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THE CLASSIFICATION OF
INFINITE ABELIAN GROUPS

WITH PARTIAL DECOMPOSITION BASES IN L∞ω

CAROL JACOBY AND PETER LOTH

ABSTRACT. We consider the class of abelian groups
with partial decomposition bases, which includes groups
classified by Ulm, Warfield, Stanton and others. We define
an invariant and classify these groups in the language L∞ω ,
or equivalently, up to partial isomorphism. This generalizes
a result of Barwise and Eklof and builds on Jacoby’s
classification of local groups with partial decomposition bases
in L∞ω .

1. Introduction. This is the second of two papers based on a 1980
doctoral dissertation [4] that has not previously been published in a
readily available form but has been the starting point for recent work,
specifically [5, 6, 7, 8, 9, 10]. Independently, Göbel, et al. [3] explored
the same topic and proved similar results. Here, we extend to the global
case the local case covered in [11]. This paper corrects and clarifies
the original and streamlines some of the proofs.

Ulm’s theorem [15] defines invariants that classify countable torsion
abelian groups up to isomorphism. Warfield [17] developed new
invariants that, along with the Ulm invariants, serve to classify a class
of local mixed abelian groups. This was extended to the global case
by Stanton [14]. Barwise and Eklof [1] looked at the classification
problem in the language L∞ω and classified all torsion abelian groups
up to L∞ω-equivalence using modified Ulm invariants.

The first author unified these two generalizations of Ulm’s theorem
by defining a class of groups that includes the Warfield groups and
that may be classified in L∞ω, first addressing the local case [11].
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The defining property of these groups is the existence of what we
call a partial decomposition basis, a generalization of the concept of
decomposition basis that is preserved under L∞ω-equivalence. This
paper builds on the previous work to study this class of mixed abelian
groups and to define invariants that classify these groups up to L∞ω-
equivalence.

Section 2 presents the background material, including the definitions
of L∞ω, the Ulm invariants and decomposition basis. The third section
reviews the concept of partial decomposition basis and defines the
modified Warfield invariant ŵ for the global case. It is proved that
this invariant is independent of the choice of partial decomposition
basis. Section 4 proves the classification theorem for groups with partial
decomposition bases in L∞ω.

The word “group” used in this paper will mean abelian group and
“rank” will mean torsion-free rank.

2. Background.

2.1. Algebraic preliminaries. In the following definitions, we fix a
group G and a prime p.

If α is an ordinal, we define pαG by induction on α as follows: Let

pG = {px : x ∈ G},

pαG = p(pβG) if α = β + 1

for some ordinal β and

pαG =
∩
β<α

pβG

if α is a limit ordinal. We define

p∞G =
∩

α∈Ord

pαG.

We define the p-height of x, |x|p, for x ∈ G, to be the unique ordinal
α such that x ∈ pαG and x /∈ pα+1G if it exists, and the symbol ∞
otherwise. We let G[p] denote {x ∈ G : px = 0}, and write pαG[p] for
(pαG)[p].
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For each ordinal α, we define the Ulm invariant

up(α,G) = dim pαG[p]/pα+1G[p]

as a Z/(p)-vector space, and up(∞, G) = dim p∞G[p]. We define
ûp(α,G) = min{up(α,G), ω} for α an ordinal or ∞. Barwise and Eklof
[1] proved that the invariants û(α,G) classify all torsion abelian groups
in L∞ω.

We say a sequence (αi)i∈ω is an Ulm sequence if each αi is either an
ordinal or the symbol ∞ and, for all i, if αi = ∞, then αi+1 = ∞, and
if αi ̸= ∞, then αi+1 > αi. If x is an element of a group G, Up(x), the
p-Ulm sequence of x is (|pix|p)i∈ω. We call the Ulm sequences (αi) and
(βi) equivalent, written (αi) ∼ (βi) if there are positive integers m and
n such that αi+n = βi+m for all i ≥ 0.

We say X ⊆ G is a decomposition set if X is an independent set of
elements of infinite order and, for all x1, . . . , xn ∈ X, a1, . . . , an ∈ Z,
and p a prime,

|a1x1 + · · ·+ anxn|p = min
1≤i≤n

{|aixi|p}.

We let ⟨X⟩ denote the subgroup generated by X. If S is a subgroup
of G, we let S0 denote {x ∈ G : ax ∈ S for some a ∈ Z \ {0}}. If X is
a decomposition set and G = ⟨X⟩0, we say that X is a decomposition
basis for G. Summands of simply presented groups are called Warfield
groups. Warfield groups have decomposition bases. For G a local
group with a decomposition basis X and e an equivalence class of Ulm
sequences, we define the Warfield invariant, w(e,G) = the cardinality
of {x ∈ X : U(x) ∈ e}. Warfield [17] proved that this is independent of
the choice ofX and that these invariants, along with the Ulm invariants,
serve to classify local Warfield groups up to isomorphism.

2.2. The language L∞ω. The results of this paper will be considered
in light of the language of infinitary logic known as L∞ω. This is an
extension of the familiar language of first order logic to allow infinite
conjunctions and disjunctions, see [1, 11]. Since we are referencing
groups, we include 0, + and − in the language L.

We say groups G and H are L∞ω-equivalent, written G ≡∞ H if
they satisfy the same sentences of L∞ω. Karp’s theorem characterizes
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L∞ω-equivalence in terms of partial isomorphisms having the following
back-and-forth property.

Theorem 2.1 ([13]). Let G and H be groups. Then the following are
equivalent :

(i) G ≡∞ H;
(ii) There is a non-empty set I of isomorphisms on finitely generated

subgroups of G into H such that, if f ∈ I and x ∈ G, y ∈ H,
respectively, then f extends to a map f ′ ∈ I such that x ∈
domain(f ′) (y ∈ range(f ′), respectively).

If (ii) holds, we say that G and H are partially isomorphic, which we
represent by I : G ∼=p H or simply G ∼=p H. This theorem, which Karp
proved for general models, allows us to view the groups from either an
algebraic or a logical perspective.

3. The partial decomposition basis and the invariant. In [11],
we defined our class for modules over a principal ideal domain, so it
applies both to the local case (Zp-modules, where Zp is the integers
localized at p) and the global case (Z-modules). We say C is a partial
decomposition basis for the module G if

(i) C is a nonempty collection of finite subsets of G;
(ii) if X ∈ C, then X is a decomposition set;
(iii) if X ∈ C and x ∈ G, then there is a Y ∈ C such that X ⊆ Y and

x ∈ ⟨Y ⟩0.

If G ∼=p H and G has a partial decomposition basis, then so does H,
see [11, Theorem 3.2].

Lemma 3.1. Let G be a module over Z or Zp with partial decomposi-
tion basis C. Then G has a partial decomposition basis C′ such that

(i) if Y ⊆ G is a decomposition set and ⟨Y ⟩ = ⟨X⟩ for some X ∈ C′,
then Y ∈ C′;

(ii) if x1, . . . , xn ∈ X for some X ∈ C′ and a1, . . . , an ∈ Z \ {0}, then
{a1x1, . . . , anxn} ∈ C′.
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Proof. Define Cn by induction on n. Let C0 = C. If n is odd, let

Cn = {Y ⊆ G : Y is a decomposition set and

⟨Y ⟩ = ⟨X⟩ for some X ∈ Cn−1}.

If n > 0 is even, let

Cn = {{a1x1, . . . , amxm} : a1, . . . , am ∈ Z \ {0}
and x1, . . . , xm ∈ X for some X ∈ Cn−1}.

Let C′ =
∪
Cn. Then it may be verified by induction on n that each

Cn is a partial decomposition basis, Cn ⊆ Cn+1, Cn satisfies (i) if n is
odd and (ii) if n is even, and hence, C′ is a partial decomposition basis
satisfying (i) and (ii). �

Given an equivalence class of Ulm sequences e and a local group G
with partial decomposition basis C, let

ŵC(e,G) = the maximum n s.t. there is an X ∈ C and x1, . . . , xn ∈ X

such that U(xi) ∈ e for 1 ≤ i ≤ n, if such a maximum exists, and ω
otherwise. This is independent of the choice of C and invariant under
partial isomorphism [11].

We will need the following results from [11, Theorems 3.3, 4.7].

Theorem 3.2. Let G be a module over a principal ideal domain R
which has partial decomposition bases C and D. Let X ∈ C and Y ∈ D.
Then there are decomposition sets X ′ and Y ′ such that X ⊆ X ′,
Y ⊆ Y ′, X ′ and Y ′ are unions of ascending chains of elements of
C and D, respectively, and ⟨X ′⟩0 = ⟨Y ′⟩0.

Theorem 3.3. Let G and H be Zp-modules with partial decomposition
bases. Then G ∼=p H if and only if, for every α, an ordinal or ∞, and
equivalence class e of Ulm sequences, û(α,G) = û(α,H) and ŵ(e,G) =
ŵ(e,H). In that case, if C and D are partial decomposition bases of G
and H, respectively, satisfying Lemma 3.1 (ii), then I : G ∼=p H may
be taken as the set of all maps f : S → T for which there exist X ∈ C
and Y ∈ D satisfying the properties:

(i) S and T are finitely generated submodules of G and H, respec-
tively ;
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(ii) f is a height-preserving isomorphism;
(iii) X ⊆ S ⊆ ⟨X⟩0 and Y ⊆ T ⊆ ⟨Y ⟩0;
(iv) f(X) = Y .

We define an analog of the Warfield invariant for the global case. Let
A be an ω × ω matrix [αp,i] indexed over the primes and nonnegative
integers. Then we say A is an Ulm matrix if, for each prime p, the row
(αp,i)i∈ω is an Ulm sequence. If x is an element of a group G, it has
an associated Ulm matrix

U(x) = [ |pix|p ],

whose rows Up(x) are p-Ulm sequences of x.

For A = [αp,i] an Ulm matrix and q a prime, we define qA = [βp,i],
where, for all i, βq,i = αq,i+1 and βp,i = αp,i for all p ̸= q. Now, we may
define by induction nA for any positive integer n in the obvious way.
We say two Ulm matrices are equivalent if mA = nB of some positive
integers m and n. Note that A and B are equivalent if and only if
the pth rows are equivalent for finitely many primes p and identical for
all other primes p. Note that, as in the local case, U(x) and U(y) are
equivalent if and only if U(ax) = U(by) for some a, b ∈ Z \ {0}.

We might expect, by an analog of local classification, that equiva-
lence classes would be the basis of invariants that classify groups with
partial decomposition bases. This is not the case. Warfield [17] cites
an example of four countable rank 1 groups A1, A2, A3, and A4 such
that U(xi) are all in different equivalence classes, where xi ∈ Ai is an
element of infinite order for 1 ≤ i ≤ 4, but A1 ⊕A2

∼= A3 ⊕ A4. Thus,
the decomposition bases {x1, x2} and {x3, x4} give different values for
the obvious analog of the local invariant, showing it is not invariant
under ∼=, let alone ∼=p.

This problem was faced in generalizing the classification of Warfield
modules up to isomorphism to the global case. This was solved by
Stanton [14] with the introduction of new invariants based on the
concept of compatibility.

We say that two Ulm matrices A and B are compatible, written
A ∼ B, if there are positive integers m and n such that mA ≥ B and
nB ≥ A, where we say [αp,i] ≥ [βp,i] if αp,i ≥ βp,i for every prime p and
i < ω. It is easy to verify that this is an equivalence relation. We call
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each equivalence class a compatibility class. Note that, if A and B are
compatible, the pth rows are equal for all but finitely primes p. Now, we
will define the invariant. Let G be a group with partial decomposition
basis C, c a compatibility class, p a prime and e an equivalence class of
Ulm sequences. Then, we let

ŵC(c, p, e,G) = the largest n, if it exists, such that there are

X ∈ C, x1, . . . , xn ∈ X, with U(xi) ∈ c and

Up(xi) ∈ e for 1 ≤ i ≤ n.

If no such n exists, we let ŵC(c, p, e,G) = ω. This is an analog of
Stanton’s invariant, also called the Warfield invariant, for a group G
with decomposition basis X:

w(c, p, e,G) = |{x ∈ X : U(x) ∈ c and Up(x) ∈ e}|.

The next theorem allows us to drop the subscript C.

Theorem 3.4. If G has partial decomposition bases C and C′, then
for any compatibility class c, prime p and equivalence class e of Ulm
sequences, ŵC(c, p, e,G) = ŵC′(c, p, e,G). In fact, if ŵC(c, p, e,G) ≥ n

and Y ∈ C′, there is a Ỹ ∈ C′ such that Y ⊆ Ỹ and Ỹ contains distinct
elements y1, . . . , yn such that U(yi) ∈ c and Up(yi) ∈ e for 1 ≤ i ≤ n.

Proof. Let c, p and e be given, and suppose ŵC(c, p, e,G) ≥ n. Then,
by definition, there is an X ∈ C containing elements x1, . . . , xn such
that U(xi) ∈ c and Up(xi) ∈ e for 1 ≤ i ≤ n. Let Y be as given
and choose X ′ and Y ′ as in Theorem 3.2. Then X ′ and Y ′ are both
decomposition bases for ⟨X ′⟩0 = ⟨Y ′⟩0. Stanton [14] proved that
w(c, p, e,G) is independent of the choice of decomposition basis, so
w(c, p, e, ⟨Y ′⟩0) ≥ n. Thus, Y ′ contains elements y1, . . . , yn such that

U(yi) ∈ c and Up(yi) ∈ e for 1 ≤ i ≤ n. Choose Ỹ ∈ C′, Ỹ ⊆ Y ′,
containing Y and y1, . . . , yn. �

Corollary 3.5. Let G and H be groups with partial decomposition bases
C and C′, respectively. Let c be a compatibility class of Ulm matrices,
p a prime and e an equivalence class of Ulm sequences. Suppose that
ŵ(c, p, e,G) = ŵ(c, p, e,H), X ∈ C, Y ∈ C′, and ŵ(c, p, e, ⟨X⟩0) >
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ŵ(c, p, e, ⟨Y ⟩0). Then, there is a Y ′ ∈ C′ such that Y ⊆ Y ′ and a
y ∈ Y ′ \ Y such that U(y) ∈ c and Up(y) ∈ e.

Proof. Let n = ŵ(c, p, e, ⟨Y ⟩0). Then

ŵ(c, p, e,H) = ŵ(c, p, e,G) ≥ ŵ(c, p, e, ⟨X⟩0) > ŵ(c, p, e, ⟨Y ⟩0) = n,

so, by Theorem 3.4, there is a Y ′ ∈ C′ such that Y ⊆ Y ′ and Y ′ contains
n + 1 elements y such that U(y) ∈ c and Up(y) ∈ e. Since Y contains
only n such elements, one is in Y ′ \ Y . �

Note that, if G is a group with a decomposition basis X, then
the set of all finite subsets of X is a partial decomposition basis, so
ŵ(c, p, e,G) = min{w(c, p, e,G), ω}. Also, if G ∼=p H and G has a
partial decomposition basis, then we may verify that ŵ(c, p, e,G) =
ŵ(c, p, e,H) for all c, p and e, cf., [11]. Thus, we have defined values
that are invariant under ∼=p.

4. The global classification theorem. As in the local case, we
will prove the classification theorem by an extension argument. In
particular, suppose G and H have partial decomposition bases C and
D, respectively, as in Lemma 3.1 and ŵ(c, p, e,G) = ŵ(c, p, e,H) for all
c, p and e. Suppose also that X ∈ C and Y ∈ D, where f(X) = Y for
some injective and height-preserving f . If X ∪ {x} ∈ C, we would like
to extend f by finding a y ∈ H such that Y ∪ {y} ∈ D, U(x) ∼ U(y)
and Up(x) ∼ Up(y) for all primes p. Corollary 3.5 allows us to choose
such a y for each prime p.

Now, we will prove that it is possible to choose a single y that works
for all primes. First, we will need a result of Stanton [14, Lemma 7].

Lemma 4.1. Let X be a decomposition basis for a group G, let x1 and
x2 be elements of X with compatible Ulm matrices, and let p be a prime.
Then there are elements y1 and y2 in ⟨X⟩ such that Up(y1) = Up(x2),
Up(y2) = Up(x1) and Uq(y1) = Uq(x1), Uq(y2) = Uq(x2) for all primes
q ̸= p. Moreover,

Y = (X \ {x1, x2}) ∪ {y1, y2}

is a decomposition basis and ⟨X⟩ = ⟨Y ⟩.
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Lemma 4.2. Let G and H be groups with partial decomposition bases
C and D, respectively, as in Lemma 3.1. Suppose ŵ(c, p, e,H) =
ŵ(c, p, e,G) for every compatibility class c, prime p and equivalence
class e of Ulm sequences. Then, if X ∪ {x} ∈ C, Y ∈ D and
ŵ(c, p, e, ⟨X⟩0) = ŵ(c, p, e, ⟨Y ⟩0) for all c, p and e, then there is a y ∈ H
such that Y ∪{y} ∈ D and ŵ(c, p, e, ⟨X ∪{x}⟩0) = ŵ(c, p, e, ⟨Y ∪{y}⟩0)
for all c, p and e. In fact, U(x) and U(y) are equivalent.

Proof. Let p0 be an arbitrary prime. Let c be the compatibility class
of U(x) and e0 the equivalence class of Upo(x). Then, by Corollary 3.5,
there is a z ∈ H such that z /∈ Y , U(z) ∈ c, Up0(z) ∈ e0 and
Y ∪ {z} ∈ D. But, then U(z) and U(x) are compatible, so Up(z) and
Up(x) are equivalent except for finitely many primes, say p1, . . . , pn.
We will prove by induction on n that z can be replaced by an element
y ∈ H such that Y ∪ {y} ∈ D, U(y) ∈ c, and Up(y) ∼ Up(x) for all
primes p. If n = 0, then Up(x) is equivalent to Up(z) for all primes p
as required.

Suppose this is true for n − 1. Let en be the equivalence class of
Upn(x). Then, by assumption, Upn(z) /∈ en, so

ŵ(c, pn, en, ⟨Y ∪ {z}⟩0) = ŵ(c, pn, en, ⟨Y ⟩0) < ŵ(c, pn, en, ⟨X ∪ {x}⟩0).

Thus, by Corollary 3.5, there is a z′ ∈ H such that Y ∪ {z, z′} ∈ D,
U(z′) ∈ c and Upn(z

′) ∈ en. By Lemma 4.1, there are y and y′ ∈ H
such that Y ∪ {y, y′} is a decomposition set and ⟨Y, y, y′⟩ = ⟨Y, z, z′⟩,
Upn(y) = Upn(z

′), Upn(y
′) = Upn(z) and, for all q ̸= pn, Uq(y) = Uq(z)

and Uq(y
′) = Uq(z

′). Then, in particular,

Upn(y) = Upn(z
′) ∼ Upn(x),

Up0(y) = Up0(z) ∼ Up0(x)

and
Uq(y) ∼ Uq(x) for all q /∈ {p0, . . . , pn}.

Thus, Up(y) ∼ Up(x) for all but at most n − 1 primes p. Since
Y ∪ {y, y′} ∈ D, Y ∪ {y} ∈ D. The result follows by induction. �

Lemma 4.3. Let G be a group, X a decomposition basis for G and S a
finitely generated subgroup of G such that S ∩ ⟨X⟩ = ⟨S ∩X⟩. Then, if
y ∈ X and y /∈ S, there is a positive integer n such that, for all m ∈ Z,
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s ∈ S and p prime,

|mny + s|p = min{|mny|p, |s|p}.

Proof. This lemma was proved in the local case [11, Lemma 4.6].
We will localize to use that result. Let p be a prime and

φp : G −→ Gp = G⊗ Zp

the natural map defined by x 7→ x⊗ 1. Then, by transfinite induction
on heights, it is easy to see that, for all x ∈ G, |x|p = |φp(x)|p.
Now suppose {x1, . . . , xn} is a decomposition set and ai/bi ∈ Zp with
(bi, p) = 1 for 1 ≤ i ≤ n. Then, if we multiply through by c =

∏n
i=1 bi,

we see that∣∣∣∣a1b1 (x1 ⊗ 1) + · · ·+ an
bn

(xn ⊗ 1)

∣∣∣∣
p

= min
1≤j≤n

{∣∣∣∣ajbj (xj ⊗ 1)

∣∣∣∣
p

}
,

and independence can be proved similarly, so {x1 ⊗ 1, . . . , xn ⊗ 1} is a
decomposition set. Thus, the image of X under φ is a decomposition
basis.

Since X is a decomposition basis for G and S is finitely generated,
there is an integer k ̸= 0 such that ks ∈ ⟨X⟩ for all s ∈ S. Let p be
a prime dividing k. We localize at p. Suppose y ⊗ 1 ∈ S ⊗ Zp. Then,
m(y ⊗ 1) = s′ ⊗ 1 for some s′ ∈ S and m ∈ Z \ {0}, and so, my ∈ S.
But, then my ∈ S ∩ ⟨X⟩ = ⟨S ∩X⟩, and so, y ∈ S ∩X, contradicting
y /∈ S. Thus, y ⊗ 1 /∈ S ⊗Zp, so we may apply the local version of this
lemma to Gp to get an np ∈ Z such that

|rpnp(y ⊗ 1) + s⊗ 1|p = min{|rpnp(y ⊗ 1)|p, |s⊗ 1|p}

for all r ∈ Zp, s ∈ S.

Now let n =
∏

p|k p
np . Then, for any p dividing k,

|mny + s|p = |mn(y ⊗ 1) + s⊗ 1|p
= min{|mn(y ⊗ 1)|p, |s⊗ 1|p}
= min{|mny|p, |s|p}

for all m ∈ Z and s ∈ S.

Now suppose that p does not divide k and s ∈ S. Then ks ∈ ⟨X⟩,
say ks = a1x1 + · · ·+ anxn. But S ∩ ⟨X⟩ = ⟨S ∩X⟩, so ks ∈ ⟨S ∩X⟩
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and x1, . . . , xn ∈ S. In particular, none of x1, . . . , xn is y. Then, since
p does not divide k,

s⊗ 1 =
a1
k
(x1 ⊗ 1) + · · ·+ an

k
(xn ⊗ 1)

is in Gp. But {x1 ⊗ 1, . . . , xn ⊗ 1, y ⊗ 1} is a decomposition set, so

|mny + s|p = |mn(y ⊗ 1) + s⊗ 1|p
= min{|mn(y ⊗ 1)|p, |s⊗ 1|p}
= min{|mny|p, |s|p},

as required. �

Warfield [16, 1.16] proved the next local-global theorem, which will
allow us to extend local mappings to global.

Theorem 4.4. Let G and H be groups, S and T subgroups of G and
H, respectively, such that G/S and H/T are torsion and f : S → T
a homomorphism. Suppose, for every prime p, the induced map fp :
S⊗Zp → T ⊗Zp extends to a homomorphism g(p) : G⊗Zp → H⊗Zp.
Then, f extends to a homomorphism g : G → H such that gp = g(p)
for all primes p. In addition, if g(p) is an isomorphism for each p, then
so is g.

Now we may prove the main result of this paper, the classification
in L∞ω.

Theorem 4.5. Let G and H be groups with partial decomposition
bases. Then G ∼=p H if and only if, for every ordinal α, compatibility
class c, prime p and equivalence class e of Ulm sequences, ûp(α,G) =
ûp(α,H), ŵ(c, p, e,G) = ŵ(c, p, e,H) and ûp(∞, G) = ûp(∞,H).

Proof. Let C and C′ be the partial decomposition bases for G and
H, respectively. Suppose I : G ∼=p H. Then, G ≡∞ H by Theorem 2.1.
Given α, there is a sentence of L∞ω that says “u(α,G) ≥ n” [1,
Lemma 2.2], so û(α,G) = û(α,H) for all α an ordinal or ∞. By
[11, Theorem 3.2], {f(X) : X ∈ C, f ∈ I,X ⊆ domain(f)} is a partial
decomposition basis for H. Suppose, for some compatibility class c,
prime p and equivalence class e, ŵ(c, p, e,G) ≥ n, say x1, . . . , xn ∈ X,
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X ∈ C, and for all 1 ≤ i ≤ n, U(xi) ∈ c and Up(xi) ∈ e. Since
I is non-empty, we may choose some element in I and extend it to
f ∈ I with {x1, . . . , xn} ⊆ domain(f). Since f is height-preserving
[11, Lemma 3.1], for all 1 ≤ i ≤ n, U(f(xi)) = U(xi), so U(f(xi)) ∈ e
and Up(f(xi)) ∈ e. It follows that ŵ(c, p, e,H) ≥ n. The other direction
follows from symmetry.

Now suppose all the invariants are equal. By Lemma 3.1, we may
assume C has the following properties:

(1) if Y ⊆ G is a finite decomposition set and ⟨Y ⟩ = ⟨X⟩ for some
X ∈ C, then Y ∈ C;

(2) if x1, . . . , xn ∈ X for some X ∈ C, a1, . . . , an ∈ Z \ {0}, then
{a1x1, . . . , anxn} ∈ C,

and similarly for C′.

Now let I be the set of f : S → T with associated X ∈ C and Y ∈ C′

such that:

(i) S and T are finitely generated subgroups of G and H respectively;
(ii) f is a height-preserving isomorphism;
(iii) f(X) = Y ;
(iv) X ⊆ S ⊆ ⟨X⟩0 and Y ⊆ T ⊆ ⟨Y ⟩0.

I is not empty since it contains the zero function with associated X
and Y empty. Let f : S → T be an element of I and x ∈ G \ S. To
prove that f extends to x, we need consider only two cases as in the
local case: x has a nonzero multiple in S and X ∪ {x} ∈ C.

Case 1. Suppose x has a nonzero multiple in S. Let G′ = ⟨S, x⟩
and H ′ = T 0. Then G′/S and H ′/T are torsion. Let p be given.
Then C and C′ induce partial decomposition bases for G ⊗ Zp and
H ⊗ Zp, respectively, under the map φp(x) = x ⊗ 1. Furthermore, for
any equivalence class e of Ulm sequences and compatibility class c of
Ulm matrices, we have ŵ(e,G ⊗ Zp) ≥ ŵ(c, p, e,G). If c′ ̸= c, then,
by Theorem 3.4, we have ŵ(e,G ⊗ Zp) ≥ ŵ(c, p, e,G) + ŵ(c′, p, e,G).



CLASSIFICATION OF INFINITE ABELIAN GROUPS 475

Thus, repeated application of Theorem 3.4 yields

ŵ(e,G⊗ Zp) = min

{∑
c

ŵ(c, p, e,G), ω

}
= min

{∑
c

ŵ(c, p, e,H), ω

}
= ŵ(e,H ⊗ Zp).

Also, ûp(α,G⊗ Zp) = ûp(α,H ⊗ Zp) for any α an ordinal or ∞, since
φp preserves p-heights, cf., [2, Part 2, Lemmas 13 and 16]). Thus, by
the local classification theorem, Theorem 3.3, G ⊗ Zp

∼=p H ⊗ Zp and
the induced map fp : S ⊗ Zp → T ⊗ Zp is in Ip, the system of partial
isomorphisms constructed in Theorem 3.3. By the definition of partial
isomorphisms, fp extends to g(p) ∈ Ip with domain ⟨S, x⟩ ⊗ Zp. Thus,
by Theorem 4.4, f extends to g : ⟨S, x⟩ → ⟨T, y⟩ for some y ∈ H such
that gp = g(p) for all primes p. Furthermore, g(p) : ⟨S, x⟩ ⊗ Zp →
⟨T, y⟩ ⊗ Zp is an isomorphism and so g is as well. Also, g is height-
preserving since gp = g(p) is p-height-preserving for any p. Thus, g
satisfies conditions (i) and (ii). Additionally, g satisfies (iii) and (iv)
with the original X and Y .

Case 2. Suppose X ∪{x} ∈ C. By Lemma 4.2, there is a y ∈ H such
that U(x) is equivalent to U(y) and Y ∪{y} ∈ C′. Thus, U(x′) = U(y′)
for some x′ and y′, multiples of x and y, respectively. Apply Lemma 4.3
to the group ⟨S, x′⟩0, the subgroup S and the decomposition basis
X ′ = X ∪ {x′}. This is possible since S ∩ ⟨X ′⟩ = ⟨X⟩ = ⟨S ∩ X ′⟩.
Apply it similarly to ⟨T, y′⟩0, T and Y ′ = Y ∪ {y′}. Thus, there is an
n such that

|mnx′ + s|p = min{|mnx′|p, |s|p}

and

|mny′ + t|p = min{|mny′|p, |t|p}

for all m ∈ Z, p prime, s ∈ S and t ∈ T . Let

S′′ = ⟨S, nx′⟩,
T ′′ = ⟨T, ny′⟩,
X ′′ = X ∪ {nx′},
Y ′′ = Y ∪ {ny′},
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and define g : S′′ → T ′′ extending f by g(nx′) = ny′. It is easy to verify
that g satisfies conditions (i)–(iv) on I. Thus, as we showed in Case 1,
there is a g′ ∈ I extending g with x in its domain. This completes
Case 2.

Now, for any x ∈ G, we first find X ′ ⊇ X, X ′ ∈ C, x ∈ ⟨X ′⟩0, and
successively extend f to each element of X ′ by Case 2 then to x by
Case 1. By symmetry, we may extend f to any y in H. This proves I
is a system of partial isomorphisms. �

This theorem is in fact a generalization of the theorem of Barwise
and Eklof.

Corollary 4.6 ([1]). Let G and H be torsion groups. Then, G ≡∞ H
if and only if û(α,G) = û(α,H) for all α an ordinal or ∞.
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