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ON A FROBENIUS PROBLEM FOR POLYNOMIALS

R. CONCEIÇÃO, R. GONDIM AND M. RODRIGUEZ

ABSTRACT. We extend the famous diophantine Frobe-
nius problem to a ring of polynomials over a field k. Similar
to the classical problem we show that the n = 2 case of the
Frobenius problem for polynomials is easy to solve. In addi-
tion, we translate a few results from the Frobenius problem
over Z to k[t] and give an algorithm to solve the Frobenius
problem for polynomials over a field k of sufficiently large
size.

1. Introduction. The Frobenius problem (FP) is a problem in basic
number theory related to nonnegative integer solutions (x1, . . . , xn) of

x1a1 + · · ·+ xnan = f,

where the ais and f are positive integers and gcd(a1, . . . , an) = 1. In
particular, the Frobenius number g = g(a1, . . . , an) is the largest f so
that this equation fails to have a solution and the Frobenius problem is
to compute g. This classical problem has a long history and has found
many applications in mathematics as seen in [1], which contains the
state-of-the-art on FP as well as almost 500 references on the subject
and its applications.

As early as the mid 19th century mathematicians began to notice
a strong relationship between the ring of integers Z and the ring of
polynomials k[t] over a field k, especially when k is finite. The discovery
of this connection has proved very fruitful to number theory, and it
has grown into an area of active research known as the arithmetic of
function fields, see for instance, [2, 3]. In the arithmetic of function
fields many of the classical results and conjectures in number theory,
such as the prime number theorem, Falting’s theorem or the Riemann
hypothesis, have found an analogous statement over k[t]. Surprisingly,

2010 AMS Mathematics subject classification. Primary 11D07, Secondary
11C20, 13F20.

Keywords and phrases. Frobenius problem, polynomials, arithmetic of function
fields.

Received by the editors on March 3, 2015, and in revised form on January 6,
2016.
DOI:10.1216/RMJ-2017-47-5-1427 Copyright c⃝2017 Rocky Mountain Mathematics Consortium

1427
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FP is one of the few classical and folkloric results in number theory for
which an analogous statement over function fields cannot be found in
the literature. The main goal of this note is to propose an analogous
FP over k[t].

Note that every non-zero element of Z can be written as a product
αn of a unit α and a positive integer n. Similarly, every non-zero
polynomial in k[t] has a unique representation as a product αf , where
α ∈ k∗ is a unit and f is a monic polynomial. Consequently, the set of
monic polynomials is a natural choice to be an analogue for the set of
“positive” elements of k[t].

Definition 1.1. We denote by k[t]≥0 the set of all monic polynomials
over a field k together with the zero element.

Given monic polynomials A1, . . . , An, F , our formulation of FP over
k[t] is related to solutions of

(1.1) x1A1 + · · ·+ xnAn = F,

with xi ∈ k[t]≥0. It is based on the following theorem, whose proof we
delay until the next section.

Theorem 1.2. Let n ≥ 2 be an integer, and let A1, . . . , An be co-
prime monic polynomials in k[t]. Then, there exists an integer g =
g(A1, . . . , An) such that, for all monic polynomials F with degF > g,
(1.1) has a solution with x1, . . . , xn ∈ k[t]≥0.

This shows that the degree of a polynomial F for which (1.1)
has no solutions in k[t]≥0 has an upper bound. Our formulation is
concerned with how large the upper bound of the Frobenius problem
is for polynomials.

Definition 1.3. If (1.1) has a solution in k[t]≥0 for all monic polyno-
mials F , then we define g(A1, A2, . . . , An) = −∞. Otherwise, we define
g(A1, . . . , An) as the largest degree of a monic polynomial F for which
equation (1.1) has no solutions in k[t]≥0. We call g(A1, . . . , An) the
Frobenius degree of A1, . . . , An.
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We consider the following statement over k[t] as an analogue to the
classical Frobenius problem.

The Frobenius problem for polynomials in dimension n-FPP. Given
coprime monic polynomials A1, . . . , An, compute g(A1, . . . , An).

Remark 1.4. It is worth noting that, technically, g = g(A1, . . . , An)
also depends on the field k over which the Ais are defined. There are
two reasons why we have dropped dependence on the base field from the
notation of g. First, we are mainly concerned with computing g over
a fixed field k. Second, although there are instances where g changes
if we replace k by one of its field extensions K, it turns out that g is
not affected by field extensions as long as |k| is sufficiently large. See
subsection 3.2 and Corollary 6.10 for a proof of a more precise version
of this statement.

Since a set of polynomials of bounded degree does not contain a
“largest” polynomial, one would not expect the existence of a unique
polynomial F with degF = g(A1, . . . , An) for which (1.1) has no
solution in k[t]≥0. This observation inspires the next definition.

Definition 1.5. If g = g(A1, . . . , An) > −∞, then a monic polyno-
mial F with degF = g for which equation (1.1) has no solutions in
k[t]≥0 is said to be a critical example to FPP for A1, . . . , An.

An alternative version of FPP could deal not only with the com-
putation of g(A1, . . . , An) but also with the construction of a critical
example to FPP. In Section 6, we provide an algorithm that in most
cases solves both versions of FPP. It is worth pointing out that the
results in Section 6 suggest that the construction of a critical example
to FPP is more challenging than simply finding g(A1, . . . , An).

The rest of this article is dedicated to further comparison between
the classical FP and FPP, and it covers some natural questions about
FPP. It is organized as follows:

• Two proofs of Theorem 1.2 are given in the next section.

• In Section 3, we give some remarks on FPP and how it differs from the
classical problem. For instance, given a field k of positive characteris-
tic p, in Theorem 3.3 we show that, if n > p, then g(A1, . . . , An) = −∞
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for all A1, . . . , An ∈ k[t]≥0 with positive degree. Thus, FPP is trivial
if the dimension is large in comparison with the characteristic of the
base field.

• Section 4 is devoted to presenting two examples for which the
Frobenius degree can be explicitly computed. One of our results is as
follows: suppose that gcd(A1, . . . , An−1) = D and D ̸= Ai for all 1 ≤
i ≤ n−1. Under mild assumptions on the characteristic of the base field,
in Theorem 4.4, we prove that, if degAn > g(A1/D, . . . , An−1/D), then

g(A1, . . . , An) = max{degAn, g(A1/D, . . . , An−1/D)}+ degD,

or
g(A1, . . . , An) = g(A1, . . . , An−1),

if D ̸= 1 or D = 1, respectively.

We use these examples to prove the sharpness of the upper and
lower bounds for g(A1, . . . , An) given by Remark 2.3 and Corollary 6.8,
respectively. We also show that, in odd or zero characteristic, g(A,B) =
degA+degB and that, similar to Sylvester’s classical result, AB−A−B
is a critical example in dimension 2, see Corollary 4.2.

• Section 5 gives a version for polynomials of the classical denumerant
function. We also compute an asymptotic formula that resembles
Schur’s classical asymptotic formula for the number of non-negative
integral solutions of a1x1 + · · · anxn = f , as f →∞.

• In Section 6, we give an algorithm for solving FPP for n ≥ 3 that
is dependent upon the size of the base field k. We also prove that
g(A1, . . . , An) is not affected by base field extensions K/k, if |k| is
sufficiently large.

• In Section 7, we provide a few ideas for future research on FPP.

2. Proof of Theorem 1.2. We give two proofs of Theorem 1.2;
both provide upper bounds for the Frobenius degree g(A1, . . . , An).
The bound given by the first proof below is never sharp for n > 2;
nonetheless, it is included here because part of its argument is used
later in Theorem 5.4. It also provides the base case for induction for
our second proof of Theorem 1.2, which in turn yields a sharp upper
bound for g(A1, . . . , An).
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Lemma 2.1. Let n ≥ 2 be an integer, and let A1, . . . , An be coprime
monic polynomials in k[t]. If F is monic with

degF >
n∑

i=1

degAi,

then there exist x1, . . . , xn ∈ k[t]≥0 such that x1A1 + · · ·+ xnAn = F .

Proof. The coprimality condition on the Ais implies that the linear
equation x̂1A1 + · · ·+ x̂nAn = F has a solution (x̂1, . . . , x̂n) ∈ (k[t])n.
Let

P =

n∏
i=1

Ai and Ãi =
P

Ai
.

Using the Euclidean algorithm to write x̂i = xiÃi + ri, with deg ri <

deg Ãi, we rewrite F as

F =

(
x̂1 +

n∑
i=2

(xi − 1)Ã1

)
A1 +

n∑
i=2

(ri + Ãi)Ai.

This shows that we can represent F as a linear combination

x1A1 + · · ·+ xnAn = F

with deg xi = deg Ãi, for 2 ≤ i ≤ n. Note that, in such representation,

for 2 ≤ i ≤ n, we have xi = ri + Ãi is monic and deg xiAi = degP .
Therefore, if we assume that

degF >
n∑

i=1

degAi = degP,

we conclude that

x1A1 = F −
n∑

i=2

xiAi

is a monic polynomial. Consequently, x1 is monic, and the result
follows. �
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Remark 2.2.

(1) Note that Lemma 2.1 proves that

g(A1, . . . , An) ≤
n∑

i=1

degAi.

For n > 2 and Ai ̸= 1, this upper bound is never sharp. Indeed, in the

proof of Lemma 2.1, we can replace Ãi by A1 and adapt the argument
accordingly to show that

g(A1, . . . , An) ≤ max
2≤i≤n

{degA1 + degAi}.

(2) The proof of Lemma 2.1 actually shows that, if

degF >

n∑
i=1

degAi,

then, for any fixed 1 ≤ j ≤ n, there exists a solution in k[t]≥0 of (1.1)
that satisfies

deg xj = degF − degAj

and

deg xk =
n∑

i=1

degAi − degAk,

for k ̸= j.

Proof of Theorem 1.2. The proof is by induction on n, with the
base case for induction given by the n = 2 case of Lemma 2.1. If
gcd(A1, . . . , An−1) = 1, then the result easily follows by induction.
Thus we assume that D = gcd(A1, . . . , An−1) is a monic polynomial of

positive degree. Write Ãi = Ai/D. Note that gcd(Ã1, . . . , Ãn−1) = 1
and gcd(An, D) = 1. By the induction hypothesis, there exists an

integer g̃ = g(Ã1, . . . , Ãn−1) such that the equation

x1Ã1 + · · ·+ xn−1Ãn−1 = z
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has a solution satisfying x1, . . . , xn−1 ∈ k[t]≥0 whenever deg z > g̃. We
will prove that (1.1) has a solution with x1, . . . , xn ∈ k[t]≥0, whenever

(2.1) degF > max{degAn, g̃}+ degD.

First note that (2.1), together with the n = 2 case of Remark 2.2,
imply that the equation

xnAn + zD = F,

has a solution with xn, z ∈ k[t]≥0 and deg z = degF − degD. Thus,
it follows from (2.1) that deg z > g̃. Therefore, by the induction
hypothesis, the equation

(2.2) x1Ã1 + · · ·+ xn−1Ãn−1 = z =
F − xnAn

D
,

has a solution with x1, . . . , xn−1 ∈ k[t]≥0, and the result follows after
multiplying (2.2) by D. �

Remark 2.3. Note that implicit in the previous proof of Theorem 1.2
are the following upper bounds for the Frobenius degree of coprime
monic polynomials A1, . . . , An with n > 2. If gcd(A1, . . . , An−1) = 1,
then

g(A1, . . . , An) ≤ g(A1, . . . , An−1).

If D = gcd(A1, . . . , An−1) has positive degree, then

g(A1, . . . , An) ≤ max

{
degAn, g

(
A1

D
, . . . ,

An−1

D

)}
+ degD.

We show in Lemma 4.4 that this upper bound is sharp.

Remark 2.4. Clearly, the upper bound given in Remark 2.3 depends
upon the ordering of theAis and computation of the Frobenius degree of
n−1 coprime polynomials. In order to avoid such dependence, we con-
sider S = {B1, . . . , Bm} to be a subset of {A1, . . . , An} and inductively
define the following function U(S). We let U(S) = degB1 + degB2, if
m = 2. Otherwise, U(S) = U(B1, . . . , Bm−1), if gcd(B1, . . . , Bm−1) =
1; or DS = gcd(B1, . . . , Bm−1) has positive degree and

U(S) = max

{
degBm, U

(
B1

DS
, . . . ,

Bm−1

DS

)}
+ degDS .
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Thus, Remark 2.3 and Lemma 2.1 imply that, for n > 2,

g(A1, . . . , An) ≤ min{U(S) : S ⊂ {1, . . . , n}, |S| = n− 1}.

3. Remarks on FPP. Unlike Z, the group of units in k[t] can be
quite large. Although this difference allows flexibility when choosing
the “sign” of a polynomial, it does not prevent FPP from being a
well-posed problem in the arithmetic of function fields. There exist
other significant differences between Z and k[t] that create some striking
contrast between the classical FP and FPP. In this section, we present
two results intrinsic to the function field setting that stem from these
differences.

The first notable difference is the existence of base fields of positive
characteristic p. As proved in Theorem 3.3 below, FPP in dimension n
is trivial if n ≥ p. As noted in the introduction, another striking
difference between the classical and the polynomial Frobenius problem
is the existence of base field extensions of the ring k[t]. We show in
this section that, if we fix coprime monic polynomials A1, . . . , An over
k[t], then, for some field extension K/k, g(A1, . . . , An) may increase if
we consider solutions of (1.1) over K[t]≥0 instead.

3.1. Issues in positive characteristics. Over Z, the sum a1+ · · ·+
an of non-negative integers ais is a non-negative integer of size at least
as large as the size of each of its summands. This fact plays a crucial role
in many of the arguments related to the classical FP. Unfortunately,
the analogous fact is generally not true in the ring k[t]. It is easy
to construct examples of monic polynomials A1, . . . , An, whose sum
S = A1 + · · · + An is not a monic polynomial. Moreover, even if S
is monic, we do not have control over the “size” of S. We can easily
construct examples of a monic S over a field of positive characteristic
for which degS < max1≤i≤n{degAi}. The next lemma, whose proof is
left to the reader, shows that, in such a case, n needs to be large.

Lemma 3.1. Let A1, . . . , An be monic polynomials over a field of
characteristic p. If deg(A1 + · · · + An) < max1≤i≤n{degAi}, then
p > 0 and n ≥ p.

As a consequence, if n < p or p = 0, then the solutions in k[t]≥0

of (1.1) satisfy

(3.1) deg xi ≤ degF − min
1≤i≤n

{degAi}.
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The first direct consequence of this result is the following lower bound
for the Frobenius degree.

Corollary 3.2. Let A1, A2, . . . , An be coprime non-constant monic
polynomials over a field k. Suppose char(k) = 0 or n < char(k). Then,

min
1≤i≤n

{degAi} ≤ g(A1, . . . , An).

Inequality (3.1) also shows that, whenever p = 0 or n < p, the
polynomials xis in a solution of (1.1) have bounded degree.

Next, we show that condition n < p or p = 0 is not only sufficient
but also necessary to guarantee the boundedness of the degree of the
monic solutions of (1.1).

Theorem 3.3. Let A1, A2, . . . , An be coprime monic polynomials in
k[t], with k a field of characteristic p > 0. For any monic polyno-
mial F , (1.1) has solutions xi ∈ k[t]≥0 with arbitrarily large degree if
and only if n ≥ p.

Proof. As discussed above, if n < p, then the degrees of the solutions
xi ∈ k[t]≥0 of (1.1) are bounded above by (3.1). Thus, it remains to
show that, if n ≥ p, then (1.1) has solutions xi ∈ k[t]≥0 of unbounded
degree. Write n = ap + b with a > 0 and 0 ≤ b < p. Here, we only
consider the case where b ̸= 0 since the same proof works for b = 0
after some minor adjustments.

Let R = {1, 2, . . . , pa} and S = {n − p + 1, n − p + 2, . . . , n}. Note
that R ∪ S = {1, 2, . . . , n}, |S| and |R| are divisible by p and that
|R ∩ S| = p− b+ 1. For s ∈ S and r ∈ R, the monic polynomials

ys =

∏
l∈S Al

As
and zr =

∏
l∈RAl

Ar

satisfy

(3.2)
∑
s∈S

ysAs =
∑
r∈R

zrAr = 0.
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Since gcd(A1, . . . , An) = 1, we can find polynomials G1, . . . , Gn such
that F = A1G1+· · ·+AnGn. Let l andm be positive integers satisfying

l > m+max{deg zr : r ∈ R} > max{degGi : 1 ≤ i ≤ n}.

Thus, the polynomials

xi =


tlyi +Gi if i ∈ R\R ∩ S
tlyi + tmzi +Gi if i ∈ R ∩ S
tmzi +Gi if i ∈ S\R ∩ S

are monic and have unbounded degree. The result follows from (3.2)
and the following computation

n∑
i=1

xiAi =
∑

i∈R\R∩S

(tlyi +Gi)Ai +
∑

i∈R∩S

(tlyi + tmzi +Gi)Ai

+
∑

i∈S\R∩S

(tmzi +Gi)Ai

= tl
∑
i∈R

yiAi + tm
∑
i∈S

ziAi +

n∑
i=1

GiAi = F. �

Remark 3.4. The previous result shows that, over a field of pos-
itive characteristic p, g(A1, . . . , An) > −∞ if and only if n < p
or 1 /∈ {A1, . . . , An}. In contrast, in the classical case, we have
g(A1, . . . , An) > −∞ if and only if 1 /∈ {A1, . . . , An}.

3.2. FPP over extensions of the base field. Another critical
difference between the arithmetic of function fields and that of Q is
the existence of constant field extensions. Concerning FPP, we first
observe that, for a fixed set of coprime monic polynomials A1, . . . , An

over k, our definition of the Frobenius degree is, a priori, dependent
on the base field k. In order to study such dependence on the base
field, given a field extension K/k, we write gK = gK(A1, . . . , An) for
the largest degree of a monic polynomial F over K for which (1.1) has
no solutions in K[t]≥0. Clearly, gk ≤ gK . As shown below, there are
examples of field extensions K/k where gk < gK .
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Example 3.5. Let Ai = t+ i. Remark 2.4 implies that g(A1, A2, A3)
≤ 2. In order to find all monic polynomials F of degree 2 for which (1.1)
has a solution in k[t]≥0, we only need to compute all possible linear
combinations:

(3.3) x(t+ 1) + y(t+ 2) + z(t+ 3),

with (x, y, z) ∈ (k[t]≥0)
3 and deg x = 1 and deg y, deg z < 1; or

deg y = 1 and deg x, deg z < 1; or deg z = 1 and deg x, deg y < 1.

If we take k = F5, then a computer search shows that all degree 2
monic polynomials appear as the linear combination described in (3.3).
This shows that gk(A1, A2, A3) < 2. On the other hand, the same
computation with K = F52 shows that not all degree 2 polynomials
appear as a linear combination in (3.3); hence, gK(A1, A2, A3) = 2.

In the previous example, the existence of field extensions K/k for
which gk < gK is proven by looking at all possible monic linear
combinations of A1, . . . , An. In Section 6, this basic argument is
extended to prove that gk = gK , if |k| is “sufficiently large.” In
particular, gK(A1, . . . , An) is independent of the field extension K/k,
whenever k is infinite. The proof is given in Corollary 6.10, where a
description is also given regarding how large |k| needs to be in order to
ensure that gK = gk.

4. Two interesting examples. In this section, we give two ex-
amples of families of coprime monic polynomials A1, . . . , An for which
we can compute g(A1, . . . , An) explicitly. Such examples are used to
prove that the upper and lower bounds given by Remark 2.3 and Corol-
lary 6.8, respectively, are sharp. Additionally, we use the next result
to settle the two-dimensional case of FPP.

Lemma 4.1. For n ≥ 2, let A1, . . . , An be pairwise coprime and non-
constant monic polynomials over a field k. Suppose that char(k) = 0
or n < char(k). Define

P =

n∏
i=1

Ai, Ãi =
P

Ai
and F = P −

n∑
i=1

Ãi.

Then, the equation

x1Ã1 + · · ·+ xnÃn = F,
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has no solution with xi ∈ k[t]≥0. Moreover,

g(Ã1, . . . , Ãn) = degF = degA1 + · · ·+ degAn.

Proof. Suppose, for the sake of contradiction, that we can find
xi ∈ k[t]≥0, satisfying

x1Ã1 + · · ·+ xnÃn = P −
n∑

i=1

Ãi.

This implies that

(4.1) (x1 + 1)Ã1 + · · ·+ (xn + 1)Ãn =

n∏
i=1

Ai,

and that Ai | Ãi(xi +1). Since by hypothesis gcd(Ai, Ãi) = 1, we have
that

(4.2) xi + 1 = AiBi

for some polynomial Bi. Notice that Bi is non-zero and monic, since
we are assuming that xi is monic and Ai is non-constant. From (4.1)
and (4.2), we arrive at

(4.3) B1 + · · ·+Bn = 1.

The hypothesis on char(k) and the fact that B1, . . . , Bn are monic
imply that (4.3) contradicts Lemma 3.1. Therefore, the initial assump-
tion that xi ∈ k[t]≥0 does not hold, and the result follows.

In order to prove the “moreover” part, we first note that the

argument above proves that g(Ã1, . . . , Ãn) ≥ degF . The proof is
obtained by showing through induction on n that, if A1, . . . , An are

pairwise coprime monic polynomials, then g(Ã1, . . . , Ãn) ≤ degA1 +
· · ·+ degAn.

The base case n = 2 was proven in Lemma 2.1. Let

Pn−1 =
n−1∏
i=1

Ai and Ãi,n−1 =
Pn−1

Ai
,

for 1 ≤ i ≤ n− 1. By the induction hypothesis,

g(Ã1,n−1, . . . , Ãn−1,n−1) ≤ degA1 + · · ·+ degAn−1.
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Note that Ãi,n−1 = Ãi/An and that An = gcd(Ã1, . . . , Ãn−1). This
fact and the upper bound in Remark 2.3 imply that

g(Ã1, . . . , Ãn) ≤ max

{
deg Ãn, g

(
Ã1

An
, . . . ,

Ãn−1

An

)}
+ degAn

≤ max

{ n−1∑
i=1

degAi, g(Ã1,n−1, . . . , Ãn−1,n−1)

}
+ degAn

≤ degA1 + · · ·+ degAn,

as desired. �

Clearly, the two-dimensional case of FPP is n = 2 of the previous
result. However, we restate it below for future reference.

Corollary 4.2. Let A and B be coprime monic polynomials over a
field k. Suppose that char(k) = 0 or char(k) is odd. Then,

g(A,B) = degA+ degB,

and G = AB −A−B is a critical example to FPP for A,B.

Remark 4.3. It is enlightening to compare this with the classical
Frobenius problem. In the latter case, Sylvester’s well-known result
shows that g(p, q) = pq − p− q for relatively prime positive integers p
and q. As seen above, the natural translation of this formula over to
k[t] solves FPP in dimension 2.

The next result shows that, for all n ≥ 2, the upper bound in terms of
the degree of the input polynomials in Remark 2.3 cannot be improved.

Lemma 4.4. Let A1, A2, . . . , An be coprime non-constant monic poly-
nomials over a field k. Suppose that char(k) = 0 or n < char(k). Also,
suppose that gcd(A1, . . . , An−1) = D and D ̸= Ai for all 1 ≤ i ≤ n− 1.
If degAn > g(A1/D, . . . , An−1/D), then

g(A1, . . . , An) = max

{
degAn, g

(
A1

D
, . . . ,

An−1

D

)}
+ degD,
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or
g(A1, . . . , An) = g(A1, . . . , An−1),

if D ̸= 1 or D = 1, respectively.

Proof. We assume that D ̸= 1, since the case D = 1 is simpler and
may be proved in a similar way. Remark 2.3 provides us with the upper
bound

g(A1, . . . , An) ≤ max

{
degAn, g

(
A1

D
, . . . ,

An−1

D

)}
+ degD.

We show that the previous equality holds by constructing a critical
example to FPP for A1, . . . , An, with the appropriate degree.

Write g̃ = g(A1/D, . . . , An−1/D). Let G with degG = g̃ be
a counterexample for the Frobenius problem for A1/D, . . . , An−1/D
(which exists since Ai/D ̸= 1 for all i). We show that the equality

(4.4) x1A1 + · · ·+ xnAn = DG+ (D − 1)An

does not hold with x1, . . . , xn ∈ k[t]≥0. Assume the opposite. Since,
by hypothesis, degAn > g̃, comparison of degrees in (4.4) yields
deg xn ≤ degD. This fact, together with gcd(D,An) = 1 and

D

(
x1
A1

D
+ · · ·+ xn−1

An−1

D
−G

)
= (D − 1− xn)An,

imply that xn = D − 1. Consequently,

x1
A1

D
+ · · ·+ xn−1

An−1

D
= G,

which contradicts the fact that G is a critical example of FPP for the
polynomials A1/D, . . . , An−1/D. Since

deg(DG+ (D − 1)An) = max

{
degAn, g

(
A1

D
, . . . ,

An−1

D

)}
+ degD,

the result follows. �

5. The type-denumerant function. In this section, we provide
an analogous statement to the following classical result of Schur closely
related to FP.
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Theorem 5.1. (Schur, [1, Theorem 4.2.1]). Let a1, . . . , an be coprime
positive integers, and let Pn =

∏n
i=1 ai. Given a positive integer f , let

d(f ; a1, . . . , an) be the number of solutions of x1a1 + · · · + xnan = f
with integers xi ≥ 0. Then,

d(f ; a1, . . . , an) ∼
fn−1

Pn(n− 1)!
as f →∞.

Before translating this result to FPP, we observe that, for a fixed
monic polynomial F , the number of “non-negative” solutions of (1.1)
may be infinite (see, for instance, Theorem 3.3). In order to circumvent
this difficulty and find an analogue to Schur’s result, we give the
following definition.

Definition 5.2. Let A1, . . . , An be coprime monic polynomials. For a
fixed monic polynomial F , we define the type of a solution (x1, . . . , xn) ∈
(k[t]≥0)

n of (1.1) as the n-tuple (deg x1, . . . ,deg xn). The number
of types associated to F is given by the type-denumerant function
T (F ;A1, . . . , An).

Remark 5.3. Over a field k of characteristic p, (3.1) and Theorem 3.3
imply that T (F ;A1, . . . , An) is finite if and only if n < p or p = 0.

Given the above definition, the analogous statement over k[t] of
Theorem 5.1 is as follows.

Theorem 5.4. Let A1, A2, . . . , An be coprime non-constant monic
polynomials over a field k. Suppose that char(k) = 0 or n < char(k).
Then,

T (F ;A1, . . . , An) ∼ n
(
degF −

n∑
i=1

degAi

)n−1

as degF →∞.

Proof. Since we want to estimate T (F ;A1, . . . , An) as degF → ∞,
we may assume that F is a monic polynomial with

degF > 1 +
n∑

i=1

degAi.
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First, note that the possible types associated to F are of the form
(e1, . . . , degF − degAj , . . . , en), for some 1 ≤ j ≤ n, with ei = −∞
or 0 ≤ ei < degF − degAi. In order to prove our result, we use the
polynomial

Ãi =

∏n
j=1Aj

Ai

to partition the set of types associated to F in the following way. We
let S ⊂ {1, . . . , n} be such that S ∩ {j} = ∅ and define χj(S) to be
the number of types of the form (e1, . . . , degF − degAj , . . . , en) such

that ei < deg Ãi, for i ∈ S, and deg Ãi ≤ ei < degF − degAi, for
i /∈ S ∪ {j}. Thus,

T (F ;A1, . . . , An) =
n∑

j=1

∑
S⊂{1,...,n}
S∩{j}=∅

χj(S),

and T (F ;A1, . . . , An) is estimated by approximating χj(S). To this
end, we first show that

(5.1) χj(∅) =
(
degF −

n∑
i=1

degAi

)n−1

.

Note that χj(∅) counts the number of types of the form (e1, . . . , degF−
degAj , . . . , en) for which deg Ãi ≤ ei < degF − degAi for all i ̸= j.
Since

degF −
n∑

i=1

degAi > 1,

Remark 2.2 shows that there is a solution (x1, . . . , xn) of the type

(deg Ã1, . . . , degF − degAj , . . . , deg Ãn).

Moreover, any monic polynomial zi with

1 ≤ deg zi < degF −
n∑

i=1

degAi

produces a solution(
x1 + z1Ã1, . . . , xj −

n∑
i=1
i ̸=j

ziÃj , . . . , xn + znÃn

)
,
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of the type (deg z1 + deg Ã1, . . . , degF − degAj , . . . , deg zn + deg Ãn).
In this fashion, we can obtain all types of the form (e1, . . . ,degF −
degAj , . . . , en) with

deg Ãi ≤ ei < degF − degAi,

which shows that (5.1) holds and

T (F ;A1, . . . , An) ≥ n
(
degF −

n∑
i=1

degAi

)n−1

.

In order to obtain an upper bound for T (F ;A1, . . . , An), we note that
the argument used in the computation of χj(∅) may also be used to
show that

0 ≤ χj(S) ≤
∏
i∈S

deg Ãi

(
degF −

n∑
i=1

degAi

)n−1−|S|

,

for a non-empty subset S. Consequently, for C = degF −
∑n

i=1 degAi,

nCn−1 ≤ T (F ;A1, . . . , An) ≤ nCn−1 + n
∑

S⊂{1,...,n}
S∩{j}=∅

Cn−1−|S|
∏
i∈S

deg Ãi,

and the result follows. �

Remark 5.5. We can say a bit more about T (F ;A1, A2), when
degF > degA1 + degA2. Using the notation in the proof of Theo-
rem 5.4, we have

T (F ;A1, A2) =

2∑
j=1

∑
S⊂{1,2}
S∩{j}=∅

χj(S)

= 2(degF − degA1 − degA2) + χ1({2}) + χ2({1}).

Note that χ1({2}) counts the number of types (degF −degA1, e2) with
e2 < degA1. It is easy to show that, if the equation xA1+yA2 = F has
a solution with deg y < degA1, then this solution is unique. Therefore,
χ1({2}) ≤ 1. Similarly, χ2({1}) ≤ 1. Consequently, T (F ;A1, A2)
depends upon whether or not the equation xA1+yA2 = F has solutions
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with deg x < A2 or deg y < A1 and

2(degF − degA1 − degA2) ≤ T (F ;A1, A2)

≤ 2(degF − degA1 − degA2) + 2,

which shows that, in this case, the upper bound for T (F ;A1, A2) is
much smaller than that found in the proof of Theorem 5.4.

6. An algorithm for solving FPP.

6.1. Set-up and notation. In this section, we construct an algorithm
for computing g(A1, . . . , An). In order to avoid trivial cases, we assume
that 1 /∈ {A1, . . . , An} and that the base field has characteristic 0
or greater than n. Our algorithm is based on the fact that, given
a fixed polynomial F , we can decide whether or not (1.1) has a
solution (x1, . . . , xn) by considering the coefficients of the polynomials
in (x1, . . . , xn) as variables and solving the corresponding system of
linear equations. This strategy was previously used in the example in
subsection 3.2 and is formalized in what follows.

• We write ai = degAi and

Ai = tai +

ai−1∑
j=0

αijt
j .

• As a consequence of Corollary 3.2, we assume that d is a positive
integer satisfying d ≥ min{ai : 1 ≤ i ≤ n}.
• The k-vector space of polynomials of degree ≤ d is Pd.

• In kd+1, we identify a polynomial

e∑
i=0

ψit
i ∈ Pd

of degree e with either the vector

(6.1) (0, . . . , 0︸ ︷︷ ︸
d−e

, ψe, ψe−1, . . . , ψ0︸ ︷︷ ︸
e+1

),

or a column matrix, which is the transpose of the above vector. Note
that often we use the polynomial and matrix representation of an
element in Pd interchangeably.
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• Since, by assumption, Ai ∈ Pd, we let Di be the column matrix
associated to Ai under the above identification of Pd with kd+1.

• The set of monic polynomials of degree d isMd.

• The set of monic polynomials F of degree d for which (1.1) has a
solution with xi ∈ k[t]≥0 is Fd. Note that d = g(A1, . . . , An) is the
largest integer d for which Fd (Md.

• Td = Td(a1, . . . , an) is the set of n-tuples T = (e1, . . . , en) such that:

(1) there exists a unique integer j = j(T ) such that 1 ≤ j ≤ n and
ej = d− aj ≥ 0; and

(2) for i ̸= j, we have ei = −∞ or ei is an integer satisfying
0 ≤ ei < d− ai.

Note that Td is closely related to the set of types as defined in Section 5.

• Consider the following subsets of the integers 1 ≤ i ≤ n:

(6.2) RT = {i : 0 < ei ≤ d− ai} and ST = {i : ei = 0}.

Note that, if RT = ∅, then d = aj(T ), and consequently, ST ̸= ∅. Also,
if i /∈ RT ∪ ST , then ei = −∞.

• Let the index of T be

ind(T ) =
n∑

i=1

max(ei, 0).

Observe that RT ̸= ∅ if and only if ind(T ) > 0. If this is the case, then
ind(T ) =

∑
i∈RT

ei.

Remark 6.1. The elements of Td are related to FPP in the following
way. Any (x1, . . . , xn) ∈ (k[t]≥0)

n such that (deg x1, . . . , deg xn) ∈ Td
yields a solution to (1.1) for some monic polynomial F of degree d.
Conversely, given a monic polynomial F of positive degree d, a solution
(x1, . . . , xn) ∈ (k[t]≥0)

n of (1.1) yields the n-tuple (deg x1, . . . , deg xn)
∈ Td.

The strategy of our algorithm is to run through all integers d which
are not larger than the upper bound given by Remark 2.4 and find the
largest d for which Fd (Md. In order to follow this strategy, we need
to find criteria for deciding whether or not Fd =Md. In this section,
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we give such a criterion. It is based upon the fact that Fd is a finite
union of affine subspaces of Pd.

Definition 6.2. Let V be a finite-dimensional k-vector space. We say
that A is an affine subspace of V if there exist a vector subspace U ⊂ V
and a vector v ∈ V such that A = U + v. The dimension of A, dimA,
is defined to be dimU .

Remark 6.3. In the sequence, we use the following easy facts about
affine subspaces whose proofs are left to the reader.

(1) Let A and B be affine subspaces with dimA = dimB. If A ⊂ B,
then A = B.

(2) If u,v ∈ A and α ∈ k, then (1 − α)u + αv is also an element
of A.

(3) Note that, inside of kd+1, the set Md of monic polynomials of
degree d is the affine subspace (1, 0, . . . , 0)+(0, ψd−1, ψd−2, . . . , ψ0) and
dimMd = d.

For each T ∈ Td, below we define a matrix AT and a column matrix
BT , both with d+1 rows. Ultimately, we associate to each T the affine
space given by the translation of the column space of AT by the vector
BT . In the case where RT = ∅, we define AT and BT to be the zero
matrix of order (d+ 1)× 1 and

∑
i∈ST

Di, respectively.

Otherwise, for i ∈ RT , we give a definition of the next (d+1)×(ei+1)
matrix where the jth column ofMi is the vector representation in kd+1

of the polynomial Ait
ei−j+1, for 1 ≤ j ≤ ei + 1. Let M i be the (d+ 1)

× ei matrix obtained from Mi by removing its first column Ci. We
define AT to be the block row matrix of order (d+ 1)× ind(T )

AT = [M i]i∈RT

and BT to be the column matrix of order (d+ 1)× 1

BT =
∑
i∈RT

Ci +
∑
i∈ST

Di,
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where
∑

i∈ST
Di is defined to be the zero vector, if ST = ∅.

Mi =



0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
1 0 0 · · · 0

αi(ai−1) 1 0 . . . 0

αi(ai−2) αi(ai−1) 1
. . .

...
... αi(ai−2) αi(ai−1)

. . . 0

αi1

... αi(ai−2)

. . . 1

αi0 αi1

...
. . . αi(ai−1)

0 αi0 αi1

... αi(ai−2)

0 0 αi0
. . .

...
...

...
...

. . . αi1

0 0 0 · · · αi0



.

Remark 6.4.

(1) If xi =
∑ei

j=0 χijt
j is a polynomial with deg xi = ei, then the

product of polynomials xiAi is an element of Pd and can be identified
under (6.1) with the product of matricesMiXi, where Xi is the column
vector (χiei , . . . , χi0).

(2) We have that rankAT ≤ d. This is obvious ifRT = ∅. IfRT ̸= ∅,
first note that the highest possible rank for the matrices Mi can only
happen when the first entry in Ci is 1. Even in this case, if we remove
the first column Ci of Mi, we are left with the matrix M i whose first
row is zero. Consequently, AT has at most d non-zero rows.

(3) For any T ∈ Td, the first entry in BT is 1. Therefore, if VT is
the column space of the matrix AT , then VT + BT ⊂ Md under the
identification given by (6.1).

We are now ready to prove the first main result of this section.
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Theorem 6.5. Let d, Fd, AT and BT be as defined above. Then Fd is
the union of a finite number of affine subspaces of Pd. More precisely,
under the identification of Pd with kd+1,

Fd =
∪

T∈Td

(VT +BT ),

where VT is the column space of the matrix AT .

Proof. All we need to do is to prove the equality

Fd =
∪

T∈Td

(VT +BT ).

Let T = (e1, . . . , en) ∈ Td, and let RT and ST be defined as in (6.2).
For such a T , we construct an n-tuple (x1, . . . , xn) ∈ (k[t]≥0)

n such
that T = (deg x1, . . . , deg xn). First, we let xi = 1 or xi = 0, if i ∈ ST

or i /∈ RT ∪ST , respectively. Otherwise, i ∈ RT , and we can choose xi
to be any monic polynomial of degree ei

xi = tei +

ei−1∑
j=0

χijt
j .

Consider the (ei + 1)× 1 matrix

Xi =


1

χi(ei−1)

...
χi0

 ,
and let Xi be the ei × 1 matrix obtained from Xi by removing its first
row. By definition of Td, the product xiAi is a polynomial of degree
≤ d, which we identify with a (d+1)×1 column matrix as in (6.1). The
column matrix xiAi is the zero matrix if i /∈ RT ∪ ST ; it is the matrix
Di, if i ∈ ST ; and if i ∈ RT , it is equal to the product of matrices
MiXi.

In the case where RT ̸= ∅, the above discussion shows that∑n
i=1 xiAi, when identified with the (d+1)×1 column matrix in (6.1),
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satisfies
n∑

i=1

xiAi =
∑
i∈RT

MiXi +
∑
i∈ST

Di

=
∑
i∈RT

Ci +
∑
i∈RT

M iXi +
∑
i∈ST

Di

=
∑
i∈RT

M iXi +BT .

It follows from the basic properties of matrices that
∑

i∈RT
M iXi is a

linear combination of the columns of matrix AT . Therefore, under the
identification in (6.1), the set of linear combinations

n∑
i=1

xiAi

such that

(x1, . . . , xn) ∈ (k[t]≥0)
n,

(deg x1, . . . , deg xn) ∈ Td
and

R(deg x1,...,deg xn) ̸= ∅

is equal to ∪
T∈Td
RT ̸=∅

(VT +BT ).

When RT = ∅, then
n∑

i=1

xiAi =
∑
i∈ST

Di = AT +BT ,

which shows that, in any case, the set of linear combinations
∑n

i=1 xiAi

such that (x1, . . . , xn) ∈ (k[t]≥0)
n and (deg x1, . . . ,deg xn) ∈ Td is equal

to ∪
T∈Td

(VT +BT ).

On the other hand, as a consequence of the definition of Td, it follows
that the set of linear combinations

∑n
i=1 xiAi such that (x1, . . . , xn) ∈
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(k[t]≥0)
n and (deg x1, . . . ,deg xn) ∈ Td is equal to Fd. Therefore,

Fd =
∪

T∈Td

(VT +BT ),

as desired. �

The second main result of this section gives a criterion for deciding
whether Fd = Md. It is a consequence of the description of Fd

contained in the previous result and the fact that a vector space cannot
be covered by a finite union of proper subspaces.

Lemma 6.6. Let A be an affine space over a field k, and let Ui ⊂ A
be proper affine subspaces, for i in an indexing set I. If

A =
∪
i∈I

Ui,

then |I| ≥ |k|+ 1.

Proof. See, for instance, [4, Section 3]. �

Theorem 6.7. Let d, Fd, and AT be defined as above. Suppose the base
field k satisfies |Td| < |k|. Then Fd =Md if and only if rankAT = d,
for some T ∈ Td.

Proof. As before, we identify Pd with kd+1 using (6.1). Note that,
from Theorem 6.5, Fd = Md implies that Md is a finite union of
proper affine subspaces. Therefore, the result we want to prove is
essentially an application of Lemma 6.6. Nonetheless, below we provide
a proof that follows that in [4, Section 3] but which is more suitable for
computations. Our ultimate goal is to use it to find a critical example
of FPP for A1, . . . , An.

If rankAT = d, for some T ∈ Td, then dim(VT +BT ) = d = dimMd

and Fd =Md since VT+BT ⊂Fd⊂Md. In order to prove the converse,
we show that, if

rankAT = dim(VT +BT ) < d for all T ∈ Td,

then ∪
T∈Td

(VT +BT ) (Md.
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First, let dimV⊥
T be the orthogonal complement of VT under the

canonical non-degenerate symmetric bilinear form u · v on kd+1. If
rankAT < d for all T ∈ Td, then dimV⊥

T ≥ 2. From Remark 6.4, it
follows that e = (1, 0, . . . , 0) ∈ V⊥

T . As a result, we can choose a non-
zero vector nT ∈ V⊥

T which is linearly independent of e. Thus, VT +BT

is a subset of

AT = {u ∈ kd+1 : e · u = 1, nT · u = nT ·BT }.

Clearly, dimAT = d− 1 for all T ∈ Td. Under these assumptions, it is
enough to prove that ∪

T∈Td

AT (Md.

Without loss of generality, we assume that, for all U ∈ Td,

AU \
∪

T∈Td\{U}

AT ̸= ∅.

This guarantees the existence of a vector u ∈ Md such that u ∈ AU

but u /∈ AT for all T ̸= U . Additionally, we can choose v ∈ Md\AU .
Consider the line D = {(1 − α)u + αv : α ∈ k} ⊂ Md. The result
follows if we are able to prove that |AT ∩D| ≤ 1 for all T ∈ Td. Indeed,
in this case, ∣∣∣∣D∩( ∪

T∈Td

AT

)∣∣∣∣ = ∣∣∣∣ ∪
T∈Td

AT ∩ D
∣∣∣∣ ≤ |Td|.

Since |k| = |D|, this proves that∪
T∈Td

AT (Md if |k| > |Td|.

In order to compute AT ∩ D, we need to solve for α the equation
nT · [(1− α)u+ αv] = nT ·BT , which can be simplified to

[nT · (v − u)]α = nT · (BT − u).

The above equation in α has more than one solution if and only if

nT · (v − u) = 0 and nT · (BT − u) = 0,
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which, in turn, occurs if and only if

nT · v = nT ·BT and nT · u = nT ·BT .

This last equation is equivalent to the fact that u,v ∈ AT . Since this
contradicts the choice of u and v, we conclude that AT ∩ D has at
most one element. We can actually say a bit more: AT ∩ D = ∅, if
nT · v = nT · u; otherwise,

[(1− α)u+ αv] ∈ AT for α = nT ·
BT − u

nT · (v − u)
. �

This last result allows us to prove the following lower bound for the
Frobenius degree of A1, . . . , An.

Corollary 6.8. Suppose that the base field k satisfies |Tg+ | < |k| for
some positive integer g+. If d ≤ g+ is an integer such that

n∑
i=1

max(d− ai, 0) ≤ d,

then Fd (Md. In particular,

max

{
d ∈ Z :

n∑
i=1

max(d− ai, 0) ≤ d
}
≤ g(A1, . . . , An).

Proof. First note that d ≤ g+ implies

|Td| ≤ |Tg+ | < |k|.

Therefore, the assumptions of Theorem 6.7 are satisfied for d. More-
over, assume that d is an integer such that

∑n
i=1 max(d − ai, 0) ≤ d.

As a consequence of Theorem 6.7, to show that Fd (Md, we need to
prove that rankAT < d for all T ∈ Td with RT ̸= ∅.

Since the number of columns of a matrix is an upper bound for its
rank, it follows that

rankAT ≤ ind(T )

for all T ∈ Td satisfying RT ̸= ∅. If RT = {d− aj(T )}, then

rankAT ≤ ind(T ) =
n∑

i=1

max(d− ai, 0) = d− aj(T ) < d;
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otherwise, RT ̸= {d− aj(T )} and

ind(T ) ≤
∑
i∈RT

ei +
∑
i/∈RT

max(ei, 0) <
n∑

i=1

max(d− ai, 0).

Thus, if d is an integer such that

n∑
i=1

max(d− ai, 0) ≤ d,

then rankAT < d, for all T ∈ Td with RT ̸= ∅. �

Remark 6.9. For every n ≥ 2, we can use Lemma 4.1 to show that the
lower bound given in Corollary 6.8 is sharp. In fact, choose pairwise
coprime monic polynomials A1, . . . , An such that degAi = a > 0 for
all 1 ≤ i ≤ n. If

Ãi =
n∏

j=1

Aj

Ai
,

then deg Ãi = (n− 1)a and, from Lemma 4.1,

g(Ã1, . . . , Ãn) = degA1 + · · ·+ degAn = na.

On the other hand, na satisfies

n∑
i=1

max(na− deg Ãi, 0) =

n∑
i=1

max(a, 0) ≤ na.

Thus,

na ≤ max

{
d ∈ Z :

n∑
i=1

max(d− deg Ãi, 0) ≤ d
}

≤ g(Ã1, . . . , Ãn) = na.

As discussed in subsection 3.2, the Frobenius degree g of coprime
monic polynomials A1, . . . , An over k is not affected by a field extension
K/k, if |k| is sufficiently large. As is shown below, this statement is
also a consequence of Theorem 6.7.
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Corollary 6.10. Let A1, . . . , An be coprime monic polynomials over a
field k, let K/k be a field extension and let g+ be the upper bound given
in Remark 2.4. If |k| > |Tg+ |, then

gK(A1, . . . , An) = gk(A1, . . . , An).

Proof. For a field extension K/k, we let gK = gK(A1, . . . , An). We
want to show that gK = gk. First, note that

gk ≤ gK ≤ g+.

Thus, it remains to prove gK ≤ gk. For that matter, let d be any
positive integer. It is not difficult to see that Td depends only upon d
and the polynomials A1, . . . , An, and not on the base field in which the
solutions of (1.1) are defined. Similarly, for all T ∈ Td, AT and BT are
independent of the base field in which FPP is being considered.

On the other hand, Fd andMd depend on the base field K, and we
make this dependence explicit by writing Fd

K andMd
K , respectively.

Since
|TgK | ≤ |Tg+ | < |k| ≤ |K|,

and rankAT is independent of the field extension K/k, it follows
from the definition of gK and two applications of Theorem 6.7 that
Fk

gK (Mk
gK . Therefore, gK ≤ gk, as desired. �

6.2. The algorithm. The notation of the previous section is used in
this subsection.

The algorithm described here only works under the assumption that
the base field k satisfies |k| > |Tg+|, where g+ is the upper bound
obtained in Remark 2.4. Under this assumption, we can run through
all integers d ≤ g+ in decreasing order and use Theorem 6.7 to check
whether Fd = Md. The first value of d for which Fd ( Md is the
Frobenius degree of A1, . . . , An.

In the case where |k| ≤ |Tg+ |, the above strategy works except for
the use of Theorem 6.7 to decide whether Fd =Md. Instead, we can
check whether such an equality holds by one of the following “brute
force” methods. Fd can be constructed by computing all possible linear
combinations

n∑
i=1

xiAi = F,
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with xi ∈ k[t]≥0 and degF = d. Then, Fd ( Md if and only if
|Fd| < qd = |Md|.

Alternatively, one can construct∪
T∈Td

(VT +BT ) = Fd

and check whether ∣∣∣∣ ∪
T∈Td

(VT +BT )

∣∣∣∣ = qd.

It is unclear which of these two methods is less computationally expen-
sive if implemented for checking Fd =Md.

If we assume that |k| > |Tg+ |, then the algorithm we use is less
expensive than any of the above brute force methods since, when we
consider the matrix AT , we are simultaneously considering all solutions
(x1, . . . , xn) of (1.1) with T = (deg x1, . . . , deg xn) ∈ Td. Also, unlike
the computation of |

∪
T∈Td

(VT + BT )|, it is unnecessary to solve the
large number of systems of linear equations associated to all possible
intersections of the form (VT + BT ) ∩ (VU + BU ). Our algorithm
is easy to implement and seems to perform fast, if the computation
is only of g(A1, . . . , An) (see the accompanying Sage worksheet at
https://sites.google.com/site/rpconcei/research). If one also
wants to find a critical example of FPP for A1, . . . , An, then there are
some added complications. These are due to the unpacking of some
of the theoretical aspects of the argument for Theorem 6.7. In what
follows, we first give a pseudo-code for computing g(A1, . . . , An). Later,
we give more details on how to implement the construction of a critical
example for FPP. In both cases, we assume that the reader is able to
implement the following sub-routines:

• UpperBound(A1, . . . , An).
Calculate an upper bound g+ based on Remark 2.4.
Input: A1, . . . , An.
Output: g+.

• LowerBound(A1, . . . , An).
Calculate the lower bound g− given in Corollary 6.8.
Input: A1, . . . , An.
Output: g−.
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• Types(d,A1, . . . , An).
Construct the set Td.
Input: d and A1, . . . , An.
Output: The list of elements in Td.

• Tmatrices(T ).
Construct the matrices AT and BT .
Input: An element T of Td.
Output: The matrices AT and BT .

The pseudo-code for the computation of g(A1, . . . , An) is given in
Algorithm 6.1.

Algorithm 6.1: Calculate g(A1, . . . , An).

Input: A1, . . . , An.
Output: g(A1, . . . , An).

Require: gcd(A1, . . . , An) = 1, degAi > 0, n < p and |k| > |Td|.
g+ ← UpperBound(A1, . . . , An)
g− ← LowerBound(A1, . . . , An)
for d← g+ to g− do
Td ← Types(d,A1, . . . , An)
for T = (e1, . . . , en) in Td do

if
∑

i max(ei, 0) < d then ◃ If condition holds, then
rankAT < d and the algorithm can move on to the next T .

else
AT , BT ← Tmatrices(T )
if rankAT = d then ◃ d ̸= g(A1, . . . , An).

Decrease d and restart the loop for d.
else
end if

end if
end for
return d

end for

6.3. Constructing a critical example of FPP. In order to con-
struct a counter-example of FPP for A1, . . . , An, we first transform the
following qualitative statements contained in the proof of Theorem 6.7
into statements which can be checked algorithmically (we follow the
notation as in the proof of Theorem 6.7):
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• Statement 1. VT + BT is a subset of an affine space AT with
dimAT = d − 1. In order to be able to construct AT explicitly, we
need to construct a non-zero vector nT orthogonal to VT and linearly
independent from e = (1, 0, . . . , 0). This may be done by considering
nT to be any non-zero solution of the linear system At

Tx = 0 which is
also not a multiple of e. Therefore, AT is simply the solution set of the
system of linear equations on u{

e · u = 1
nT · u = nT ·BT .

• Statement 2. There exists a U ∈ Td such that AU\
∪

T∈Td\{U}AT

̸= ∅. In order to construct such a U , we choose any U ∈ Td and
construct a list L of all T ∈ Td for which AT ̸= AU . Indeed, this
is a consequence of the following claim: if AU ⊂

∪
T∈J AT , for some

non-empty J ( Td, then AU = AV , for some V ∈ J . First, note that,
under the assumption AU ⊂

∪
T∈J AT , we have

AU =
∪
T∈J

(AT ∩ AU ).

Observe that either AT ∩ AU = ∅ or AT ∩ AU is an affine subspace
of AU . Moreover, not all non-empty AT ∩AU are proper subspaces of
AU ; otherwise, Lemma 6.6 would contradict the assumption |Td| < |k|.
Therefore, there exists a V ∈ J such that AV ∩ AU = AU and, since
dimAU = dimAT for all T ∈ Td, it follows that AU = AV .

The intersection AU ∩AT is given by the system of linear equations
on u: 

e · u = 1

nU · u = nU ·BU

nT · u = nT ·BT .

Since dimAU = dimAT , this system has rank < 3 if and only if
AU = AT . This fact can be used to check whether AU = AT and
construct L. Without loss of generality, we may replace Td ← L∪{U}.

• Statement 3. There exist vectors u,v ∈ Md such that u ∈ AU

but u /∈ AT for all T ̸= U , and v /∈ AU . In order to construct u, we
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can randomly select u ∈ AU until

0 ̸=
∏

T∈Td

[nT · (u−BT )].

From our choice of U , this routine is guaranteed to stop. The vector v
can be chosen as a solution of

e · v = 1 and nU · v = nU ·BU + 1.

• Statement 4. ∪
T∈Td

AT (Md if |k| > |Td|.

Let Γ = {αT : T ∈ Td}, where αT = 0, if nT · v = nT · u; otherwise,
αT = nT · (BT − u)/[nT · (v − u)]. Since αU = 0, it follows from an
argument in the proof of Theorem 6.7 that

|Γ| =
∣∣∣∣D∩( ∪

T∈Td

AT

)∣∣∣∣ ≤ |Td| < |k|.
Therefore, if we randomly select an element β ∈ k\Γ, then w =
(1− β)u+ βv is such that

w ∈Md \
∪

T∈Td

AT .

A pseudo-code for the construction of a critical example to FPP for
A1, . . . , An is given in Algorithm 6.2. It should be straightforward to
implement it in parallel with Algorithm 6.1.

7. Further research on FPP. Generally, the research on problems
translated from the arithmetic of Z into the realm of polynomials is as
rich as its more classical counterpart. In the case at hand a quick
glance at the long bibliography on FP shows that research on this
topic has been diverse and extensive. This suggests that the study of
FPP initiated in this paper may be extended and generalized in many
directions. In this section, we present a brief overview of broad topics
that have been the focus of research on the classical FP and some
problems that are intrinsic to the setting of polynomials. We hope
they will serve as a guide for future research on the problem over k[t].
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Algorithm 6.2: Calculate a critical example to FPP for A1, . . . , An.

Input: A1, . . . , An.
Output: A polynomial G with degG = g(A1, . . . , An) for which
(1.1) has no solution in k[t]≥0.

Require: degAi > 0, n < p and |k| > |Td|.
Ensure: g(A1, . . . , An) = d
procedure NormalVector(AT , BT ) ◃ Compute nT .

Solve At
Tx = 0

nT ← Non-zero solution x that is not a multiple of (1, 0, . . . , 0).
return [nT , BT ].

end procedure
e← (1, 0, . . . , 0)
Td ← Types(d,A1, . . . , An)
L ← {NormalVector(Tmatrices(T )) : T ∈ Td}
Choose U ∈ Td.
N ← ∅ ◃ Compute the set of normal vectors nT without any
redundancy with nU .
for [nT , BT ] in L do

if rank{e ·w = 1 ∧ nT ·w = nT ·BT ∧ nU ·w = nU ·BU} = 3
then N ← N ∪ {[nT , BT ]}.
end if

end for
u← RandomElement(AU ) ◃ Construct u ∈ AU\AT .
while 0 =

∏
[nT ,BT ]∈N [nT · (u−BT )] do

u← RandomElement(AU )
end while
v← solution of e · v = 1 ∧ nU · v = nU ·BU + 1 ◃ Construct
v ∈Md\AU .

Γ← ∅ ◃ Construct the set Γ.
for nT ∈ N do
if nT · u ̸= nT · v then

Γ← Γ ∪ {nT · (u−BT )/[nT · (v − u)]}
end if

end for
β ← RandomElement(k∗)
while β ∈ Γ do
β ← RandomElement(k∗)

end while
return The polynomial associated to (1− β)u+ βv.
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7.1. Formulae for g(A1, . . . , An). In the classical FP, there exist for-
mulae for particular values of n to compute the n-dimensional Frobenius
number; however, none look as simple as Sylvester’s formula for the
two-dimensional FP: g(p, q) = pq − p − q. In fact, it was proven that,
unlike the two-dimensional Frobenius problem, for n > 3, the Frobenius
number of an n-tuple cannot be computed via a “polynomial” formula,
see [1, Theorem 2.2.1].

There has also been interest in finding formulae for g(a1, . . . , an)
for special families of coprime numbers a1, . . . , an. For instance, [1,
Theorem 3.3.2] shows that the Frobenius number of an arithmetic
sequence is given by

g(a, a+ d, . . . , a+ sd) =

(⌊
a− 2

s

⌋
+ 1

)
a+ (d− 1)(a− 1)− 1,

where a, d and s are positive integers with gcd(a, d) = 1.

Currently, none of the above results have analogues in the polyno-
mial setting.

7.2. Complexity of computing g(A1, . . . , An). FP is a difficult
problem from the computational point of view. In fact, Alfonsin showed
that FP is NP-hard, see [1, Theorem 1.3.1]. In the absence of a
polynomial time algorithm that solves FP, the focus of research has
been on finding not-so-fast algorithms, algorithms for small values of n
and algorithms for particular n-tuples.

The computational complexity of the algorithm for solving FPP
developed in this paper has not been determined. However, we expect
it to be high since it relies on the computation of the rank of a
large number of matrices whose dimensions depend partially upon
the number and the degree of the inputs A1, . . . , An. It would be
interesting to find other algorithms which do not depend so heavily
on rank computation.

7.3. Integers without representation. Closely related to the de-
numerant function and the classical FP is the function N(a1, . . . , an)
that counts the number of positive integers with no non-negative rep-
resentation by coprime positive integers a1, . . . , an. A classical result
is the formula for the two-dimensional case found by Sylvester [5],
N(p, q) = (1/2)(p− 1)(q − 1). Even this simple case is not understood
in the polynomial setting.
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7.4. On the denumerant function. In Section 5, we considered
the type-denumerant function as analogous to Sylvester’s denumerant
function. However, if the base field k is finite and n < char(k), then the
number d(F ;A1, . . . , An) of monic solutions to (1.1) is finite and seems
to be a more suitable analogue to Sylvester’s denumerant function. We
can compute a closed formula for d(F ;A1, . . . , An) when n = 2 and
degA1 = degA2 = 1, but we are far from a complete understanding
of such function in general. In particular, it would be interesting to
compute an asymptotic formula for

d(F ;A1, . . . , An) as degF →∞.

7.5. Extension of the Frobenius problem to other integral do-
mains. The first two authors are currently considering an axiomati-
zation of the Frobenius problem that allows us to extend it to certain
Euclidean rings and other integral domains. It is uncertain whether or
not this generalization can be used towards a natural extension of FP
to a ring of integers of global fields.
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1. J.L. Ramı́rez Alfonśın, The Diophantine Frobenius problem, Oxford Math.
Appl. 30, Oxford University Press, Oxford, 2005.

2. Michael Rosen, Number theory in function fields, Grad. Texts Math. 210,

Springer-Verlag, New York, 2002.

3. D.S. Thakur, Function field arithmetic, World Scientific Publishing Co., Inc.,
River Edge, NJ, 2004.

4. Pete L. Clark, Covering numbers in linear algebra, Amer. Math. Month. 119
(2012), 65–67.

5. J.J. Sylvester, On subvariants, i.e. semi-invariants to binary quantics of an
unlimited order, Amer. J. Math. 5 (1882), 79–136.

Gettysburg College, Department of Mathematics, 300 North Washington
Street, Gettysburg, PA 17325

Email address: rconceic@gettysburg.edu
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