
Since the operator MwEMu is the composition of two operators Mw

and EMu in the algebra of linear operators on Lp-spaces, then from
the previously recalled information, we obtain that

σ(MwEMu) \ {0} = σ(EMuMw) \ {0}
= σ(EMuw) \ {0}
= ess range(E(uw)) \ {0}.

Therefore, we have σ(MwEMu) \ {0} = ess range(E(uw)) \ {0}. Sup-
pose that λ ∈ C \ σ(MwEMu) ∪ {0}, and consider the linear transfor-
mation T defined by

Tf =
f

λ
−
(

w

λ(E(wu)− λ)

)
E(uf)

for any f ∈ Lp(F). Since λ /∈ ess range(E(uw)), then 1/(E(wu)− λ) ∈
L∞(A), and we easily obtain that

∥Tf∥ ≤ 1

|λ|
(∥(E(wu)− λ)−1∥∞∥MwEMu∥+ 1)∥f∥p.

Thus, T is a bounded operator on Lp(F). Also, direct computations
show that T (λI − MwEMu) = (λI − MwEMu)T = I. Hence, T =
(λI −MwEMu)

−1. �

From Theorem 2.8, we obtain, for 1 ≤ p < ∞, the collection

Wp = {λI + T : 0 ̸= λ ∈ C, T ∈ Wp}

is inversely closed. In addition, the spaces

Ww,p = {λI + T : 0 ̸= λ ∈ C, T ∈ Ww,p}

and
Wp,u = {λI + T : 0 ̸= λ ∈ C, T ∈ Wp,u}

are inverse closed operator algebras.

Now, we recall the definition of the spectral measure with respect to
a measurable space and a Hilbert space.
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Definition 2.9. If X is a set, F a σ-algebra of subsets of X and H
a Hilbert space, then a spectral measure for (X,F ,H) is a function
E : F → B(H) having the following properties.

(i) E(S) is a projection.
(ii) E(∅) = 0 and E(X) = I.
(iii) For each S1, S2 ∈ F , E(S1 ∩ S2) = E(S1)E(S2).
(iv) If {Sn}∞n=0 is a sequence of pairwise disjoint sets in F , then

E
( ∞∪

n=0

Sn

)
=

∞∑
n=0

E(Sn),

where the right hand side converges in strong operator topology.

The spectral theorem states that, for every normal operator T on
a Hilbert space H, there is a unique spectral measure E relative to
(σ(T ),H) such that

T =

∫
σ(T )

z dE ,

where z is the inclusion map of σ(T ) in C. Recall that, T = EMu ∈
W1,2 is normal if and only if u ∈ L∞(A). As is known, for every f ∈
L∞(F), we have σ(f) = ess range(f), and we also have

σ(EMu) \ {0} = ess range(E(u)) \ {0}.

Hence, if we define the operator Θ as:

Θ : L∞(A) −→ W1,2, Θ(u) = EMu,

then we easily obtain that Θ is a unital isometric ∗-isomorphism that
preserves the spectrum.

If T = EMu is a normal operator on L2(F), then Tn = MunE and
(T ∗)n = MunE. Thus,

(T ∗)nTm = M(u)numE

and
p(T, T ∗) = p(u, u)E = Ep(u, u),

where

p(z, t) =

N,M∑
n,m=0

αn,mzmtn.
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From the Weierstrass approximation theorem, we have f(T ) = Mf(u)E,
for all f ∈ C(ess range(u)). Therefore, we obtain the following:

1. Let EMu be a normal operator on L2(F). Then, the map

ϕ : C(ess range(u) ∪ {0}) −→ C∗(EMu, I),

defined by ϕ(f) = Mf(u)E, is a unital ∗-homomorphism. Moreover,
by [9, Theorem 2.1.13], ϕ is also a unique ∗-isomorphism such that
ϕ(z) = EMu, where

z : ess range(u) ∪ {0} −→ C

is the inclusion map.

2. The map
Θ : L∞(A) −→ B(L2(F))

defined by Θ(u) = EMu is a ∗-homomorphism, i.e., the pair (Θ, L2(F))
is a representation for L∞(A) as a C∗-algebra.

For S ∈ A, let
E(S) : L2(F) −→ L2(F)

be defined by
E(S) = EAMχS .

Then, E is a spectral measure on (X,A, L2(F)). Hence, we obtain the
following theorem.

Theorem 2.10. Let (X,F , µ) be a σ-finite measure space, A ⊂ F
a σ-subalgebra and u in L∞(A). Consider the operator EAMu on
L2(F). Then, the set function E(S) = EAMχS

is a spectral measure
on (X,A, L2(F)). In addition, E has compact support and

EAMu =

∫
z dE .

From Theorem 2.10, we have that the Von Neumann algebra
WN

1,2(A) is generated by projections of the form of E(S) = EAMχS

where S ∈ A.

In the next theorem, we prove that the weak∗ convergence of the
net {uα}α in L∞(A) is equivalent to weak operator convergence, or in
weak operator topology (WOT), of the net {Θ(uα)}α.
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Theorem 2.11. If (X,F , µ) is a σ-finite measure space and {uα}α is
a net in L∞(A), then uα → 0 weak∗ in L∞(A) if and only if

Θ(uα) −→ 0 WOT.

Proof. Assume that uα → 0 weak∗ in L∞(A) = (L1(A))∗. If f, g ∈
L2(F), then E(f), E(g) ∈ L2(A) and E(f)E(g) ∈ L1(A). Thus,

⟨Θ(uα)(f), g⟩ =
∫
X

uαE(f)E(g) dµ −→ 0.

Conversely, assume Θ(uα) → 0 WOT in B(L2(F)). If h ∈ L1(A), then
h = E(f)E(g), where f, g ∈ L2(F). Thus,∫

X

E(uαf)E(g) dµ =

∫
X

E(uαf)g dµ = ⟨Θ(uα)(f), g⟩ −→ 0. �

3. Simultaneous triangularizablity. Let A be a Banach algebra.
An element a of A is called quasinilpotent if r(a) = 0, and we denote

QN (A) = {a ∈ A : r(a) = 0},

where r(a) is the spectral radius of a. The Jacobson radical A is often
denoted by R(A) and is equal to

{a ∈ A : ab ∈ QN (A) for all b ∈ A}.

The algebra A is called semisimple if R(A) = {0}. And, if R(A) = A,
then A is called a radical algebra. It is obvious that R(A) ⊆ QN (A).
In light of Theorem 2.8, we have the following remark.

Remark 3.1. If

T = MwEMu : Lp(Σ) −→ Lp(Σ), 1 ≤ p < ∞,

then the following are equivalent:

(a) MwEMu is quasinilpotent;

(b) E(uw) ≡ 0;

(c) MwE(uw)EMu ≡ 0.

Let
J(Wp) = {T ∈ A : 1 /∈ σ(ST ) for all S ∈ Wp}.
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Then, for 1 ≤ p < ∞, we have

1. J(Wp) ⊆ NP(Wp).

2. For every u,w ∈ D(E) we have

J(Ww,p) = NP(Ww,p), J(Wp,u) = NP(Wp,u).

Let
r : Ww,p −→ R

be the spectral map i,e., r maps MwEMu to r(MwEMu). As is known,
in general, the spectral map is not subadditive and submultiplicative.
Indeed, for elements a, b of an arbitrary unital normed algebra with
ab = ba, we have r(a+ b) ≤ r(a) + r(b), r(ab) ≤ r(a)r(b). In the next
lemma, we obtain that r is subadditive and submultiplicative on the
algebra Ww,p.

Lemma 3.2. Let 1 ≤ p < ∞, w ∈ D(E) and S, T ∈ Ww,p. Then, we
have

r(S + T ) ≤ r(T ) + r(S), r(ST ) ≤ r(S)r(T ).

Proof. Let u, v, w ∈ D(E) be such that MwEMu,MwEMv ∈ Ww,p.
Hence, E(uw), E(wv) ∈ L∞(A), and thus, by Theorem 2.8, we obtain
the proof. �

In the next proposition, we have that every quasinilpotent element
of Ww,p is in R(Ww,p) .

Proposition 3.3. If 1 ≤ p < ∞, w ∈ D(E), then R(Ww,p) =
QN (Ww,p). Indeed, QN (Ww,p) is a two-sided ideal in Ww,p.

Proof. It is a direct consequence of Lemma 3.2. �

Here, we recall that the commutator of two operators T and S is the
operator [T, S], defined by

[T, S] = TS − ST.

In the next proposition, we give a relation between commutators and
quasi-nilpotent operators in Wp.
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Proposition 3.4. Let w, u ∈ D(E) and p > 1. Then, we have

[Ww,p,Ww,p] ⊆ QN (Ww,p)

and

[Wp,u,Wp,u] ⊆ QN (Wp,u).

Proof. Let T = MwEMu and S = Mw′EMu′ . Then, for any f ∈
Lp(F), we have

TS(f) = MwE(uw′)EMu′(f),

ST (f) = Mw′E(u′w)EMu(f).

Combining these relations gives:

[T, S] = MvEMu′ −Mv′EMu,

such that E(vu′) − E(v′u) = 0, in which v = wE(uw′) and v′ =
w′E(u′w). This means that

[Wp,Wp] = {[T, S], T, S ∈ Wp}
⊆ {MwEMu −Mw′EMu′ : E(uw) = E(u′w′)}.

Specifically, we have

[Ww,p,Ww,p] ⊆ {MwEMu : E(uw) = 0,MwEMu ∈ Ww,p}

and

[Wp,u,Wp,u] ⊆ {MwEMu : E(uw) = 0,MwEMu ∈ Wp,u}.

Consequently, by using Remark 3.1, we get that

[Ww,p,Ww,p] ⊆ QN (Ww,p)

and

[Wp,u,Wp,u] ⊆ QN (Wp,u). �

A collection W of bounded operators on a Banach space X is called
simultaneously triangularizable if there is a maximal totally ordered
complete set of (closed) subspaces of X (a maximal nest) which are
W-invariant.
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Now, we recall an assertion of [4] for compactness of a WCE operator
on Lp(F).

Theorem 3.5 ([4]). A WCE operator MwEMu is a compact operator
on Lp(F) if and only if, for every ϵ > 0, the set Nϵ consists of finitely
many A-atoms, in which

Nϵ = {x ∈ X : (E(|w|p))1/p(x)(E(|u|p
′
))1/p

′
(x) ≥ ϵ}.

It is not difficult to see that Ww,p ⊆ K(Lp(F)) if and only if MwE
is a compact operator on Lp(F). Hence, we have the next proposition.

Proposition 3.6. If, for every ϵ > 0, the set Nϵ,1 consists of finitely
many A-atoms, then Ww,p is a subalgebra of K(Lp(F)) (the ideal of
compact operators on Lp(F)), where Nϵ,1 = {x ∈ X : E(|w|p)(x) ≥ ϵ}.

Proof. Since the WCE operator MwEMu is the composition of two
operators MwE and EMu, then, by Theorem 3.5, we obtain that the
operator MwE is compact, and thus, MwEMu is compact. �

In the next theorem, we give a sufficient condition under which the
operator algebra Ww,p is simultaneously triangularizable.

Theorem 3.7. If, for every ϵ > 0, the set Nϵ,1 consists of finitely many
A-atoms, then Ww,p is simultaneously triangularizable and

Ww,p

NP(Ww,p)

is commutative.

Proof. By our assumption and Proposition 3.6, we obtain that
Ww,p ⊆ K(Lp(F)). Therefore, by [6, Theorem 1] and Proposition
3.4, we obtain that Ww,p is simultaneously triangularizable. By [6,
Theorem 2] we get that Ww,p/(NP(Ww,p)) is commutative. �

Now, using Theorem 3.5, Proposition 3.6 and Theorem 3.7, we have
the next corollary.
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Corollary 3.8.

(a) The operator algebra Ww,p ∩ K(Lp(F)) is simultaneously trian-
gularizable for all w ∈ D(E) and 1 ≤ p < ∞.

(b) If Ww,p ∩ K(Lp(F)) ̸= ∅, then Ww,p ⊆ K(Lp(F)).
(c) If Ww,p ∩ K(Lp(F)) ̸= ∅, then Ww,p is simultaneously triangu-

larizable and Ww,p/(NP(Ww,p)) is commutative.
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