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ON THE MAXIMAL INDEPENDENCE POLYNOMIAL
OF CERTAIN GRAPH CONFIGURATIONS

HAN HU, TOUFIK MANSOUR AND CHUNWEI SONG

ABSTRACT. In this paper, we investigate the maximal
independence polynomials of some popular graph configura-
tions. Through careful analysis, some of the polynomials un-
der study are shown to be Chebyshev, which helps character-
ize polynomial properties such as unimodality, log-concavity
and real-rootedness with ease and efficiency. We partially
characterize the bridge path and bridge cycle graphs of
wheels and fans according to their unimodality properties
and propose relevant open problems. Also, to compare with
the usual independence polynomials, we provide analogous
results regarding the vertebrated graph, and the firecracker
graph, as studied by Wang and Zhu [47].

1. Introduction. Throughout this paper, we consider only finite
simple connected graphs. Let G = (V,E) be such a graph with vertex
set V and edge set E. For a vertex v ∈ V , let N(v) = {w | vw ∈ E}
be the collection of its neighbors, and let N [v] = N(v) ∪ {v} denote
the closure of its neighborhood. The reader is referred to [11, 48] for
graph theory terminologies not specified here.

The independence polynomial was introduced in [14] as a general-
ization of the matching polynomial:

I(G;x) :=
∑
k≥0

ik(G)xk,

where ik(G) represents the number of independent subsets of V with
cardinality k, i.e.,

ik(G) = |{A ⊆ V | the induced subgraph G[A] is an empty graph}|.
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The leading coefficient counts the number of maximum independent
sets, those with cardinality α(G). Important properties of the inde-
pendence polynomial, including real-rootedness, log-concavity and uni-
modality, have been extensively studied, see, for instance, [2, 3, 4, 6]–
[9, 14]–[16, 22, 24, 26]–[28, 33, 40, 42, 46, 47, 51, 52], etc.

In general, the polynomial

f(x) :=
n∑

i=0

aix
i

is called unimodal if the sequence a0, a1, . . . , an is unimodal, i.e., there
exists some peak index m (the “mode,” possibly not unique, however)
such that

a0 ≤ a1 ≤ · · · ≤ am−1 ≤ am ≥ am+1 ≥ · · · ≥ an.

When the coefficients a0, a1, . . . , an are all positive, f(x) is said to
be logarithmic concave if, for all 1 ≤ k ≤ n − 1, it holds that
a2k ≥ ak−1ak+1, i.e., log ak ≥ (log ak−1 + log ak+1)/2. Particularly
interesting to combinatorists, unimodality problems are widely studied
by mathematicians from a vast array of disciplines. It is well known
that real-rootedness is stronger than log-concavity, and the latter is
still stronger than unimodality [41, 47, 50]. Sometimes we find that
the polynomial f(x) has a gap at xk, i.e., ak = 0 when l < k, r > k,
such that al, ar > 0. Obviously, a polynomial with any gap cannot be
unimodal.

In this paper, we study the maximal independence polynomial as
it makes sense to focus on maximal independent sets instead of taking
arbitrary independent sets that may actually be covered by those which
are larger. Here, by a maximal independent set (MIS) of G, we require
the set A ⊆ V to (1) be independent, and (2) have no strictly super
independent set W such that A ⊆ W ⊆ V . Accordingly, the maximal
independence polynomial is defined by

Imax(G;x) :=
∑

A:A is an MIS of G

x|A|.

We remark that, while maximal independent sets are also widely
studied, see e.g., [10, 12, 13, 17]–[21], [23, 25, 29, 30, 31], [34,
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35, 37, 38, 43, 44, 49], investigation of the notion of the maximal
independence polynomial has been nonetheless sparse.

Apparently, Imax(G;x) and I(G;x) have the same degree and the
same leading coefficient, but in general, they are different. Partially
motivated by the study of [47], here we are interested in investigating
Imax(G;x) and the comparison of unimodality properties of Imax(G;x)
and I(G;x), and so on.

For usually disjoint subsets U1, U2 of V , define

Imax
U1,U2(G;x) :=

∑
A:A is an MIS of G
U1⊆A⊆V ; U2⊆Ā⊆V

x|A|,

which will be useful shortly. In standard notation, the overlined U
denotes the complement of U in V ; here, in this paper, we use it
differently. If U1, U2, or both, have cardinality 1, we may use the

shorthand notation Imax
u1,U2(G;x), Imax

U1,u2(G;x), Imax
u1,u2(G;x)

for Imax
{u1},U2(G;x), Imax

U1,{u2}(G;x) and Imax
{u1},{u2}(G;x), respec-

tively. We allow one of U1, U2 to be empty; thus, the restriction is
one-fold only, in which case, the ∅ is often omitted from the notation:

Imax
U1(G;x) = Imax

U1,∅̄(G;x), Imax
U2(G;x) = Imax

∅,U2(G;x).

Clearly, Imax
U1(G;x) = 0 if E(G[U1]) ̸= ∅.

Throughout, we use the convention that, for a, b ∈ Z, the binomial
coefficient

(
a
b

)
is taken to be 0 whenever a < b or b < 0.

2. General results. Let v ∈ V (G). For convenience, we introduce
the following notation which reflects a subtle treatment of the situation.

Define I ṽmax(G;x) to be I
N(v)
max (G − v;x). Note that I

N(v)
max (G − v;x)

is different from a somewhat similar I
N [v]
max (G;x), which is the zero

polynomial since G[N [v]] is not an empty graph (recall the assumption
that G is connected from the beginning).

The next lemma establishes a recurrence relation of the maximal
independence polynomial.
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Lemma 2.1. Let G = (V,E) be any graph with an arbitrarily fixed
vertex v ∈ V . Then,

Imax(G;x) =
∑

∅≠A⊆N(v)
B=N(v)−A

IA,B̄
max (G− v;x) + xI v̄max(G;x),

where G− v is the graph obtained by deleting the vertex v from G.

Proof. Straightforward. (Similar to the standard proof of the “usual”
recursive formula for the standard independence polynomial.) �

In subsequent sections, Lemma 2.1 will be used to derive maximal
independence polynomials for various classes of graphs. Here, we
investigate the n-path, i.e., the path on n vertices, and the n-cycle.

Let Pn be a path graph with n vertices, say, labeled by 1, 2, . . . , n.
Then, Imax(P0;x) = 1, Imax(P1;x) = x, Imax(P2;x) = 2x and, for
n ≥ 3,

Imax(Pn;x) = Inmax(Pn;x) + I n̄max(Pn;x)(2.1)

= xImax(Pn−2;x) + xImax(Pn−3;x).

Proposition 2.2. The maximal independence polynomial of path Pn

is given by

Imax(Pn;x) =
∑
j≥0

(
j + 1

n+ 1− 2j

)
xj ,

where, as usual,
(
a
b

)
is assumed to be 0 whenever a < b or b < 0 for

a, b ∈ Z. Moreover, the polynomial Imax(Pn;x) is log-concave, and
therefore, unimodal.

Proof. If we define f(t) =
∑

n≥0 Imax(Pn;x)t
n, then (2.1) gives

f(t)− 2xt2 − xt− 1 = xt2(f(t)− 1) + xt3f(t),
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which implies

f(t) =
1 + xt+ xt2

1− xt2(1 + t)
= (1 + xt(1 + t))

∑
j≥0

xjt2j(1 + t)j

=
∑
j≥0

xjt2j(1 + t)j +
∑
j≥0

xj+1t2j+1(1 + t)j+1.

Therefore, the coefficient of tn in the generating function f(t) is given
by

Imax(Pn;x) =
∑
j≥0

(
j

n− 2j

)
xj +

∑
j≥0

(
j + 1

n− 1− 2j

)
xj+1

=
∑
j≥0

(
j

n− 2j

)
xj +

∑
j≥0

(
j

n+ 1− 2j

)
xj

=
∑
j≥0

(
j + 1

n+ 1− 2j

)
xj ,

where the last equality is based on Pascal’s well-known identity(
a

b

)
+

(
a

b− 1

)
=

(
a+ 1

b

)
.

Hence, we have obtained the maximal independence polynomial for Pn.
Clearly, deg Imax(Pn;x) = ⌊(n+ 1)/2⌋, and the lowest nonzero term of
Imax(Pn;x) has degree ⌈n/3⌉.

Straightforward computation shows that log-concavity holds, and
unimodality follows. �

Proposition 2.3. For all n ≥ 3,

Imax(Cn;x) =
∑
j≥1

n

j

(
j

n− 2j

)
xj .

Moreover, the polynomial Imax(Cn;x) is log-concave, and therefore,
unimodal.

Proof. Let Cn be the cycle graph on the vertices 1, 2, . . . , n. Then,
Lemma 2.1 for G = Cn gives
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Imax(Cn;x) = Inmax(Cn;x) + I n̄max(Cn;x)

= xImax(Pn−3;x) + I1,{n−1,n}
max (Cn;x)

+ In−1,{1,n}
max (Cn;x) + I{1,n−1},n̄

max (Cn;x)

= xImax(Pn−3;x) + I{1,n−2},{2,n−3,n−1,n}
max (Cn;x)

+ Imax
{2,n−1},{1,3,n−2,n}(Cn;x) + x2Imax(Pn−5;x)

= xImax(Pn−3;x) + 2x2Imax(Pn−6;x) + x2Imax(Pn−5;x),

for all n ≥ 7.

Hence, by Proposition 2.2, we obtain

Imax(Cn;x) =
∑
j≥0

(
j + 1

n− 2− 2j

)
xj+1 + 2

∑
j≥0

(
j + 1

n− 5− 2j

)
xj+2

+
∑
j≥0

(
j + 1

n− 4− 2j

)
xj+2,

which, by Pascal’s identity, implies that, for n ≥ 7,

Imax(Cn;x) =
∑
j≥0

(
j + 1

n− 2− 2j

)
xj+1 +

∑
j≥0

(
j + 1

n− 5− 2j

)
xj+2

+
∑
j≥0

(
j + 2

n− 4− 2j

)
xj+2

= 2
∑
j≥0

(
j + 1

n− 2− 2j

)
xj+1 +

∑
j≥0

(
j

n− 3− 2j

)
xj+1

=
∑
j≥0

n

j

(
j

n− 2j

)
xj .

Direct calculation shows that Imax(C2;x) = 2x, Imax(C3;x) = 3x,
Imax(C4;x) = 2x2, Imax(C5;x) = 5x2 and Imax(C6;x) = 3x2 + 2x3.

Therefore, the first statement of Proposition 2.3 holds for all n, based
on which the log-concavity, and hence unimodality, is clear. �

Definition 2.4. Begin with G = G(V,E), where V = {v1, v2, . . . , vm}.
Now, G is repeated n times as G(1), G(2), . . . , G(n), G(j) having vertices
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v
(j)
i , where 1 ≤ i ≤ m, 1 ≤ j ≤ n. Then, we obtain two graphs G× Pn

and G× Cn. G× Pn is the graph obtained by connecting vertices v
(j)
i

and v
(j+1)
i with an edge, for all 1 ≤ i ≤ m, 1 ≤ j ≤ n−1, and G×Cn is

based on G×Pn, obtained by further connecting vertices v
(1)
i and v

(n)
i ,

1 ≤ i ≤ m. Moreover, for permutation σ on the letters {1, 2, . . . ,m},
G × Cσ

n is the graph obtained from G × Pn by further connecting the

vertices v
(1)
i and v

(n)
σ(i) with an edge, for all 1 ≤ i ≤ m.

Figure 1. Graph P2 × Pn, P2 × Cn and P2 × C
(12)
n .

Proposition 2.5. The maximal independence polynomials of graphs

P2 × Pn, P2 × Cn, P2 × C
(12)
n are, respectively,

Imax(P2 × Pn;x) = 2
∑
d

(
d− 1

n− d

)
xd,

Imax(P2 × Cn;x) = 2
∑
2 | d

n

d

(
d

n− d

)
xd,

Imax(P2 × C(12)
n ;x) = 2

∑
2 | d+1

n

d

(
d

n− d

)
xd.
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Note that, while Proposition 2.5 may also be proven by generating
functions, we give an illustration below of a purely combinatorial proof.

First, let G = P2.

Proof. (Combinatorial enumeration). We investigate the manner in
which vertices in G = P2 × Pn or G = P2 × Cn are “selected” in an
MIS and determine #{|A| = d : A is an MIS of G} for fixed d. We

address v
(1)
1 , v

(2)
1 , . . . , v

(n)
1 by “top” vertices and v

(1)
2 , v

(2)
2 , . . . , v

(n)
2 by

“bottom” vertices. Fix an MIS of size d. Observe that, if a top vertex

v
(j)
1 is selected in MIS, then none of v

(j−1)
1 , v

(j+1)
1 , v

(j)
2 can exist in MIS;

therefore, either v
(j−1)
2 is selected in MIS or v

(j−1)
2 is not selected in

MIS. However, v
(j−2)
2 must be in MIS. Two conclusions may obtained.

(1) In an MIS, the “top” and “bottom” vertices occur alternately
from left to right.

(2) Regardless of the subscript i, the index j of vertices v
(j)
i in an

MIS forms a strictly increasing sequence 1 ≤ j1 < j2 < · · · < jd ≤ n
with the property jt+1 − jt ∈ {1, 2}, for 1 ≤ t ≤ d− 1.

For the case of G = P2 × Pn, it is obvious that one of {v(1)1 , v
(1)
2 }

must be selected in MIS and one of {v(n)1 , v
(n)
2 } must also be selected.

Note that the sequence 1 = j1 < j2 < · · · < jd = n with property
jt+1 − jt ∈ {1, 2} has

(
d−1
n−d

)
ways to be constructed. In addition, there

are two ways to obtain either {v(1)1 } or {v(1)2 }, which determines the
oscillating pattern of the “top” and “bottom” sequence of d vertices.
Hence, the coefficient of xd in Imax(P2 × Pn;x) is 2

(
d−1
n−d

)
.

For the case of G = P2 ×Cn, the up-down phenomenon is the same;

however, possibly none of {v(1)1 , v
(1)
2 } would be selected in an MIS. For

symmetry, the probability that one of {v(1)1 , v
(1)
2 } is selected in MIS

is d/n. Denote this probability by P1. In order to illustrate, suppose

that v
(1)
1 is in MIS. It is easy to see that either v

(n−1)
2 or v

(n)
2 must be

selected, and moreover, it follows that d must be even. Next, there is a

bijection between the MISs of P2 ×Cn with v
(1)
1 selected and the MISs

of P2 × Pn+1 with both v
(1)
1 and v

(n+1)
1 selected. As in the previous

case, there are (
d+ 1

(n+ 1)− (d+ 1)

)
=

(
d

n− d

)
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methods of constructing the subscript sequence 1 = j1 < j2 < · · · <
jd < jd+1 = n+1 with property jt+1− jt ∈ {1, 2} (while the oscillating
pattern is already fixed). Hence, the coefficient of xd in Imax(P2×Cn;x)
is

2

P1

(
d

n− d

)
=

2n

d

(
d

n− d

)
,

where d must be even.

For the case of G = P2 × C
(12)
n , the proof is similar to the case of

G = P2 ×Cn, except that the presence of v
(1)
1 requires either v

(n−1)
1 or

v
(n)
1 to be selected, and the bijection is between the MISs of P2 × Cn

with v
(1)
1 selected and the MISs of P2×Pn+1 with both v

(1)
1 and v

(n+1)
2

selected. In this case, d must be odd. �

Maximal independence polynomials Imax(P2×Cn;x) and Imax(P2×
C

(12)
n ;x) are nonunimodal due to their many gaps. Maximal indepen-

dence polynomial Imax(P2 × Pn;x) is monotone and log-concave by
checking the coefficients:(

d− 1

n− d

)2

≥
(

d− 2

n− d+ 1

)(
d

n− d− 1

)
(with the condition d− 1 ≥ n− d).

Now we focus on the following graphs: G = P3 × Pn, G = P3 × Cn,
G = C3 × Pn and G = C3 × Cn.

Proposition 2.6. The maximal independence polynomials of graphs
C3 × Pn and C3 × Cn are:

Imax(C3 × Pn;x) = 3× 2n−1xn,

Imax(C3 × Cn;x) = (2n + 2× (−1)n)xn, n ≥ 3.

Proof. For the cases of G = C3 × Pn and G = C3 × Cn, it is

obvious that no two vertices of each C3 {v(j)1 , v
(j)
2 , v

(j)
3 } may be selected

in MIS at the same time. In addition, it is impossible that none

of {v(j)1 , v
(j)
2 , v

(j)
3 } are selected, for otherwise, either at least two of

{v(j−1)
1 , v

(j−1)
2 , v

(j−1)
3 } or at least two of {v(j+1)

1 , v
(j+1)
2 , v

(j+1)
3 } must

be included in order to cover {v(j)1 , v
(j)
2 , v

(j)
3 }, which is problematic.

Hence, exactly one of {v(j)1 , v
(j)
2 , v

(j)
3 } should be selected for any MIS.
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Figure 2. Graph P3 × Pn and C3 × Pn.

Finally, note that 3-colorings of Pn and Cn are counted by 3 ×
2n−1 and 2n + 2 × (−1)n, respectively, [5, page 65], [39, A007283,
A092297]. �

The cases of G × Pn and G × Cn, here G = P3, are not as simple
compared with the cases of G = P2 and G = C3. In any MIS of P3×Pn

(or of P3×Cn), individual vertices of {V (j)
1 , V

(j)
2 , V

(j)
3 }must be selected

according to one of the five types.

Type 1. {v(j)1 , v
(j)
3 } are both included.

Type 2/3/4. Exactly one vertex of {v(j)1 , v
(j)
2 , v

(j)
3 } is selected.

Type 5. None of {v(j)1 , v
(j)
2 , v

(j)
3 } appears.

Type 1 Type 2 Type 3 Type 4 Type 5

Figure 3. A visual graph of five types.
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For example, for P3×Pn, we may consider the generating functions,

gi,j(x, y) =
∑
d≥0

∑
n≥2

ai,jd,nx
dyn,

where ai,jd,n represents the number of different ways of selecting d vertices

from graph P3×Pn, such that the (n−1)th column has type i, the nth
column has type j, and the d vertices form an MIS. Note that∑
n≥2

Imax(P3 × Pn;x)×yn= g1,3+g2,3+g2,4+g3,1+g4,2+g4,3+g5,1+g5,3,

and recurrence relationships such as g1,3 = xy(g5,1 + g3,1) + x3y2 aid
in calculating∑
n≥2

Imax(P3 × Pn;x)y
n(2x2 + 2x3)y2

+ (4x3 − 3x4 + x5)y3+ (−4x4 + 4x5 − 2x6)y4

=
+(x4 − 3x5 − 5x6 + x7)y5+ (−4x5 + 2x7)y6+ (3x6 + x7)y7

(1− xy)(1− xy − x3y2 + (x4 − 4x3)y3+ (2x4 − x3)y4 + x4y5)

= (2x2 + 2x3)y2+ (8x3 + x4 + x5)y3+ (10x4 + 6x5 + 2x6)y4+ · · · .

In fact, 12 recurrence formulas, which are linear equations on gi,j , are
used to derive the above formula. This yields Imax(P3×P2;x) = 2x2+
2x3, Imax(P3×P3;x) = 8x3+x4+x5, Imax(P3×P4;x) = 10x4+6x5+2x6,
and so on. For an illustration of the MISs of P3 × P3, see Figure 4.

Figure 4. MIS in the graph P3 × P3.

We will skip the calculation of P3 × Cn.

For the remainder of this paper we will apply our general results
to several interesting graph concatenation configurations that appear
in [47]. In Section 3, we study the type of bridge path graphs, while
in Section 4, we investigate bridge cycle graphs.

3. Bridge path graph. Let {Hi}di=1 be a sequence of finite pairwise
disjoint graphs with specific vi ∈ V (Hi) and V (Hi)−vi ̸= ∅. The bridge
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path graph

B(H1,H2, . . . ,Hd) ≡ B(H1,H2, . . . , Hd; v1, v2, . . . , vd)

of sequence {Hi}di=1 with respect to the vertices {vi}di=1 is obtained
from the graphs H1, . . . , Hd by connecting the vertices vi and vi+1

with an edge for all i = 1, 2, . . . , d− 1. See Figure 5 for an illustration.

H1 H2 Hd−1 Hd

v1 v2 vd−1 vd

Figure 5. The bridge path graph.

Based upon Lemma 2.1, we have the following theorem regarding
the general configuration of bridge path graphs.

Theorem 3.1. For i = 1, 2, . . . , d, d ≥ 3, let Hi be any graph of order
≥ 2. Then, the maximal independence polynomial for the bridge path
graph Bd := B(H1,H2, . . . , Hd; v1, v2, . . . , vd) is recursively given by

Imax(Bd;x) = Ivdmax(Hd;x)Imax(Bd−1;x)(3.1)

+ Ivdmax(Hd;x)(I
vd−1
max (Hd−1;x) + I ṽd−1

max (Hd−1;x))

· Imax(Bd−2;x) + I ṽdmax(Hd;x)I
vd−1
max (Hd−1;x)

· (Ivd−2
max (Hd−2;x) + I ṽd−2

max (Hd−2;x))Imax(Bd−3;x),

with Imax(B0;x) = 1, Imax(B1;x) = Imax(H1;x) and

Imax(B2;x) = Iv1
max(H1;x)I

v2
max(H2;x)

+ Iv2
max(H2;x)(I

v1
max(H1;x) + I ṽ 1

max(H1;x))

+ Iv1
max(H1;x)(I

v2
max(H2;x) + I ṽ 2

max(H2;x)).

Proof. By Lemma 2.1 and the fact that Imax(G;x) = Ivmax(G;x) +
I v̄max(G;x), we have

(3.2) Imax(Bd;x) = Ivdmax(Bd;x) + Ivd
max(Bd;x),
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where

Ivdmax(Bd;x) = Ivd,vd−1
max (Bd;x)(3.3)

= I{vd,vd−2},vd−1
max (Bd;x) + Ivd,{vd−1,vd−2}

max (Bd;x)

= Ivdmax(Hd;x)(I
vd−1
max (Hd−1;x)

+ I ṽd−1
max (Hd−1;x))I

vd−2
max (Bd−2;x)

+ Ivd
max(Hd;x)(I

vd−1
max (Hd−1;x)

+ I ṽd−1
max (Hd−1;x))I

vd−2
max (Bd−2;x)

= Ivdmax(Hd;x)(I
vd−1
max (Hd−1;x)

+ I ṽd−1
max (Hd−1;x))Imax(Bd−2;x)

and

Ivd
max(Bd;x) = Ivd−1,vd

max (Bd;x) + I{vd−1,vd}
max (Bd;x)(3.4)

= (Ivd
max(Hd;x) + I ṽd

max(Hd;x))I
vd−1
max (Bd−1;x)

+ Ivd
max(Hd;x)I

vd−1
max (Bd−1;x)

= Ivdmax(Hd;x)Imax(Bd−1;x)

+ I ṽd
max(Hd;x)I

vd−1
max (Bd−1;x).

Combining (3.3) and (3.4), we obtain

Ivdmax(Bd;x) = Ivd
max(Hd;x)(I

vd−1
max (Hd−1;x)(3.5)

+ I ṽd−1
max (Hd−1;x))Imax(Bd−2;x),

Ivdmax(Bd;x) = Ivd
max(Hd;x)Imax(Bd−1;x)(3.6)

+ I ṽdmax(Hd;x)I
vd−1
max (Hd−1;x)

· (Ivd−2
max (Hd−2;x) + I ṽd−2

max (Hd−2;x))Imax(Bd−3;x).

Substituting (3.5) and (3.6) into (3.2), we have

Imax(Bd;x) = Ivd
max(Hd;x)Imax(Bd−1;x)

+ Ivdmax(Hd;x)(I
vd−1
max (Hd−1;x)

+ I ṽd−1
max (Hd−1;x))Imax(Bd−2;x)

+ I ṽdmax(Hd;x)I
vd−1
max (Hd−1;x)

· (Ivd−2
max (Hd−2;x) + I ṽd−2

max (Hd−2;x))Imax(Bd−3;x).
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Direct calculation gives the initial values of this recurrence relation,
namely, Imax(B0;x) = 1, Imax(B1;x) = Imax(H1;x) and

Imax(B2;x) = Iv1max(H1;x)I
v2
max(H2;x)

+ Iv2
max(H2;x)(I

v1
max(H1;x) + I ṽ 1

max(H1;x))

+ Iv1
max(H1;x)(I

v2
max(H2;x) + I ṽ 2

max(H2;x)),

completing the proof. �

For the remainder of this section, we consider the case where all
Hi = H and vi = v for all i = 1, 2, . . . , d. Also, we define

α := I v̄max(H;x),

β := Ivmax(H;x)(I v̄max(H;x) + I ṽmax(H;x))

and

γ := I ṽmax(H;x)β.

These parameters play important roles in our consequent derivations.

Corollary 3.2. For the bridge path graph Bd = Bd(H, v)=B(H,H, . . . ,
H; v, v, . . . , v) connecting the same component H, |V (H)| ≥ 2, a total
of d ≥ 3 times,

(3.7) Imax(Bd;x) = fd + Ivmax(H;x)fd−1 + Ivmax(H;x)I ṽmax(H;x)fd−2,

d ≥ 2, where

fd :=

d∑
i=0

min(i,d−i)∑
j=0

(
i

j

)(
j

d− i− j

)
αi−jβ2j+i−dγd−i−j ,

with the initial polynomials Imax(B0;x)=1 and Imax(B1;x)=Imax(H;x).

Proof. Let Hi = H and vi = v, i = 1, 2, . . . , d. By (3.1), we have

(3.8) Imax(Bd;x) = αImax(Bd−1;x)+βImax(Bd−2;x)+γImax(Bd−3;x)

with Imax(B0;x) = 1, Imax(B1;x) = Imax(H;x) and

Imax(B2;x)=(I v̄max(H;x))2 + 2Ivmax(H;x)(I v̄max(H;x) + I ṽmax(H;x)).
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Let F (t) be the generating function for the sequence Imax(Bd;x), that
is,

F (t) =
∑
d≥0

Imax(Bd;x)t
d.

Multiplying (3.8) by td and summing over all d ≥ 3 with the above
initial values, we obtain

F (t)− Imax(B2;x)t
2 − Imax(B1;x)t− 1

= α(F (t)− Imax(B1;x)t− 1)t+ β(F (t)− 1)t2 + γF (t)t3,

which implies

F (t) =
1 + Ivmax(H;x)t+ Ivmax(H;x)I ṽmax(H;x)t2

1− αt− βt2 − γt3
(3.9)

= (1 + Ivmax(H;x)t+ Ivmax(H;x)I ṽmax(H;x)t2)

+
∑
i≥0

ti(α+ βt+ γt2)i

= (1 + Ivmax(H;x)t+ Ivmax(H;x)I ṽmax(H;x)t2)

+
∑
i≥0

i∑
j=0

j∑
s=0

(
i

j

)(
j

s

)
αi−jβj−sγsti+j+s.

Finally, comparing the coefficient of td on both sides of equation (3.9),
we obtain the explicit formula for Imax(Bd;x), as claimed. �

Corollary 3.3. Consider the bridge path graph Bd = Bd(H, v) =
B(H,H, . . . ,H; v, v, . . . , v) connecting the same component H, |V (H)|
≥ 2 a total of d times. If H has the feature I ṽmax(H;x) = 0, whence
γ = 0, then

(3.10) Imax(Bd;x) = αImax(Bd−1;x) + βImax(Bd−2;x), d ≥ 2,

with the initial values Imax(B0;x) = 1, Imax(B1;x) = Imax(H;x) and
α := I v̄max(H;x), β := Ivmax(H;x)α. Moreover, for all d ≥ 0,

(3.11) Imax(Bd;x) =
(i
√
β)d+1

α
Ud+1

(
α

2i
√
β

)
,

where i2 = −1, and Um is the mth Chebyshev polynomial of the second
kind [53].
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Proof. In the case of γImax = 0, in the above summation of (3.9),
we take s = 0, i.e., i+ j = d, and in (3.7), we have only two terms, or
simply use (3.8) so that (3.10) is established.

Let gd := (Imax(Bd;x))/(i
√
β)d. Note that the recurrence (3.10)

may be written as

gd =
α

i
√
β
gd−1 − gd−2,

with g0=1 and g1=(Imax(H;x))/(i
√
β)=α/(i

√
β)+(Ivmax(H;x))/(i

√
β).

Using the fact that Chebyshev polynomials satisfy the recurrence
relation Us(t) = 2tUs−1(t)−Us−2(t) with U0(t) = 1 and U1(t) = 2t, we
inductively derive

gd = Ud−1

(
α

2i
√
β

)
g1 − Ud−2

(
α

2i
√
β

)
g0

= Ud

(
α

2i
√
β

)
+

Ivmax(H;x)

i
√
β

Ud−1

(
α

2i
√
β

)
.

Hence,

Imax(Bd;x) = (i
√
β)dUd

(
α

2i
√
β

)
+Ivmax(H;x)(i

√
β)d−1Ud−1

(
α

2i
√
β

)
=

(i
√
β)d+1

α

(
α

i
√
β
Ud

(
α

2i
√
β

)
−Ud−1

(
α

2i
√
β

))
=

(i
√
β)d+1

α
Ud+1

(
α

2i
√
β

)
,

completing the proof of (3.11). �

Some applications of Theorem 3.1 and Corollaries 3.2 and 3.3 are
presented next.

Our first application concerns the vertebrated graph. Its model
widely inspires studies of mathematical biology and bioinformatics, see
[1, 32, 36, 45]. Let H be the star graph K1,m with center v. Then,
the bridge path graph B(H,H, . . . ,H; v, v, . . . , v) (d-times) is called the

vertebrated graph V
(m)
d , see Figure 6.
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v1 v2 v3 v4 v5 v6

Figure 6. The vertebrated graph V
(3)
6 .

Corollary 3.4. For all d ≥ 0 and m ≥ 1,

Imax(V
(m)
d ;x) = i d+1

√
x

(d−1)m+d+1
Ud+1

(√
x

m−1

2i

)

=

⌊(d+1)/2⌋∑
k=0

(
d+ 1− k

k

)
xdm−k(m−1)

with i2 = −1, and Um is the mth Chebyshev polynomial of the second
kind.

Proof. Note that

Imax(K1,m;x) = x+ xm, Ivmax(K1,m;x) = x,

I v̄max(K1,m;x) = xm and I ṽmax(K1,m;x) = 0.

Therefore, α = xm, β = xm+1 and γ = 0. Thus, by (3.11),

Imax(V
(m)
d ;x) = id+1

√
x

(d−1)m+d+1
Ud+1

(√
x

m−1

2i

)
.

For the second equality, we use the well-known fact that Chebyshev
polynomials of the second kind satisfy

(3.12) Un(t) =

⌊n/2⌋∑
k=0

(−1)k
(
n− k

k

)
(2t)n−2k.

Thus,

Imax(V
(m)
d ;x) = id+1

√
x

(d−1)m+d+1
⌊(d+1)/2⌋∑

k=0

(−1)k

·
(
d+ 1− k

k

)(√
x

m−1

i

)d+1−2k



2236 HAN HU, TOUFIK MANSOUR AND CHUNWEI SONG

=

⌊(d+1)/2⌋∑
k=0

(
d+ 1− k

k

)
xdm−k(m−1),

which completes the proof. �

Example 3.5. Corollary 3.4 for m = 1 gives Imax(V
(1)
d ;x) = id+1xd

Ud+1(1/2i) = Fibd+2 x
d, where Fibn = Fibn−1 +Fibn−2 with Fib0 = 0

and Fib1 = 1 (the Fibonacci numbers). Thus, in this case, Imax(V
(1)
d ;x)

is a monomial with order d and coefficient Fibn+2. It thus trivially has

only real zeros x = 0, log-concave and unimodal. (The graph V
(1)
d is

the so-called n-centipede graph due to its appearance.)

Corollary 3.4 for m = 2 gives Imax(V
(2)
d ;x) = id+1

√
x

3d−1
Ud+1

(
√
x/2i). Using the fact that

Un(t) =

n∏
k=1

(
2t− 2 cos

kπ

n+ 1

)
,

cf., [53], we obtain

Imax(V
(2)
d ;x) = id+1

√
x

3d−1
d+1∏
k=1

(√
x

i
− 2 cos

kπ

d+ 2

)

= xd−1
d+1∏
k=1

(
x− 2i

√
x cos

kπ

d+ 2

)

= xd−(1−(−1)d)/2

⌊(d+1)/2⌋∏
k=1

(
x2 + 4x cos2

kπ

d+ 2

)
.

This shows that the polynomial Imax(V
(2)
d ;x) has degree 2d. Further-

more, Imax(V
(2)
d ;x) has only real zeros and hence is log-concave and

unimodal.

Also, Corollary 3.4 for m = 3 gives

Imax(V
(3)
d ;x) = id+1x2d−1Ud+1

(
x

2i

)
= x2d−1

d+1∏
k=1

(
x− 2i cos

kπ

d+ 2

)
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= x2d−((1−(−1)d)/2)

⌊(d+1)/2⌋∏
k=1

(
x2 + 4 cos2

kπ

d+ 2

)
,

which shows that not all of the zeros of the polynomial Imax(V
(3)
d ;x)

are real. In fact, it is easy to see that the coefficients of Imax(V
(3)
d ;x)

jump in the pattern where zero coefficients are interlaced with nonzero
coefficients and hence cannot be unimodal, let alone log-concave.

Remark 3.6. In [52], it is conjectured that, for all n,m ≥ 0, the
(ordinary) independence polynomial I(V m

n ) is unimodal, which is con-
firmed in [47] by establishing log-concavity. Also, it is verified in [47,
Proposition 3.1] that, for the cases m = 0, 1, 2, I(V m

n ) has only real
zeros. Here, however, in the theory of maximal independence polyno-
mials, the analogous unimodality does not hold for m ≥ 3, as is clear
from the second equality of Corollary 3.4, while real-rootedness holds
true for m = 0, 1, 2.

Another application is the following. Keep H as the star graph, but
this time let the connecting vertex v be one of the leaves rather than
the center. In this case, the bridge path graph

Bd = B(H,H, . . . ,H; v, v, . . . , v)

(d-times) is the firecracker graph F
(m)
d , see Figure 7.

v1 v2 v3 v4 v5 v6

Figure 7. The firecracker graph F
(3)
6 .

Corollary 3.7. For all d ≥ 0 and m ≥ 2,

(3.13) Imax(F
(m)
d ;x) = fd + xmfd−1 + x2m−1fd−2,

where

(3.14) fd =
d∑

i=0

min(i,d−i)∑
j=0

(
i

j

)(
j

d− i− j

)
x(m−1)(d−i)+i(x+ xm−1)j .
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Proof. Note that Imax(H;x)=x+ xm, Ivmax(H;x)=xm, I v̄max(H;x)
= x and I ṽmax(H;x) = xm−1. According to Corollary 3.2,

Imax(F
(m)
d ;x) = fd + xmfd−1 + x2m−1fd−2,

where

fd =

d∑
i=0

min(i,d−i)∑
j=0

(
i

j

)(
j

d− i− j

)
x(m−1)(d−i)+i(x+ xm−1)j ,

which completes the proof. �

Furthermore, note that Corollary 3.7 gives

Imax(F
(m)
1 ;x)=x+xm,

Imax(F
(m)
2 ;x)=x2+2xm+1+2x2m−1,

Imax(F
(m)
3 ;x)=x3+3xm+2+4x2m+x2m+1+x3m−2+x3m−1,

Imax(F
(m)
4 ;x)=x4+4xm+3+6x2m+1+3x2m+2+2x3m−1+6x3m+3x4m−2.

Remark 3.8. In [47], it is shown that, for all d, m ≥ 0, the
independence polynomial I(Fm

d ) is log-concave and unimodal. Here,
according to (3.13) and (3.14), the analogous properties for maximal
independence polynomials hold if and only if m = 0, 1, 2; note that
the lowest nonzero term of Imax(F

m
d ) has degree d, the lowest has

degree d − 1 + m (from both fd and xmfd−1), and their difference
is > 2 when m ≥ 3.

We complete this section with three additional examples.

Example 3.9. Let H = Km be the complete graph on m vertices.
Clearly, Imax(H;x) = mx, Ivmax(H;x) = x, I v̄max(H;x) = (m− 1)x and
I ṽmax(H;x) = 0. Thus, Corollary 3.3 gives

Imax(Bd(Km, v);x) = xd id+1
√
m− 1

d−1
Ud+1

(√
m− 1

2i

)
,

where i2 = −1. Hence, the polynomial Imax(Bd(Km, v);x) is a mono-

mial in the form of cdx
d where cd := id+1

√
m− 1

d−1
Ud+1(

√
m− 1/2i)
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is a constant. This, of course, is not surprising. However, now the
coefficient of the monomial is known.

v

v

Figure 8. The wheel and the fan graphs both on 4 + 1 = 5 vertices with
center v.

Example 3.10. Let H = Wm be the wheel graph on m + 1 vertices
with center v, see the left hand side of Figure 8 for an illustration.
Furthermore, let the center v be connected to all vertices of the cycle
graph Cm. Clearly, Imax(H;x) = x + Imax(Cm;x), Ivmax(H;x) = x,
I v̄max(H;x) = Imax(Cm;x) and I ṽmax(H;x) = 0. Thus, Corollary 3.3
gives

Imax(Bd(Wm,v);x)= id+1
√
x

d+1√
Imax(Cm;x)

d−1
Ud+1

(√
Imax(Cm;x)

2i
√
x

)
,

where i2 = −1. Then, by (3.12), we have

Imax(Bd(Wm, v);x) =

⌊(d+1)/2⌋∑
k=0

(
d+ 1− k

k

)
(Imax(Cm;x))d−kxk.

(3.15)

Using the fact that Un(t) =
∏n

k=1(2t− 2 cos(kπ/(n+1))), see [53], we
obtain

Imax(Bd(Wm, v);x) =
√
Imax(Cm;x)

d−1

(3.16)

×
d+1∏
k=1

(√
Imax(Cm;x)− 2i

√
x cos

kπ

d+ 2

)
=

√
Imax(Cm;x)

d−(1−(−1)d)/2
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×
⌊(d+1)/2⌋∏

k=1

(
Imax(Cm;x) + 4x cos2

kπ

d+ 2

)
.

Recall that, by Proposition 2.3,

Imax(Cm;x) =
∑
j≥1

m

j

(
j

m− 2j

)
xj .

Specifically,

Imax(C1;x) = x, Imax(C2;x) = 2x,

Imax(C3;x) = 3x, Imax(C4;x) = 2x2,

Imax(C5;x) = 5x2, Imax(C6;x) = 3x2 + 2x3

and
Imax(C7;x) = 7x3.

By (3.16), the polynomial Imax(Bd(Wm, v);x) contains only real zeros
for m = 1, 2, 3, 4, 5. For m = 6, there are non-real zeros if d ≥ 2,
whence, 32 − 4 · 2 · 4 cos2 π/(d+ 2) ≤ 9− 32 cos2 π/4 < 0. Nonetheless,
since every factor of Imax(Bd(W6, v);x) is log-concave, the polynomial is
log-concave and thus unimodal. If d = 1, all zeros of Imax(B1(W6, v);x)

are obviously real. For m = 7, since
√
Imax(C7;x)

d−(1−(−1)d)/2 is a
monomial, and every factor of the product

⌊(d+1)/2⌋∏
k=1

(
Imax(C7;x) + 4x cos2

kπ

d+ 2

)
has a gap at x2; in fact, Imax(Bd(W7, v);x) is nonunimodal.

Next, we focus on the specific values of d = 1, 2. When d = 1,
Imax(Bd(Wm, v);x) = x + Imax(Cm;x). As discussed, for 1 ≤ m ≤ 6,
all zeros of Imax(B1(Wm, v);x) are real; for m ≥ 7, Imax(B1(Wm, v);x)
is nonunimodal since, according to Proposition 2.3, we know that
x3 | Imax(Cm;x), and thus, x+ Imax(Cm;x) has a gap at x2.

The above conclusions hold exactly the same for d = 2, except
that, here, Imax(B2(W6, v);x) is log-concave, unimodal, but not real-
rooted. Based on previous discussions, we only need to prove that
Imax(B2(Wm, v);x) is nonunimodal for all m ≥ 8. First, we show that
the polynomial Imax(B2(Wm, v);x) is nonunimodal for all m ≥ 13. For
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Table 1.

m Imax(B2(Wm, v);x) = Imax(Cm;x)(2x+ Imax(Cm;x))

8 16x4 + 4x5 + 64x6 + 32x7 + 4x8

9 6x4 + 18x5 + 9x6 + 54x7 + 81x8

10 30x5 + 4x6 + 225x8 + 60x9 + 4x10

11 22x5 + 22x6 + 121x8 + 242x9 + 121x10

12 6x5 + 48x6 + 4x7 + 9x8 + 144x9 + 588x10 + 96x11 + 4x12

convenience, let qm(x) := Imax(Cm;x), and let pm(x) := Imax(B2(Wm,
v);x), noting that pm(x) = 2xqm(x) + (qm(x))2. However, since the
degree of 2xqm(x) is ⌊m/2⌋+1, the degree of the minimum nonzero term
of (qm(x))2 is 2⌈m/3⌉, and the difference of these is at least 2 for all
m ≥ 13, there is a gap at x⌊m/2⌋+2, thus implying pm(x) nonunimodal.

Table 1 shows that Imax(B2(Wm, v);x) is nonunimodal for 8 ≤ m ≤
12, to complete our discussion.

Question 3.11. Characterize the subset A(Bd(Wm, v)) of Z+ × Z+

such that, when (m, d) ∈ A(Bd(Wm, v)), the polynomial Imax(Bd(Wm,
v);x) is unimodal.

In summary, we have shown above that (m, d) ∈ A(Bd(Wm, v)) for
1 ≤ m ≤ 6 and any d, that (m, d) /∈ A for m = 7 and any d, that
(m, d) /∈ A for all m ≥ 8 and d = 1, 2.

Example 3.12. Let H = Fm be the fan graph on m + 1 vertices
with center v, see the right hand side of Figure 8 for an illustration.
The vertex v is connected to all vertices of the path graph Pm.
Clearly, Imax(H;x) = x + Imax(Pm;x), Ivmax(H;x) = x, I v̄max(H;x) =
Imax(Pm;x) and I ṽmax(H;x) = 0. Thus, Corollary 3.3 yields

Imax(Bd(Fm, v);x)= id+1
√
x

d+1√
Imax(Pm;x)

d−1
Ud+1

(√
Imax(Pm;x)

2i
√
x

)
,

where i2 = −1. Therefore, by (3.12), we have
(3.17)

Imax(Bd(Wm, v);x) =

⌊(d+1)/2⌋∑
k=0

(
d+ 1− k

k

)
(Imax(Pm;x))d−kxk.
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Using the fact that Un(t) =
∏n

k=1(2t− 2 cos(kπ/(n+1))), see [53], we
obtain

Imax(Bd(Fm, v);x) =
√
Imax(Pm;x)

d−1

(3.18)

×
d+1∏
k=1

(√
Imax(Pm;x)− 2i

√
x cos

kπ

d+ 2

)
=

√
Imax(Pm;x)

d−(1−(−1)d)/2

×
⌊(d+1)/2⌋∏

k=1

(
Imax(Pm;x) + 4x cos2

kπ

d+ 2

)
.

Recall that, by Proposition 2.2,

Imax(Pm;x) =
∑
j≥0

(
j + 1

m+ 1− 2j

)
xj .

Specifically,

Imax(P1;x) = x, Imax(P2;x) = 2x,

Imax(P3;x) = x+ x2, Imax(P4;x) = 3x2,

Imax(P5;x) = 3x2 + x3 and Imax(P6;x) = x2 + 4x3

By (3.18), the polynomial Imax(Bd(Fm, v);x) has only real zeros for
m = 1, 2, 3, 4. For m = 5, there are non-real zeros when d ≥ 3.
Nonetheless, since every factor of Imax(Bd(F5, v);x) in (3.18) is log-
concave, the polynomial is log-concave, and thus unimodal, for all
d ≥ 1.

When d = 1, by (3.17),

Imax(Bd(Fm, v);x) = x+ Imax(Pm;x).

As already discussed, for 1 ≤ m ≤ 5, all zeros of Imax(B1(Fm, v);x)
are real; Imax(B1(F6, v);x) = x + x2 + x3 has non-real zeros but is
log-concave and thus unimodal; Imax(B1(Fm, v);x) is nonunimodal for
m ≥ 7 since x3 | Imax(Pm;x), and thus produces a gap at x2.

The above conclusions hold exactly the same for d = 2. We only
need to prove that Imax(B2(Fm, v);x) is nonunimodal for all m ≥ 6
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and m ̸= 8. First, as in the treatment of Example 3.10, it is not
difficult to see that the polynomial Imax(B2(Fm, v);x) is nonunimodal
for all m ≥ 16. A special case is m = 8 since Imax(B2(Fm, v);x) =
8x4 + 10x5 + 16x6 + 40x7 + 25x8 is unimodal but not log-concave.
For 6 ≤ m ≤ 15 and m ̸= 8, numerical computation yields that
Imax(B2(Fm, v);x) is nonunimodal; thus, our discussion is complete.

4. Bridge cycle graph. Let {Hi}di=1 be a set of finite pairwise
disjoint graphs with a specifically chosen vi ∈ V (Hi) and |V (Hi)| ≥ 2.
The bridge cycle graph

C(H1,H2, . . . ,Hd) ≡ C(H1,H2, . . . ,Hd; v1, v2, . . . , vd)

of {Hi}di=1 with respect to the vertices {vi}di=1 is obtained from the
components H1, . . . , Hd by connecting vertices vi and vi+1 by an edge
for all i = 1, 2, . . . , d− 1, as well as connecting vertices vd and v1 by an
edge, see Figure 9.

H1 H2 Hd−1 Hd

v1 v2 vd−1 vd

Figure 9. The bridge cycle graph.

Now, let us derive a recurrence relation for the sequence of maximal
independence polynomials

{Imax(C(H1,H2, . . . , Hd);x)}d≥0.

For convenience, define I ′vmax(G;x) = I v̄max(G;x) + I ṽmax(G;x). As in
Section 3, Bd := B(H1,H2, . . . , Hd; v1, v2, . . . , vd) represents the bridge
path graph of {Hi}di=1 with respect to the vertices {vi}di=1. Let Bd

denote B(H,H, . . . ,H; v, v, . . . , v) when all of the components Hi are
the same and vi = v for all 1 ≤ i ≤ d. By definition, it is easy to see
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that

Ivdmax(C(H1,H2, . . . ,Hd);x)(4.1)

= Ivd
max(Hd;x)I

′vd−1
max (Hd−1;x)I

′v1
max(H1;x)

· Imax(B(H2,H3, . . . , Hd−2);x).

Also,

Ivd
max(C(H1,H2, . . . , Hd);x)(4.2)

= I{v1,vd−1},vd
max (C(H1,H2, . . . , Hd);x)

+ Iv1,{vd−1,vd}
max (C(H1,H2, . . . ,Hd);x)

+ Ivd−1,{v1,vd}
max (C(H1,H2, . . . ,Hd);x)

+ I{v1,vd−1,vd}
max (C(H1,H2, . . . ,Hd);x)

= I ′vd
max(Hd;x)I

{v1,vd−1}
max (Bd−1;x)

+ I ′vdmax(Hd;x)I
v1,vd−1
max (Bd−1;x)

+ I ′vdmax(Hd;x)I
vd−1,v1
max (Bd−1;x)

+ Ivd
max(Hd;x)I

{v1,vd−1}
max (Bd−1;x)

=I ′vd
max(Hd;x)Imax(Bd−1;x)

− I ṽd
max(Hd;x)I

{v1,vd−1}
max (Bd−1;x).

It remains to find a recurrence for I
{v1,vd−1}
max (Bd−1;x), which can be

accomplished as follows:

I{v1,vd}max (Bd;x) = I{v1,vd−1,vd}
max (Bd;x) + Ivd−1,{v1,vd}

max (Bd;x)

= Ivd
max(Hd;x)I

{v1,vd−1}
max (Bd−1;x)

+ I ′vdmax(Hd;x)I
vd−1,v1
max (Bd−1;x).

Thus, by the fact that

I{v1,vd}
max (Bd;x) + Ivd,v1

max (Bd;x) = Iv1
max(Bd;x),

we obtain

(4.3) I{v1,vd}
max (Bd;x) + I ṽd

max(Hd;x)I
{v1,vd−1}
max (Bd−1;x)

= I ′vd
max(Hd;x)I

v1
max(Bd−1;x).
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Indeed, the recurrences (4.1)–(4.3) with right initial values may be
used to compute Imax(C(H1,H2, . . . , Hd);x) for any graph components
H1, . . . , Hd, each of which has at least two vertices.

For nicer exhibitions, from now on, we focus on cases Hi = H
and vi = v for all i = 1, 2, . . . , d. Denote the bridge cycle graph
C(H,H, . . . ,H, v, v, . . . , v) (d-times) by Cd = Cd(H, v). Thus, (4.1)–
(4.3) give

Ivmax(Cd;x) = Ivmax(H;x)(I ′vmax(H;x))2Imax(Bd−3;x),

I v̄max(Cd;x) = I ′vmax(H;x)Imax(Bd−1;x)

− I ṽmax(H;x)I{v1,vd−1}
max (Bd−1;x),

I{v1,vd}max (Bd;x) + I ṽmax(H;x)I{v1,vd−1}
max (Bd−1;x)

= I ′vmax(H;x)I v̄max(Bd−1;x).

This implies

Ivmax(Cd;x) + I ṽmax(H;x)Ivmax(Cd−1;x)

= Ivmax(H;x)(I ′vmax(H;x))2Imax(Bd−3;x)

+ I ṽmax(H;x)Ivmax(H;x)(I ′vmax(H;x))2Imax(Bd−4;x)

I v̄max(Cd;x) + I ṽmax(H;x)I v̄max(Cd−1;x)

= I ′vmax(H;x)(Imax(Bd−1;x) + I ṽmax(H;x)Imax(Bd−2;x))

− I ṽmax(H;x)I ′vmax(H;x)I v̄max(Bd−2;x).

Adding the above two equations, we obtain

Imax(Cd;x) + I ṽmax(H;x)Imax(Cd−1;x)

= I ′vmax(H;x)Imax(Bd−1;x)+I ′vmax(H;x)Iṽmax(H;x)Imax(Bd−2;x)

− I ′vmax(H;x)I ṽmax(H;x)I v̄max(Bd−2;x)

+ Ivmax(H;x)(I ′vmax(H;x))2Imax(Bd−3;x)

+ I ṽmax(H;x)(I ′vmax(H;x))2Ivmax(H;x)Imax(Bd−4;x).

Hence, replacing I
vd−2
max (Bd−2;x) by (3.6), we obtain

Theorem 4.1. Let H be any graph which has at least two vertices.
Let Cd = Cd(H, v) = C(H,H, . . . ,H; v, v, . . . , v) (d-times, d ≥ 5)
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be a bridge cycle graph. The sequence of the maximal independence
polynomials Imax(Cd;x) satisfies the following recurrence relation

Imax(Cd;x) + I ṽmax(H;x)Imax(Cd−1;x)

= I ′v(H;x)maxImax(Bd−1;x)+I ′vmax(H;x)I ṽmax(H;x)Imax(Bd−2;x)

+ I ′vmax(H;x)(I ′vmax(H;x)Ivmax(H;x)

− I ṽmax(H;x)I v̄max(H;x))Imax(Bd−3;x)

+ (I ′vmax(H;x))2I ṽmax(H;x)Ivmax(H;x)Imax(Bd−4;x)

− (I ′vmax(H;x))2(I ṽmax(H;x))2Ivmax(H;x)Imax(Bd−5;x).

As a corollary, we have the following result.

Corollary 4.2. Let H be any graph with least two vertices, and let v
be a vertex in H with I ṽmax(H;x) = 0. Let Cd = Cd(H, v) = C(H,H,
. . . ,H; v, v, . . . , v) (d-times) be a bridge cycle graph, and let Bd =
Bd(H, v) = B(H,H, . . . ,H; v, v, . . . , v) (d-times) be a bridge path graph.
Then,

Imax(Cd;x) = I v̄max(H;x)Imax(Bd−1;x)

+ Ivmax(H;x)(I v̄max(H;x))2Imax(Bd−3;x),

for all d ≥ 3.

As a consequence of Corollaries 3.3 and 4.2 we have a formula for
the polynomial Imax(Cd;x).

Corollary 4.3. Let H be any graph with at least two vertices, and
let v be a vertex in H such that I ṽmax(H;x) = 0. Let Cd = Cd(H, v) =
B(H,H, . . . ,H; v, v, . . . , v) (d-times) be a bridge cycle graph. Then, for
all d ≥ 3,

Imax(Cd;x) = (i
√
β)d Ud

(
α

2i
√
β

)
− (i

√
β)d Ud−2

(
α

2i
√
β

)
(4.4a)

= α(1−(−1)d)/2

⌊d/2⌋−1∏
k=0

(
α2 + 4β cos2

(2k + 1)π

2d

)
,(4.4b)

when α := I v̄max(H;x), β := Ivmax(H;x)I v̄max(H;x) and i2 = −1.
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Proof. The first equality, i.e., (4.4a), is an immediate consequence
of Corollaries 3.3 and 4.2.

For the second equality, i.e., (4.4b), we observe the following. In
general, the real-rooted polynomial Ud(t)−Ud−2(t) has d distinct roots,
and they are cos (2k + 1)π/(2d), k = 0, . . . , d− 1. In order to see this,
we use the trigonometric representations of the Chebyshev polynomials
Un(t) = sin(n+ 1)t/sin t and solve for the zeros of (4.4a) from there.
The rest is clear. �

Now, we present a few examples to show applications of the above
theory.

Example 4.4. Let H = Km be the complete graph on m vertices.
Recall that Imax(H;x) = mx, Ivmax(H;x) = x, I v̄max(H;x) = (m − 1)x
and I ṽmax(H;x) = 0. Thus, α = (m − 1)x, β = (m − 1)x2 and (4.4a)
gives, for all d ≥ 3,

Imax(Cd(Km, v);x) = (i
√
(m−1)x)d

[
Ud

(√
m−1

2i

)
−Ud−2

(√
m−1

2i

)]
,

where i2 = −1. Hence, Imax(Cd(Km, v);x) is a monomial of the form
cdx

d, where cd is the constant

(i
√

(m− 1))d
[
Ud

(√
m− 1

2i

)
− Ud−2

(√
m− 1

2i

)]
.

Equivalently, when applying (4.4b), we obtain

Imax(Cd(Km,v);x) = xd(m−1)⌊(d+1)/2⌋
⌊d/2⌋−1∏

k=0

(
m−1+4 cos2

2k+1

2d
π

)
.

Example 4.5. Let H = K1,m be the star graph on m + 1 vertices
where v is its center. Again, Imax(H;x) = x + xm, Ivmax(H;x) = x,
I v̄max(H;x) = xm and I ṽmax(H;x) = 0. Hence, for the cyclic vertebrated
graph, α = xm, β = xm+1 and (4.4b) yield that, for all d ≥ 3,

Imax(Cd(K1,m, v);x) = xm(1−(−1)d)/2

⌊d/2⌋−1∏
k=0

(
x2m+4xm+1cos2

(2k+1)π

2d

)
=

√
x

(m+1)d+(m−1)(1−(−1)d)/2
(4.5)
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×
⌊d/2⌋−1∏

k=0

(
xm−1 + 4 cos2

(2k + 1)π

2d

)
where i2 = −1. Therefore, for m ≥ 3, the polynomial Imax(Cd(K1,m,
v);x) is nonunimodal due to the many obvious gaps. By (4.5), for
m = 1, Imax(Cd(P2, v);x) is a monomial Imax(Cd(P2, v);x) with the
coefficient

⌊d/2⌋−1∏
k=0

(1 + 4 cos2 (2k + 1)π)/(2d).

For m = 2, we have

Imax(Cd(K1,2,v);x)=
√
x

3d+(1−(−1)d)/2
⌊d/2⌋−1∏

k=0

(
x+4 cos2

(2k+1)π

2d

)
,

implying that the polynomial Imax(Cd(K1,2, v);x) has only real zeros
and is thus log-concave and unimodal.

Example 4.6. Let H = Wm be the wheel graph on m + 1 vertices
with center v, that is, the vertex v is connected to all vertices of the
cycle Cm. Clearly, Imax(H;x) = x + Imax(Cm;x), Ivmax(H;x) = x,
I v̄max(H;x) = Imax(Cm;x) and I ṽmax(H;x) = 0. As in the previous
examples, applying Corollary 4.3 yields

Imax(Cd(Wm, v);x) = Imax(Cm;x)
⌊(d+1)/2⌋

(4.6)

×
⌊d/2⌋−1∏

k=0

(
Imax(Cm;x) + 4x cos2

(2k + 1)π

2d

)
.

Recall again, by Proposition 2.3, that Imax(Cm;x) =
∑

j≥1(m/j)(
j

m−2j

)
xj . Specifically, Imax(C1;x) = x, Imax(C2;x) = 2x, Imax(C3;x)

= 3x, Imax(C4;x) = 2x2, Imax(C5;x) = 5x2, Imax(C6;x) = 3x2 + 2x3

and Imax(C7;x) = 7x3.

By (4.6), the polynomial Imax(Cd(Wm, v);x) has only real zeros for
m = 1, 2, 3, 4, 5. For m = 6, there are non-real zeros when d ≥ 2.
However, Imax(Cd(W6, v);x) is log-concave and unimodal for any d.
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For m = 7, Imax(Cd(W7, v);x) is nonunimodal following the discussion
of Example 3.10.

As for d = 1, 2, the polynomial Imax(C1(Wm, v);x) is log-concave
and unimodal, the polynomial Imax(C2(Wm, v);x) is nonunimodal for
m ≥ 8. This is due to the fact that, when d = 1, 2, there is no difference
between the bridge path and bridge cycle graphs.

Example 4.7. Let H = Fm be the fan graph on m + 1 vertices
with center v, that is, v is connected to all vertices of the path Pm.
We know that Imax(H;x) = x + Imax(Pm;x), Ivmax(H;x) = x, I v̄max

(H;x) = Imax(Pm;x) and I ṽmax(H;x) = 0. Similar to Example 4.6,
Corollary 4.3 yields

Imax(Cd(Fm, v);x) = Imax(Pm;x)
⌊(d+1)/2⌋

(4.7)

×
⌊d/2⌋−1∏

k=0

(
Imax(Pm;x) + 4x cos2

(2k + 1)π

2d

)
.

Again, recall that, by Proposition 2.2, Imax(Pm;x) =
∑

j≥0

(
j+1

m+1−2j

)
xj .

Specifically, Imax(P1;x) = x, Imax(P2;x) = 2x, Imax(P3;x) = x + x2,
Imax(P4;x) = 3x2, Imax(P5;x) = 3x2 + x3 and Imax(P6;x) = x2 + 4x3.

By (4.7), the polynomial Imax(Cd(Fm, v);x) has only real zeros for
m = 1, 2, 3, 4. For m = 5, there are non-real zeros when d ≥ 3.
Nonetheless, Imax(Cd(F5, v);x) is log-concave and unimodal for all
d ≥ 1.

Cases d = 1, 2 are treated in Example 3.12.

Question 4.8. Questions similar to Question 3.11 may be formulated.
For example, let A(Cd(Fm, v)) be the subset of Z+×Z+ such that, when
(m, d) ∈ A(Cd(Fm, v)), the polynomial Imax(Cd(Fm, v);x) is unimodal.
By our discussion in Examples 3.12 and 4.7, we have shown that
(m, d) ∈ A(Cd(Fm, v)) for 1 ≤ m ≤ 5 and any d, that (m, d) /∈ A
for m = 8 and d = 1, that (m, d) /∈ A for all m ≥ 6,m ̸= 8 and
d = 1, 2. How is A(Cd(Fm, v)) completely characterized?
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quency sequences, J. Combin. Theory 109 (2005), 63–74.

47. Yi Wang and Bao-Xuan Zhu, On the unimodality of independence polyno-
mials of some graphs, European J. Combin. 32 (2011), 10–20.

48. Douglas B. West, Introduction to graph theory, Prentice Hall, Inc., Upper

Saddle River, NJ, 1996.

49. Herbert S. Wilf, The number of maximal independent sets in a tree, SIAM
J. Alg. Discr. Meth. 7 (1986), 125–130.

50. , generatingfunctionology, Academic Press, Inc., Boston, MA, 1994.

51. Bao-Xuan Zhu, Clique cover products and unimodality of independence

polynomials, Discr. Appl. Math. 206 (2016), 172–180.

52. Zhi-Feng Zhu, The unimodality of independence polynomials of some graphs,
Australian J. Combin. 38 (2007), 27–33.

53. Daniel Zwillinger, ed., CRC standard mathematical tables and formulae,
Chapman & Hall/CRC, Boca Raton, FL, 2003.

Peking University, School of Mathematical Sciences & LMAM, Beijing
100871, P.R. China
Email address: huhan@pku.edu.cn

University of Haifa, Department of Mathematics, 31905 Haifa, Israel

Email address: toufik@math.haifa.ac.il



ON THE MAXIMAL INDEPENDENCE POLYNOMIAL 2253

Peking University, School of Mathematical Sciences & LMAM, Beijing
100871, P.R. China
Email address: csong@math.pku.edu.cn


