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ALBIME TRIANGLES OVER QUADRATIC FIELDS

JASBIR S. CHAHAL AND JAAP TOP

ABSTRACT. This note uses a diophantine problem aris-
ing in elementary geometry as a prerequisite to illustrate
some theory of elliptic curves. As a typical example, Propo-
sition 2.4 and Theorem 3.1 determine the exact set of ration-
al numbers for which the specialization homomorphism from
the torsion free rank 2 group of rational points on some
elliptic curve over Q(t), is well defined and injective.

1. Introduction. The motivation for the present note is the follow-
ing.

Definition 1.1. Let K C R be a field. A triangle ABC is called K-
albime if the altitude from vertex C, the internal bisector of angle A and
the median from vertex B are concurrent and, moreover, the lengths

a=|BC|, b=|AC]|, c=|AB]

satisfy a,b,c € K.

2010 AMS Mathematics subject classification. Primary 11D25, 11G05, 14G05,
97G40.

Keywords and phrases. Elliptic curve, quadratic twist, specialization map,
Chabauty method, elementary geometry.

Received by the editors on May 26, 2016.

DOI:10.1216 /RMJ-2017-47-7-2095 Copyright ©2017 Rocky Mountain Mathematics Consortium

2095



2096 JASBIR S. CHAHAL AND JAAP TOP

In [1], some history and basic properties of albime triangles are
given. As far as is known, the first one who mentioned triangles with
the given property was New York Evander Childs High School teacher,
David L. MacKay (1887-1961) [10] in 1937. The same MacKay [11]
asked in 1939 for a classification of what we call here the Q-albime
triangles. The earliest nontrivial example of a Q-albime triangle was
given in 1991 by Hoyt [9]. More examples were found by Guy in 1995,
whose paper [7] rephrases the problem in terms of rational points on a
certain elliptic curve.

Let S be the set of equivalence classes of similar triangles. Clearly,
‘albime’ is a property of a class in §. Suppose that K C R is a field.
By A(K) C S, we denote the set of equivalence classes containing a
K-albime triangle. We shall identify a given equivalence class with any
of its members. Let E be “Guy’s favourite elliptic curve” (see [1, 7])
over Q with equation y? = 23 — 4z + 4. Write I(K) C E(K) for the
subset of K-rational points (x,y) such that 0 < z < 2 and y > 0.
A straightforward generalization of [1, Theorems 2.1, 3.2 (a)] is the
following.

Theorem 1.2. The map
A:I(K)— AK)

given by A(c,a) is the triangle with side lengths a, b= 2 — ¢, and ¢ is
bijective.

Since every A(K) contains A(Q), and the latter set is infinite by [1,
Theorem 3.2 (c)], every A(K) is infinite as well. In this text, we restrict
to real quadratic fields K. As an example, it is not difficult to show
that I(Q) = I(Q(v/d)), for d € {2,3,5,6}. Therefore, up to similarity,
for these values of d, no new albime triangles appear if lengths rather
than only rational lengths are allowed in Q(\/E) On the other hand,
starting from any rational r with 0 < r < 2 such that d := 73 —4r +4 is
not a square in QQ, the ‘new’ Q(\/(j)—albime triangle is clearly obtained
with sides (v/d,2 —r,7).

Studying K-albime triangles is equivalent to studying the subset
I(K) of E(K). Since, compare [1, Section 5], every point of infinite
order in E(K) generates a dense and equidistributed subgroup of E(R),
this essentially reduces a study of K-albime triangles to a study of the
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group E(K). Although much is known about the group of points over
a quadratic extension on an elliptic curve over a given field, we take the
opportunity to expose some of this theory by illustrating it in the special
case related to K-albime triangles. Specifically, the main results of this
paper are Theorem 3.1 and its corollary. These present an explicit
family of real quadratic fields K such that K-albime triangles exist
which are not Q-albime.

2. Guy’s elliptic curve over quadratic fields. In this section,
K = Q(+/d) C R denotes a quadratic field. Let E be the elliptic curve
given by y? = 23 — 4z + 4. Now, we present some results on the group
E(K).

Lemma 2.1. For any quadratic field K, the group E(K) is torsion
free of finite rank.

Proof. The fact that the group has finite rank is a special case of the
Mordell-Weil theorem which states that this holds for any elliptic curve
over any number field, see, e.g., [14, Chapter 13, Theorem 6.7] or [18].
In the present case, it can also be seen as follows. Write K = Q(V/d),
and set

E@ . dy? =z — 4x + 4.

This E(? is an elliptic curve which is isomorphic to E; indeed, the map
u(z,y) := (x,y/v/d) defines an isomorphism

1B = B

In the theory of elliptic curves, E(9 is the quadratic twist over K /Q of
the curve E, compare, e.g., [14, Chapter 10, Section 5].

Let o be the nontrivial automorphism of the field K; thus, o(v/d) =
—+/d. This defines an automorphism

P P°

of the group F(K) where P? means that o is applied to all coordinates
of the point P € E(K). Define a homomorphism of groups

p:E(K) — E(Q) & E“Y(Q)



2098 JASBIR S. CHAHAL AND JAAP TOP

by u(P) := (P + P°,.(P — P?)). Here, the fact that P + P° and
t(P — P7) are defined over Q follows from the observation that they
are invariant under the action of o. In addition, the simple observation
that the diagram of isomorphisms

B(K) % EW(K)
ol lo
E(K) — EW(K)

commutes may be used. Next, u is injective since, if P is in the kernel
of p, then —P = P = P; hence, P € FE(Q) is a point of order
dividing 2. Since E(Q) contains no points of order 2 (the polynomial
X3 —4X + 4 is irreducible over Q), injectivity of u follows.

This argument shows that F(K) can be regarded as a subgroup of
E(Q)®EW(Q). The latter group is finitely generated (using Mordell’s
[13] result), hence, so is F(K).

In order to show that E(K) is torsion free, the injective map pu is
again used. First, it clearly suffices to show that F(K) contains no
point of prime order p. Now, let p be a prime number, and assume
that P € E(K) has order p. Write u(P) = (Q, R). Since u is injective,
(Q, R) has order p as well. This implies that @ = O since E(Q)
contains no nontrivial torsion point. Hence, P = — P by the definition
of p. This means that the z-coordinate z(P) of the point P is in Q.
Moreover, () = O implies that P and R have the same order, which
is p. Thus, R € E%(Q) is a point of order p. From a well-known result
of Mazur [12] on torsion points of elliptic curves over Q, this implies

pe {2,357}

The possibilities are considered next.

Clearly, p = 2 is not possible since this would imply that P =
(z(P),0) is in E(Q). If p = 3, then x(P) would be a rational zero of
the 3-division polynomial of E (a polynomial having all z-coordinates
of all points of order 3 as its zeros, see [17, subsection 3.2])

3 = 3X* —24X? 4 48X — 16.

This polynomial is irreducible (its reciprocal is an Eisenstein polyno-
mial for the prime 3); hence, z(P) € Q cannot be a zero. A similar
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argument eliminates the primes 5 and 7. Indeed,
s = 5X 12— 248 X104 1520X 7% — 1680X % — 3840X 7+ 15360X°
— 44544 X5+ 90880X* — 81920X 3 — 10240X 2+ 61440X — 28672,

which is irreducible (modulo 3). The polynomial ¢ of degree 24 is
irreducible since it is modulo 5. This completes the proof. |

The argument presented above suggests that, in order to find (real)
quadratic fields K = Q(v/d) such that E(K) properly contains E(Q),
quadratic twists E@ should be searched for such that E(®(Q) is
nontrivial. Given any quadratic field K = Q(v/d), define

A E(Q) @ EY(Q) — E(K)

by MQ,R) := Q + ¢t=Y(R). It can easily be verified that p o \ is
multiplication by 2 on E(Q) ® E@(Q), which is an injective map.
Hence, A is injective as well. Lemma 2.1 implies that, for every d € Q*,
which is not a square (and obviously also for square d), the group
E@(Q) is torsion free.

We now briefly discuss two well-known methods for constructing
many d such that E(4)(Q) is nontrivial. Both are based upon the
simple idea of finding a suitable polynomial d(¢) and then considering

EU®) . d(t)y? = 2® — 4z + 4,

an elliptic curve over the function field Q(t). If E(4"))(Q(t)) contains
a point P # O, then specializing the variable ¢ to a rational number £,
will, in general, give a quadratic twist of F with a nontrivial rational
point. By varying tg, the existence of infinitely many such twists may
be proved. This method is explained in [15]. Here, we specialize the
above-mentioned to the present situation.

Proposition 2.2. Let d(t) € Q[t] be a polynomial not of the form a
constant times a square. The group E@®)(Q(t)) is torsion free of finite
rank equal to the rank of Morg(C, E)/E(Q), where C is the hyper-
elliptic curve over Q, defined by the equation

y? = d(x),

and E(Q) is regarded as the subgroup of constant morphisms in the
group Morg(C, E) of morphisms defined over Q from C to E.
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Proof. The function field Q(C) of C is the quadratic extension
Q(t, s) of Q(t) defined by s? = d(t). Any point R = (o, 3) € E(Q(C))
can be identified with a morphism

QDRIC—>E,

given by pgr(z,y) = (a(z,y), B(x,y)). Furthermore, analogous to the
reasoning in the proof of Lemma 2.1, E(")(Q(t)) can be regarded
as a subgroup of E(Q(C)). As a consequence, E@®)(Q(t)) can be
identified with a subgroup of the group Morg(C, E) of all morphisms
defined over Q from C to E. In fact, the identified subgroup consists
of all morphisms 7 which satisfy m o h = [—1] o 7, where h is the
hyperelliptic involution

(z,y) — (z,—y) onC.

Any nonconstant morphism between curves is known to be surjective
(over an algebraic closure). If a nontrivial point in E(@®))(Q(t)) has
finite order n, then the corresponding morphism C — E would have its
image in the n-torsion subgroup of E. As a result, this map is constant,
and, since the morphism is defined over QQ, it maps all of C' to a point
of order n in E(Q). However, E(Q) is torsion free, which also shows
that E(41)(Q(t)) is torsion free.

The statement concerning rank is verified as follows. Let ¢ be the
nontrivial automorphism of Q(C) over Q(¢) and

1 E— B4
the isomorphism analogous to that used earlier. The homomorphism
Morg(C, E) = E(Q(C)) — E“D(Q(1)),

given as

P (P —o(P)),

has kernel E(Q(t)) = Morg(P',E) = E(Q). The homomorphism
maps ¢~ (E1)(Q(t))) onto 2E@M)(Q(t)), which has finite index in
EM)(Q(t)). Hence, indeed, E@M)(Q(t)) and Morg(C, E)/E(Q) have
equal rank. O
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The first and simplest example illustrating Proposition 2.2 in the
case of Guy’s elliptic curve is to take

d(t) := > — 4t 4 4,
in which case the point (¢,1) is in E()(Q(t)).

Proposition 2.3. For d(t) := t* — 4t + 4, the group EM)(Q(t)) is
infinite cyclic with (t,1) as a generator.

Proof. In the case under consideration, C' = E; thus, we consider
morphisms ¢ : E — FE defined over Q with —p = ¢ o [-1]. Set
R = ¢(0) € E(Q). Applying the condition on ¢ to O gives —R = R.
Since E(Q) is torsion free, R = O. Therefore, ¢ is an endomorphism
of F defined over Q. It is well known that any endomorphism 7 of an
elliptic curve E, with 7 and E both defined over Q, is multiplication
by an integer n. This group of endomorphisms is generated by the
identity map, which, in this case, equals pp for P = (¢,1). This proves
Proposition 2.3. (]

A second example follows.

Proposition 2.4. Let
d(t) == (2 +t + 1)t +7t° 4 16t* + 71% — 4> —t +1).
The group E@®)(Q(t)) is torsion free of rank 2, with

o —4t—-2 2
o\t (2t 1)2

and

Q= —2t% + 2 2
o\t (24t 1)2

as generators.

Proof. Part of this follows from [15, Theorem 4]. Indeed, with
notation as in loc. cit., taking a = —2 and ¢ = 0 gives the polynomial
d(t) and the points P, Q.! The cited result shows that P and Q are
independent. The group E(4"))(Q(t)) is torsion free by Proposition 2.2.
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It remains to show that E(4")(Q(t)) has rank 2 with P,Q as its
generators. Using Magma, it can be verified that C' and E have good
reduction at 5, and the characteristic polynomial of Frobenius at 5
acting on the Tate module of the Jacobian of C' equals (T2 + 3T +5)? x
(T? + 5). The same calculation for the elliptic curve E yields the
polynomial T2 + 3T +5. As a consequence (compare [16]), the rank of
EE®)(Q(t)) is at most 2. Therefore, it equals 2.

Finally, consider the maps ¢p, g from C to E associated with the
points P, Q). It may be verified that both maps have degree 2. Moreover,

R +— deg(pr)

defines the canonical height on the group E@®)(Q(t)). A calculation
shows that the z-coordinate of P+ @Q is (2¢(2+t))/(1 + ¢ + t?); hence,
¢p+q has degree 2. Therefore, the height pairing satisfies (P, P) =
(Q,Q) =2 and (P,Q) = —1. This means that E@®)(Q(t)), equipped
with the height pairing, is an integral lattice of rank 2. It has a
sublattice equal to the root lattice Ay, defined as the lattice of all points
in Z3 having coordinate sum 0, equipped with the standard Euclidean
inner product. The observation that As is not properly contained in
any rank 2 integral lattice completes the proof. |

3. Examples of albime triangles over quadratic fields. Propo-
sition 2.4 is particularly suitable for constructing K-albime triangles:
the given polynomial d(t) satisfies d(§) > 0 for all £ € R. Bruin ex-
plained, using his Magma implementation of the Chabauty method for
hyperelliptic curves, that d(ty) is a rational square only if

to € {-1,0,1,—2,—1/2}.

For any rational o not in this finite set, Q(1/d(to)) is a real quadratic
field and E' := E(@(®)) i a nontrivial twist of E. As was shown in
Lemma 2.1, E'(Q) is torsion free. Specializing P and @ to points
P’, Q' yields two nontrivial points; thus, E'(Q) is free of positive rank.
Independence of P/, Q) for any particular value of t = t; is tested as
follows.

Let 0 denote a zero of 23 — 4x + 4, and set L := Q(6), which is a
degree 3 field extension of Q. Define «(t), 8(t) € L(t)* as

—4t — 2 —2t% + 2
a(t) == <t2—|—t+1 - 9) d(t) and p(t) = (t2+t—|—1 - 9) d(t).
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This yields a commutative diagram:

EEAO@Q(t)  — L) /L(t)*?
! !
Z-P+7-Q —  L*/L*

Here, the vertical maps are obtained by specializing t to tg; the upper
horizontal map is defined by

mP 4+ nQ — a(t)mﬂ(t)"L(t)ﬂ.

The lower horizontal map is the restriction to the subgroup generated
by P’,Q’ of the homomorphism
E'(Q) — L*/L*% : (a,b) — d(to)(a — 0)L%>.

It is a classical result that this defines a homomorphism. Indeed, the
basic tools for this are already present in Mordell’s paper [13, Sections
5, 6]; for a precise statement and proof, see [5, Section 2].

A sufficient criterion for independence of P’ and Q' is that their
images in L*/ L*? generate a noncyclic group. This is equivalent to
the condition that none of «a(to), 8(to) or a(to)5(to) is a square in L*.
Since Z[#] becomes a unique factorization domain, this condition is easy
to test.

The set of rational numbers failing this test is found as follows.
Define

C:y? =d(z), Cy 9% = afx),
Cp 1y = Bl), Cap : y* = a(z)B(2).
The first is a curve over Q, the others are defined over L. Set
S :={£ € Q: there exists an n € Q with (£,n) € C(Q)}
={-1,0,1,-2,-1/2}
(as computed by Bruin), and

T := {£ € Q : there exists an n € L with
(&,m) € Ca(L) UCE(L) U Cap(L)}

Using the Magma package, it can easily be verified that the curves
Cy,Cs and C,p have genus 1 and contain a point with coordinates
in L. Hence, they define elliptic curves over L. The elliptic Chabauty
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method implemented in Magma, introduced by Bruin and described, e.g.,
in [4, Section 7], is perfectly suited for computing the L-rational points
on these curves with Q-rational z-coordinate. The three elliptic curves
over L are isomorphic and have torsion subgroup Z/2Z x Z/2Z. The
rank over L equals 1. Magma’s elliptic Chabauty reveals that the only
Q-rational z-coordinate of a point in C, (L) is —1/2, corresponding to
(—1/2,+9(0*+20—4)/32). The same technique applied to Cz(L) yields
as z-coordinates {£1}, coming from the points (—1, +(6% + 20 — 4)/2)
and (1,+9(0% 4 20 — 4)/2). Finally, the only Q-rational x-coordinates
of points in Cup(L) are {—2,0}. These are derived from the points
(—2,+81(6% + 6 — 2)) and (0, £(02 + 0 — 2)).

As a consequence, we have determined all tg € Q such that special-

ization at ¢y is injective:

Theorem 3.1. Let
d(t) == (2 +t+ 1)(t° + 7> + 16t + 7t° — 4t —t + 1)
and
E:y*=2% 4o +4.
For tg € Q, the specialization homomorphism
EUM)(Q(t)) — EU)(Q)

is injective precisely when to ¢ {—1,0,1,-2,—1/2}.

Note that the argument presented here allows determination of
injectivity of the specialization homomorphism for all values ¢ty €
Q. Similar but simpler examples in this spirit were obtained by
Hazama [8]. A recent discussion of this specialization may be found
in a paper by Gusi¢ and Tadi¢ [6]. The present example illustrates
that their work can be extended, resulting in more examples where it
is possible to explicitly determine the set for which specialization is
injective.

Corollary 3.2. For Guy’s elliptic curve
E:y’=2a2%—4a+4
and

d(t) == (> +t+ 1) (5 + 715 + 1611 + 7¢3 — 41 —t 4+ 1)
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and every tg € Q\{-1,0,1,—2,—1/2}, the field K = Q(\/d(to)) is real
quadratic and E(Q(+/d(tg))) is free of rank > 3. In these cases, many
K-albime triangles exist which are not Q-albime.

Indeed, the group F(Q) is free of rank 1 with generator (2,2). The
fact that the rank is 1 was already established during calculations in
the early 1960s by Birch and Swinnerton-Dyer, leading to their famous
conjecture. More precisely, it is the entry for A = 4, B = —4 in
[3, Table 1]. According to the comments on the tables published in
[2, pages 75-77], Nelson Stephens and James Davenport computed
the generator while Nelson Stephens and Jacques Vélu determined the
torsion subgroups of all curves in the tables, including the case at hand.

The method of the present paper shows that (2,2), together with

—4tg — 2 2 d(to) —2tg +2 2 d(to)
2 ) 712 P and p) ) 72 7 |
2+to+1" (2 +to+1) 2+to+1" (2 +to+1)

is a set of three independent points in E(Q(+/d(to))).
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ENDNOTES

1. Note the misprint in the proof of [15, Theorem 4]: the numerator
of the y-coordinate of the given points should be 2, not 1.
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