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BLASCHKE’S ROLLING BALL PROPERTY
AND CONFORMAL METRIC RATIOS

DAVID A. HERRON AND PORANEE K. JULIAN

ABSTRACT. We characterize the closed sets in Euclidean
space that satisfy a two-sided rolling ball property. As an
application we show that certain conformal metric ratios
have boundary value 1.

1. Introduction. A non-empty closed subset Σ of Euclidean space
Rn has the (two-sided) rolling ball property if there exists an R > 0 such
that for each point ξ ∈ Σ there are two open balls, each of radius R,
that lie in different components of Rn \Σ and whose boundary spheres
are tangent at the point ξ. See Figure 3.

Our interest in the rolling ball property arose via an application
to certain families of conformal metrics. But, first we establish the
following characterization of such sets.

Theorem A. Let Σ ⊂ Rn be non-empty and closed, with n ≥ 2. Then
Σ has the (two-sided) rolling ball property with parameter R > 0 if and
only if each of the following holds:

(1) Σ is an orientable (n − 1)-dimensional C1 smooth embedded sub-
manifold of Rn.

(2) For each pair of distinct components Γ1 and Γ2 of Σ, dist(Γ1,Γ2) ≥
2R.

(3) There is a globally defined unit normal vector field Σ
n→ Sn−1 such

that for all points ξ, ζ ∈ Σ,

|n(ξ)− n(ζ)| ≤ 1

R
|ξ − ζ|.
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This is a modest generalization of a result due to Walther, who
used Blaschke’s rolling ball property to study various problems from
mathematical morphology, image analysis and smoothing; see [28,
Theorem 1], in particular, for many good references.

Let O be a translation invariant family of domains (open connected
subsets) Ω ( Rn. Let M = {ρΩ(x)|dx|}Ω∈O be a class of conformal
metrics each defined on domain Ω in O. Assume that M is monotone
and translation invariant. See subsection 2.4 for precise definitions of
this terminology as well as that stated below.

Theorem B. Fix n ≥ 2 and R > 0. Let M = {ρΩ(x)|dx|}Ω∈O
be a monotone and translation invariant class of conformal metrics
as described above. Let MR := {ρΩ(x)|dx|}Ω∈OR

where OR is the
subfamily of all domains Ω in O that satisfy the (two-sided) rolling ball
property with parameter R.

Suppose that both Bn
R and An

R are domains in O and that each of the
associated conformal metrics ρBn

R
(x)|dx| and ρAn

R
(x)|dx| is asymptoti-

cally quasihyperbolic. Then MR is asymptotically quasihyperbolic, that
is, for all domains Ω ∈ OR,

lim
dist(x,∂Ω)→0

x∈Ω

dist(x, ∂Ω)ρΩ(x) = 1,

and this uniform limit holds uniformly with respect to all Ω ∈ OR.

A conformal metric ρ(x)|dx| on Ω is asymptotically quasihyperbolic
if the above uniform metric ratio limit holds, meaning that, suffi-
ciently near ∂Ω, ρ(x)|dx| is “asymptotic” to the quasihyperbolic metric
dist(x, ∂Ω)−1|dx|. See (2.2).

The rolling ball property is closely related to the notion of the reach
of a set which is defined, for a non-empty closed set Σ ⊂ Rn, by

reach(Σ) := sup{r > 0 | for all x ∈ Rn, dist(x,Σ) < r implies

there exists ξ ∈ Σ such that |x− ξ| = dist(x,Σ)};

when there are no such r > 0, we set reach(Σ) := 0. Federer introduced
this terminology and established fundamental properties of sets with
positive reach, see [7], and also [27] and its many references. For a
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non-empty closed Σ ⊂ Rn, we define

(1.1) rbp(Σ) := sup{R > 0 | Σ has the (two-sided) rolling ball

property with parameter R};

when there are no such R > 0, we set rbp(Σ) := 0. Clearly, there are
sets with positive reach which do not enjoy the rolling ball property;
indeed, each closed convex set has infinite reach. Also, there are, e.g.,
compact C2−ε curves in R2 that do not have positive reach, see [17].
However, we do have the following folklore result.

Theorem C. Let n ≥ 2. Suppose that Σ is a non-empty closed
(n − 1)-dimensional C1 smooth embedded submanifold of Rn. Then
reach(Σ) = rbp(Σ).

As a corollary of Theorems A and C, we see that, for such Σ the
following are equivalent:

(a) reach(Σ) > 0.
(b) rbp(Σ) > 0.
(c) Σ has a globally defined Lipschitz continuous unit normal vector

field.

For compact Σ, the equivalence of (a), (b) and (c) above, in addition
to numerous similar conditions, was first observed by Lucas [22], see
also [7]. It is noteworthy that, in this setting, the unit normal for Σ is
a.e. differentiable; hence, the Weingarten map (also known as the shape
operator) for Σ is defined at a.e. point of Σ, and so we can compute
principal curvatures at a.e. point of Σ. In particular, the largest of
these principal curvatures is bounded everywhere above by 1/ rbp(Σ).

There is an analog of Theorem C for non-closed submanifolds Σ,
provided we adjust things appropriately; in this case, for the rolling
ball property, we drop the requirement that the two balls lie in different
components of Rn \ Σ, and then we have reach(Σ) = rbp(Σ).

Theorem A raises the natural question: What is the ‘size’ of the
singular set? Here the singular set for a C1 hypersurface is the
set of points where the associated unit normal vector field is not
differentiable. We provide the following answer to this question for
the case where ‘size’ means Hausdorff dimension.



164 DAVID A. HERRON AND PORANEE K. JULIAN

Example. For each n ≥ 2, there is a hypersurface in Rn that has the
rolling ball property and whose singular set has Hausdorff dimension
n− 1.

We prove Theorems A, B, and C in Section 3. Section 2 contains
standard information including basic definitions and notation. In
subsection 2.4 we list classes of conformal metrics to which Theorem B
applies. In subsection 2.5, we give simple examples of sets that enjoy
the rolling ball property and we construct the above Example in
subsection 2.6. See subsection 3.5 for an intriguing question.

2. Preliminaries. Our notation is relatively standard. We write
|x − y| for the Euclidean distance between points x, y in Euclidean
space Rn. Then, Bn(x; r) := {y : |x − y| < r} and Sn−1(x; r) := {y :
|x − y| = r} are the open ball and the sphere of radius r centered at

the point x. We set Bn
r := Bn(0; r) and An

r := Rn \ Bn

r ; so, B
n := Bn

1 is
the open unit ball.

The standard unit basis vectors are e1, . . . , en, and the Euclidean
inner product is written as x · y; thus, e.g.,

|x± y|2 = |x|2 ± 2x · y + |y|2

which reduces to |u ± v|2 = 2 ± 2u · v when u and v are unit vectors.
The angle θ ∈ [0, π] between two non-zero vectors x and y is defined
by cos θ = x · y/(|x||y|).

2.1. Grassmannians. We let G(n, k) denote the set of all k-planes in
Rn, i.e., G(n, k) is the set of all k-dimensional vector subspaces of Rn.
Then the Grassman space is

G(n) :=
n∪

k=0

G(n, k).

By identifying each V ∈ G(n) with the orthogonal projection Rn PV→ Rn

onto V , we can define a distance function on G(n) via

dG(V,W ) := ∥PV − PW ∥ := sup
x∈Sn−1

|PV (x)− PW (x)| .



ROLLING BALL PROPERTY 165

In fact, (G(n), dG) is a compact metric space. Moreover, for all
V,W ∈ G(n):

dG(V,W ) = dG(V
⊥,W⊥) ≤ 1(2.1a)

with dG(V,W ) = 1 holding if dim(V ) ̸= dim(W ) ;

dG(V,W ) = max
v∈V ∩Sn−1

dist(v,W )(2.1b)

provided V ̸= {0} ̸= W ; and, if dim(V ) = 1 = dim(W ) or dim(V ) =
n− 1 = dim(W ),

dG(V,W ) = sinα(2.1c)

where α ∈ [0, π/2] is the angle between V and W .

In Hilbert space theory, dG(V,W ) is called the aperture of V and W ,
see [1, pages 69–71] and [16, pages 56–57, Theorem I-6.34].

From (2.1a), we see that the components of the space G(n) are
precisely the sets G(n, k); if dim(V ) ̸= dim(W ), then the open
balls BG(V ; 1) and BG(W ; 1) are disjoint, and in fact, BG(V ; 1) =
G(n,dimV ). Similarly, for any s ∈ (0, 1),

BG(V ; s) = {W ∈ G(n, dimV ) | dG(W,V ) < s}.

2.2. Cones. It is convenient to introduce the following notation.
Given a point a ∈ Rn, a k-plane V ∈ G(n, k) and s ∈ (0, 1), we set

X(V, s) := {x ∈ Rn | dist(x, V ) < s|x|}

and then

X(a, V, s) := a+ X(V, s) = {x ∈ Rn | dist(x− a, V ) < s|x− a|}.

Recalling that dist(x, V ) = |x−PV (x)| = |PV ⊥(x)| (where PV (x) is the
orthogonal projection of x onto V ), we see that x ∈ X(V, s) if and only
if the angle α between x and PV (x) satisfies sinα < s. See Figure 1.

Notice that, when dim(V ) = 1, i.e., when V is a line in Rn, X(V, s)
is a doubly infinite right-circular cone with apex at the origin, axis V ,
and aperture α := arcsin(s). With this in mind, we call X(a, V, s) a
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cone at a. Note, too, that we always have

X(V, s) = Rn \ X(V ⊥,
√
1− s2),

in particular, we can also “see” the shape of the cone X(V, s) when V
is a hyperplane (i.e., when dim(V ) = n− 1).

In addition, we point out that X(V, s) =
∪

W∈BG(V ;s) W \ {0}.

b

α

X(V, s)
0

Vs = sinα

Figure 1. A cone with axis V .

2.3. Smooth hypersurfaces. We refer to [19] for the basic theory
of smooth manifolds and embedded submanifolds. For later use, we
record the following well-known information, see [4, page 48, Theorem
2.1.2 (iii)] or [19, Chapter 5].

Fact 2.1. Suppose that, for each point ξ ∈ Σ ⊂ Rn, there is an r > 0
such that, after suitable translation and rotation, Σ ∩ Bn(ξ; r) is the
graph of a C1 function Bn−1

r → R. Then Σ is an (n − 1)-dimensional
C1 smooth embedded submanifold of Rn.

We also require the following folklore information concerning hyper-
surfaces in Rn; these are the connected submanifolds of dimension n−1.
The second assertion below is the so called Jordan-Brouwer separation
theorem (for smooth hypersurfaces), see [2, 20, 21, 26, 29].

Fact 2.2. Let Σ be a non-empty closed subspace of Rn that is a C1

smooth embedded hypersurface. Then Σ is orientable and Rn \ Σ has
exactly two components, each of which has Σ as its topological boundary.

That such a Σ is orientable means, in particular, that there is a
globally defined unit normal vector field along Σ. See, for example,
[19, Chapter 13].
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2.4. Conformal metrics. A conformal metric on a domain Ω ⊂ Rn

has the form ρ(x)|dx| where ρ is some positive Borel function defined
on Ω (with the property that the line element ρ(x)|dx| integrates to an
honest distance function, e.g., this holds if ρ is locally bounded away
from 0 and from ∞). The ratio ρ(x)|dx|/σ(x)|dx| of two conformal
metrics, both defined on some Ω, is a well-defined positive function on
Ω. We write ρ ≤ C σ to indicate that this metric ratio is bounded
above by C.

We recall that when Ω
τ−→ Ω′ is (the restriction of) a Möbius

transformation, so a conformal map, then the pullback of a conformal
metric σ(y)|dy| on Ω′ = T (Ω) is the conformal metric ρ(x)|dx| on Ω
defined by

ρ(x)|dx| = τ∗ [σ(y)|dy|] := σ(τ(x))|τ ′(x)||dx|.

Here, we consider a family O of domains Ω ( Rn and a class
M = {ρΩ(x)|dx|}Ω∈O of conformal metrics, each defined on a domain
Ω in O. We call M monotone if, whenever Ω1,Ω2 ∈ O satisfy Ω1 ⊆ Ω2,
ρΩ2 ≤ ρΩ1 . We say that M is translation invariant if O is translation
invariant, so, for each Ω in O, every translate τ(Ω) of Ω belongs to O,
and, if the pullback metric τ∗[ρτ(Ω)(y)|dy|] equals ρΩ(x)|dx|.

A conformal metric ρ(x)|dx| on Ω is asymptotically quasihyperbolic,
abbreviated AQH, if the metric ratio ρδ has uniform boundary value 1,
that is, if and only if

(2.2) ρ(x)δ(x) :=
ρ(x)|dx|

δ(x)−1|dx|
−→ 1 uniformly as δ(x) → 0.

Here δ(x) = δΩ(x) := dist(x, ∂Ω) is the Euclidean distance from x to
the boundary of Ω, and δ(x)−1|dx| is the quasihyperbolic metric in Ω.

A class M of conformal metrics is asymptotically quasihyperbolic if
and only if the metrics in M are uniformly AQH, that is, if and only if
the limit in equation (2.2) holds uniformly for each metric ρ(x)|dx| in
M, and uniformly with respect to M.

As an example, recall that the hyperbolic metric on the ball Bn
r is

given by λ(x)|dx| = λBn
r
(x)|dx| = 2r/r2 − |x|2 |dx|. It is easy to check

that the class of all hyperbolic metrics on all balls Bn(a; r) in Rn is
AQH, and similarly for the hyperbolic metrics on the complements of
the closures of such balls.
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We mention that, in Theorem B, we can relax the two-sided rolling
ball property hypothesis and still obtain pointwise limits. For ex-
ample, as long as there exist an interior ball and an exterior ball
whose boundary spheres are tangent at some point ξ ∈ ∂Ω, then
limx→ξ δ(x)ρ(x) = 1, see [23, Proposition 4] where Minda obtained a
similar result for the Aumann-Carathéodory rigidity constant for plane
domains.

Now we list examples of classes of metrics to which Theorem B
applies. Trivially, the collection of all quasihyperbolic metrics is mono-
tone, translation invariant and asymptotically quasihyperbolic. The
collection of all hyperbolic metrics, on appropriate domains, also has
these properties. In R2, each domain with at least two boundary points
supports a maximal constant curvature −1 metric, called its Poincaré
hyperbolic metric. However, in Rn with n ≥ 3, we only have the real
hyperbolic metrics defined on open balls, open half-spaces and comple-
ments of closed balls.

Other examples of families of conformal metrics that are monotone,
translation invariant and asymptotically quasihyperbolic include the
so-called Ferrand metric (introduced in [8] and studied in [11, 14]),
the Kulkarni-Pinkhall-Thurston metric (introduced in [18] and studied
in [5, 11, 12, 13]), and the inner Apollonian metric (see [3, 9]). For
metrics on plane domains we also have the Harnack metric defined
via positive harmonic functions, as well as a similar metric defined by
bounded harmonic functions, see [10, 15], the Hahn metric, see [24],
and the so-called capacity metric, see [25].

It is perhaps worthwhile to mention that all of the above metric
examples are asymptotically quasihyperbolic on balls because in any
ball they are equal to the hyperbolic metric.

2.5. Examples. It is easy to see that if Σ is any union of appropriately
positioned hyperplanes, spheres of radius R, cylinders of radius R, tori
of “radius” R, etc., then Σ will have the rolling ball property with
parameter R.

By using suitably rotated and translated copies of the arc {(x, x2) |
x ∈ [0, 1]}, we can construct a “broken-arc-parabola” P that is a C1

curve in R2 that (passes through the points {(n, n) | n ∈ Z} and) has
the rolling ball property with parameter R = 1/2, but that is not C2.
See Figure 2. Then, P× Rn−1 is a C1 hypersurface in Rn that has the
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rolling ball property (in fact, it satisfies a rolling cylinder property) but
is not C2.

b

b

b

b

b

(0, 0)

(1, 1)

(2, 2)

(−1,−1)

(−2,−2)

y = x2

y = −x2

Figure 2. A “broken-arc-parabola” with the rolling ball property.

Now we turn to the example stated at the end of the Introduction.
Our construction begins with Lemma 2.3; as this is surely folk-lore
amongst the experts, we just sketch its proof.

2.6. Proof for the introduction Example. Appealing to Lemma 2.3
to obtain E and g as described there, we proceed as follows. Define

R
f−→ R by f(x) :=

∫ x

0

g(t) dt.

Then, f is C1 with f ′ = g everywhere; in fact, since g is Lipschitz, f is
C1,1. Let Γ be the graph of f ,

Γ := {(x, f(x)) | x ∈ R}.

Then, Γ is a curve in R2 that has the rolling ball property. For n > 2,
put Σ := Γ×Rn−2. Then, Σ is a hypersurface in Rn that has the rolling
ball property (even the rolling cylinder property).

The singular set for Γ is ΨΓ := {(x, f(x)) | x ∈ E}. The projection

R2 P−→ R onto the first factor is Lipschitz, so

1 = dimH(E) = dimH(P (ΨΓ)) ≤ dimH(ΨΓ) ≤ 1.

The singular set for Σ is ΨΣ := ΨΓ × Rn−2, and therefore,

dimH(ΨΣ) = dimH(ΨΓ) + (n− 2) = n− 1. �
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Lemma 2.3. There is an Fσ set E ⊂ R and a Lipschitz function

R
g−→ R such that E has Hausdorff dimension dimH(E) = 1 and such

that E is precisely the set of points where g fails to be differentiable.

There are more precise results known than Lemma 2.3, but an easy
proof follows at once from the next lemma.

Lemma 2.4. Let α ∈ (0, 1) be given. There is a Lipschitz function

[0, 1]
g−→ [0, 1] and a ‘uniform’ Cantor dust C ⊂ [0, 1] such that C

has positive finite α-dimensional Hausdorff measure (so, in particular,
dimH(C) = α) and such that the non-differentiability set for g is pre-
cisely C, together with the countably many midpoints of each component
of [0, 1] \ C.

To prove Lemma 2.4, we build C in the standard way; e.g., follow
the construction given in [6, page 57, Example 4.4] using m = 2
children at each step. Then g(x) := dist(x,C) is Lipschitz even with
|g(x)− g(y)| ≤ |x− y| and ∥g∥∞ ≤ 1. Evidently, g is differentiable on
each component of [0, 1] \ C, except for the midpoints. It is not too
difficult to show that g fails to be differentiable at every point of C.

Now, take any sequence (αn)
∞
1 in (0, 1) with αn → 1. Let gn and Cn

be the Lipschitz functions and Cantor dusts promised by Lemma 2.4.
Let En ⊂ [n − 1, n] be the translation of Cn by n − 1, and define
g(x) := gn(x−n+1) for x ∈ [n− 1, n] and g(x) := 0, elsewhere. Then,
E :=

∪
En has Hausdorff dimension 1 and is the non-differentiability

set for g (up to a countable set).

3. Proofs. Here we prove Theorem A and then Theorem B. First,
we establish the necessity of conditions (1), (2), (3), and then their
sufficiency.

3.1. Proof of necessity in Theorem A. Let Σ ⊂ Rn be non-empty
and closed, with n ≥ 2, and assume that Σ has the (two-sided) rolling
ball property with parameter R > 0. Recall that this means that, for
each point ξ ∈ Σ, there are two open balls B±

ξ , each of radius R, that

lie in different components of Rn \ Σ and whose boundary spheres are
tangent at the point ξ.
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In particular, there is a map ξ 7→ Tξ from Σ to G(n, n− 1) with the
property that the affine hyperplane ξ + Tξ is tangent to each of B±

ξ at

ξ. We let Nξ := (Tξ)
⊥, so ξ + Nξ is the line normal to both of the

(n − 1)-dimensional spheres ∂B±
ξ at ξ, that is, ξ + Nξ is the line that

passes through ξ and both of the centers of B±
ξ . (See Figure 3.) We

also write n(ξ) to denote one of the (two) unit vectors that span Nξ;
we make this more precise below. In terms of this notation, the balls
B±
ξ are simply Bn(ξ ±Rn(ξ);R).

The key steps in our proof are as follows.

(1) We establish continuity of the map ξ 7→ Tξ.
(2) We verify that, locally, Σ is the graph of a Lipschitz map.
(3) We demonstrate that this Lipschitz map is in fact C1.
(4) We corroborate all remaining assertions.

Throughout our proof, we assume a “standard setting” obtained as
follows. We start with a given fixed point ζ in Σ. Then, by translating
and rotating as necessary, i.e., by applying a rigid motion of Rn, we can
assume that ζ = 0 and that n(ζ) = en. The latter assumption means
that Nζ is the xn-axis and that Tζ = Rn−1 ×{0} ⊂ Rn. In this setting,
the balls B±

ζ are just Bn(±R en;R).

We begin by establishing the following ball-cone containment condi-
tions. (See Figure 4.) For all points ξ ∈ Σ and for each ε ∈ (0, 2), we

R

R

ξ +Nξ

Σ

b

ξ

Figure 3. Two sided rolling ball property for Σ.
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have

Σ ∩ Bn(ξ; εR) ∩ X(ξ,Nξ,
√

1− (ε/2)2) = ∅(3.1a)

and

Σ ∩ Bn(ξ; εR) ⊂ {ξ} ∪ X(ξ, Tξ, ε/2).(3.1b)

To verify the above, let ζ ∈ Σ and ε ∈ (0, 2) be given. Assume the
“standard setting” where ζ = 0 and n(ζ) = en.

We use spherical polar coordinates (ρ, φ, θ) for points x of Rn; so here
ρ = |x| ≥ 0, φ ∈ [0, π] is the angle between x and en, and θ ∈ Sn−2.
As illustrated in Figure 4, the polar equations for the spheres |x| = εR
and ∂B+

ζ = Sn−1(R en;R) are, respectively,

ρ = εR and ρ = 2R cosφ.

The points of intersection of these two spheres satisfy cosφ = ε/2, so

sinφ =
√

1− (ε/2)2. It follows that

Bn(ζ; εR) ∩ X(ζ,Nζ ,
√
1− (ε/2)2) ⊂ B+

ζ ∪ B−
ζ .

Since the balls B±
ζ lie in Rn \ Σ, (3.1a) holds. Since sin((π/2) − φ) =

cosφ, (3.1b) follows.

ρ = εR

ρ = 2R cosφ

b

b

b

b

b ζ = 0

Σ ∩ Bn(ζ; εR) ⊂ {ζ} ∪ X(ζ, Tζ , ε/2)

X(ζ, Tζ , ε/2)

Figure 4. The ball-cone containment condition.
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3.1.1. The map ξ 7→ Tξ is continuous. We show that, for each

ε ∈ (0, 2−
√
2) and any points ξ, ζ ∈ Σ,

(3.2) |ξ − ζ| < εR =⇒ dG(Tξ, Tζ) < 2ε.

To establish this, let ζ ∈ Σ and ε ∈ (0, 2 −
√
2) be given. Assume the

“standard setting” where ζ = 0 and n(ζ) = en. Let ξ ∈ Σ ∩ Bn(ζ; εR).
By symmetry, we may assume that ξ = s e1 + t en, where s > 0 and
t ≥ 0.

We claim that the unit normal n(ξ) must satisfy n(ξ) · en ̸= 0. In
fact, we show that, if n(ξ) · en = 0, then B+

ζ ∩B+
ξ ̸= ∅ ̸= B+

ζ ∩B−
ξ , which

would contradict the hypothesis that the open balls B±
ξ lie in different

components of Rn \Σ. To this end, let us write down what it means for
these balls to overlap. Evidently, two open balls both of radius R have
non-empty intersection if and only if their centers are within distance
2R of each other. Applying this observation to the balls B+

ξ and B+
ζ ,

we obtain the inequality

4R2 > |(ξ +Rn(ξ))− (ζ +Rn(ζ))|2 = |ξ +R(n(ξ)− n(ζ))|2

= |ξ|2 + 2Rξ · (n(ξ)− en) +R2|n(ξ)− en|2

= |ξ|2 + 2Rξ · (n(ξ)− en) +R2 (2− 2n(ξ) · en) .

Thus, we deduce that

B+
ζ ∩ B+

ξ ̸= ∅ ⇐⇒ |ξ|2 + 2Rξ · (n(ξ)− en)− 2R2 n(ξ) · en < 2R2,

(3.3a)

and by similar reasoning,

B+
ζ ∩ B−

ξ ̸= ∅ ⇐⇒ |ξ|2 − 2Rξ · (n(ξ) + en) + 2R2 n(ξ) · en < 2R2.

(3.3b)

Now suppose that n(ξ) · en = 0. Then, we also have

ξ · (n(ξ)± en) = (s e1 + t en) · (n(ξ)± en) = s e1 ·n(ξ)± t.

Thus, under the assumption that n(ξ) · en = 0, (3.3a) and (3.3b)
become

B+
ζ ∩ B+

ξ ̸= ∅ ⇐⇒ |ξ|2 + 2R (s e1 ·n(ξ)− t) < 2R2,(3.4a)
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and

B+
ζ ∩ B−

ξ ̸= ∅ ⇐⇒ |ξ|2 − 2R (s e1 ·n(ξ) + t) < 2R2.(3.4b)

Since |e1 ·n(ξ)| ≤ 1, the left-hand-sides of the inequalities on the right-
hand sides of (3.4a) and (3.4b) are both at most

|ξ|2 + 2R(s+ t) = (s+R)2 + (t+R)2 − 2R2.

Since (s, t) ∈ B2(0; εR) ⊂ B2((−R,−R); 2R), (s+R)2+(t+R)2 < 4R2;
thus, both inequalities on the right-hand sides of (3.4a) and (3.4b) hold.
Therefore, B+

ζ ∩ B+
ξ ̸= ∅ ≠ B+

ζ ∩ B−
ξ , which contradicts the hypothesis

that the open balls B±
ξ lie in different components of Rn \Σ. It follows

that n(ξ) · en ̸= 0.

Now we take n(ξ) to be the unit vector that spans Nξ and satisfies
n(ξ) · en > 0. We show that the open ball B+

ξ := Bn(ξ+Rn(ξ);R) has

non-empty intersection with B+
ζ . According to (3.1b), ξ ∈ X(ζ, Tζ , ε/2),

so
t = ξ · en = dist(ξ, Tζ) <

ε

2
|ξ|.

Similarly, ζ ∈ X(ξ, Tξ, ε/2), so

|ξ ·n(ξ)| = dist(−ξ, Tξ) <
ε

2
|ξ|.

Thus, as |ξ − ζ| = |ξ| < εR with ε <
√
2/3, we obtain

∥ξ|2 + 2Rξ · (n(ξ)− en) | ≤ |ξ|2 + 2εR|ξ| < 3 (εR)
2

≤ 2R2 ≤ 2R2 + 2R2 n(ξ) · en.

Appealing to (3.3a), we can now assert that B+
ζ ∩ B+

ξ ̸= ∅.

Therefore, B+
ζ ∩ B−

ξ = ∅. Using (3.3b), we see that the angle θ

between n(ξ) and en satisfies

cos θ = n(ξ) · en ≥ 1 +
1

R
ξ · (n(ξ) + en)−

|ξ|2

2R2

≥ 1− ε|ξ|
R

− |ξ|2

2R2
> 1− 2ε2,

where we again have used the facts that

|ξ ·n(ξ)| < ε

2
|ξ|, |ξ · en| <

ε

2
|ξ|, and |ξ| < εR.
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It follows that dG(Tξ, Tζ) = dG(Nξ, Nζ) = sin θ < 2ε.

Thus, the maps ξ 7→ Tξ and ξ 7→ Nξ are uniformly continuous, as
maps from Σ to G(n, n− 1) and to G(n, 1), respectively. We have also
shown that locally there is a continuous unit normal vector field n on
Σ; that is, given ζ ∈ Σ, for each point ξ ∈ Σ∩Bn(ζ;R/2) we can select
a unit vector n(ξ) that spans Nξ and, by requiring that n(ξ) ·n(ζ) > 0,
we have n : Σ ∩ Bn(ζ;R/2) → Sn−1 uniformly continuous.

3.1.2. Σ is a Lipschitz graph. We demonstrate that, for each ξ ∈ Σ,
Σ∩Bn(ξ;R/10) is the graph of a Lipschitz function. In fact, the desired
Lipschitz function is obtained from the (inverse of the) orthogonal
projection onto Tξ. So, let ζ be a given fixed point in Σ. Assume
the “standard setting” where ζ = 0 and n(ζ) = en.

To begin, consider a fixed point ξ ∈ Σ ∩ Bn(ζ;R/9). Note that
Bn(ζ;R/9) ⊂ Bn(ξ;R/4) and dG(Nζ , Nξ) < 2/9. If L ⊂ {0} ∪
X(Nζ , 3/4) is a one-dimensional vector subspace, then

dG(L,Nξ) ≤ dG(L,Nζ) + dG(Nζ , Nξ) <
3

4
+

2

9
=

35

36
<

√
63

8
,

and thus X(ξ,Nζ , 3/4) ⊂ X(ξ,Nξ,
√
63/8). Using this and (3.1a) with

ε = 1/4, we obtain

(3.5) Σ ∩ Bn(ζ;R/9) ∩ X(ξ,Nζ , 3/4) = ∅.

Now let Rn P−→ Tζ = Rn−1 × {0} be the standard orthogonal
projection; so, P (z1, . . . , zn) = (z1, . . . , zn−1, 0). We use (3.5) to show
that P |Σ∩Bn(ζ;R/9) is injective with a Lipschitz inverse. Notice that

|P (a)− P (b)| = |P (a− b)| < 3

4
|a− b|

=⇒ b ∈ X(a,Nζ , 3/4) and a ∈ X(b,Nζ , 3/4).

In light of (3.5), we see that if the above inequality holds then at least
one of the points a, b does not belong to Σ ∩ Bn(ζ;R/9). We conclude
that if a, b ∈ Σ ∩ Bn(ζ;R/9) then |P (a) − P (b)| ≥ (3/4)|a − b|, so
P |Σ∩Bn(ζ;R/9) is injective with an inverse that is (4/3)-Lipschitz.

Next, we note that P (Σ ∩ Bn(ζ;R/9)) ⊃ Bn−1
R/10 × {0}. To see this,

observe that for any x ∈ Bn−1
R/10 the vertical line Lx := (x, 0) + Nζ

through (x, 0) has the property that the line segment Lx ∩Bn(ζ;R/10)
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joins points of both balls B±
ζ and so must meet Σ. It now follows that

the map

Σ ∩ Bn(ζ;R/10)
Pζ−−→ Bn−1

R/10 × {0},
where Pζ := P |Σ∩Bn(ζ;R/10),

is a bijection with inverse F := P−1
ζ a (4/3)-Lipschitz map.

Evidently, F has the form F (x, 0) = (x, f(x)) where Bn−1
R/10

f−→ R is

(4/3)-Lipschitz, and Σ ∩ Bn(ζ;R/10) is the graph of f .

3.1.3. Σ is a C1 smooth embedded submanifold. We use Fact 2.1
to confirm that Σ is an (n − 1)-dimensional C1 smooth embedded
submanifold of Rn. Again, let ζ be a given fixed point in Σ, and assume
the “standard setting” where ζ = 0 and n(ζ) = en.

It suffices to show that the map Bn−1
R/10

f−→ R, defined in the last

paragraph of subsection 3.1.2, is C1 smooth. In fact, we claim that for
each 1 ≤ i < n and every x ∈ Bn−1

R/10 f has an xi-partial derivative given

by

(3.6)
∂f

∂xi
(x) = − n(ξ) · ei

n(ξ) · en
where ξ := (x, f(x)) = F (x, 0).

Since ξ 7→ n(ξ) is continuous (as a function of ξ ∈ Σ ∩ Bn(ζ;R/10)), it
follows that f is C1.

Write ξ := (x, f(x)) = F (x, 0) and η := (y, f(y)) = F (y, 0), where
x, y ∈ Bn−1

R/10 with x fixed. We first show that

lim
y→x

(η − ξ) ·n(ξ)
|y − x|

= 0.

Let 0 < ε ≪ 1 be given, and put δ := εR. Since F is (4/3)-Lipschitz,

|η − ξ| = |F (y, 0)− F (x, 0)| ≤ 4

3
|y − x|.

Thus, |y− x| < δ implies that |η− ξ| < (4/3)δ < 2εR, so by (3.1b), we
have

|y − x| < δ =⇒ η ∈ X(ξ, Tξ, ε).
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Now η ∈ X(ξ, Tξ, ε) means that

|(η − ξ) ·n(ξ)| = dist(η − ξ, Tξ) < ε|η − ξ| ≤ 4

3
ε|y − x|.

Thus,

0 < |y − x| < δ =⇒ (η − ξ) ·n(ξ)
|y − x|

< 2ε.

Fix 1 ≤ i < n. Consider y = x + h ei. (Here ei ∈ Rn−1.) Then,
η − ξ = h ei + (f(y)− f(x)) en, (here ei, en ∈ Rn) so

(η − ξ) ·n(ξ) = hn(ξ) · ei + (f(y)− f(x))n(ξ) · en,

and therefore,

n(ξ) · ei +
f(y)− f(x)

h
n(ξ) · en =

(η − ξ) ·n(ξ)
h

−→ 0 as h → 0.

We conclude that (3.6) holds.

3.1.4. Orientability and Lipschitz normal vector field. Thanks
to subsection 3.1.3 and Fact 2.2, we know that each component Γ of
Σ is an embedded hypersurface in Rn; hence, Σ is orientable and the
vector field n is globally defined and continuous. It remains to establish
(2) and (3).

Let Γ1 and Γ2 be two components of Σ. Fix a point ξ1 ∈ Γ1. Since Γ2

is closed, there is a point ξ2 ∈ Γ2 that satisfies |ξ1 − ξ2| = dist(Γ1,Γ2).
A routine calculus exercise reveals that the line through the points ξ1
and ξ2 is normal to Γ2 at ξ2. It follows that the open line segment
(ξ1, ξ2) contains a diameter of one of the balls B±

ξ , so dist(ξ1,Γ2) =

|ξ1 − ξ2| ≥ 2R. As ξ1 was an arbitrary point of Γ1, dist(Γ1,Γ2) ≥ 2R.

Finally, let ξ, ζ ∈ Σ. If these points lie in different components of
Σ, then the Lipschitz inequality in (3) follows immediately from (2).
Assume that ξ and ζ lie in the same component of Σ. A connectedness
argument reveals that the balls B+

ξ and B−
ζ lie in different components

of Rn \ Σ. Thus,

2R ≤ |(ξ +Rn(ξ))− (ζ −Rn(ζ))| = |(ξ − ζ) +R(n(ξ) + n(ξ))|

so

4R2 ≤ |ξ − ζ|2 + 2R (ξ − ζ) · (n(ζ) + n(ξ)) +R2|n(ζ) + n(ξ)|2.
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Similarly, B−
ξ and B+

ζ lie in different components, and so

4R2 ≤ |ξ − ζ|2 − 2R (ξ − ζ) · (n(ζ) + n(ξ)) +R2|n(ζ) + n(ξ)|2.

Therefore,

4R2 ≤ |ξ − ζ|2 +R2|n(ζ) + n(ξ)|2 = |ξ − ζ|2 +R2(4− |n(ζ)− n(ξ)|2),

which then gives the asserted Lipschitz condition in (3). �

3.2. Proof of sufficiency in Theorem A. Here we assume that (1),
(2), (3) hold for some non-empty closed subset Σ of Euclidean space Rn,
and we demonstrate that Σ has the (two-sided) rolling ball property
with parameter R. Indeed, it suffices to check that, for each ξ ∈ Σ, the
balls B±

ξ := Bn(ξ ±Rn(ξ);R) have the desired properties. To confirm
this, we only need to show that these balls lie in separate components
of Rn \ Σ, since all of the other conditions are known.

So, fix a point ξ ∈ Σ, and let Γ be the ξ-component of Σ. Condi-
tion (2) ensures that neither of the balls B±

ξ meets Σ \ Γ. Below, we

verify that B+
ξ ∩ Γ = ∅ = B−

ξ ∩ Γ. According to the Jordan-Brouwer

separation theorem (see Fact 2.2), this means that B±
ξ lie in different

components of Rn \ Γ, hence in different components of Rn \ Σ.
To prove that B+

ξ ∩ Γ = ∅ = B−
ξ ∩ Γ, we (slightly) modify Walther’s

argument; see [28, page 313, (v)⇒(iii)]. We show that B+
ξ ∩ Γ = ∅; a

similar argument shows that B−
ξ ∩ Γ = ∅.

Using the fact that Γ is a C1 smooth hypersurface with unit normal
n(ξ) at ξ ∈ Γ, it is easy to see that, for sufficiently small ε > 0, we
obtain Γ ∩ Bn(ξ + εn(ξ); ε/2) = ∅. Let Ω be the component of Rn \ Γ
that contains the ball Bn(ξ + εn(ξ); ε/2). For 0 < ρ < r, we write

C(ρ, r) = C(ξ; ρ, r) := cvx [{ξ} ∪ Bn(ξ + rn(ξ); ρ)] ,

where cvx[A] denotes the closed convex hull of A. See Figure 5.

Again using the fact that Γ is a C1 smooth hypersurface, for suffi-
ciently small r > 0 and 0 < ρ < r, we have

(3.7) C(ρ, r) ⊂ Ω.

Below we verify the crucial fact that, whenever (3.7) holds for some
0 < ρ < r ≤ R, it also holds with ρ = r. In particular, we establish:



ROLLING BALL PROPERTY 179

b

b

b

b

b

b

ξ + rn(ξ) ξ

ρ

n(ξ)

n(ζ)
n(ζ)

ζ1

ζ0

ζ2

ζ = ξ + rn(ξ) − ρn(ζ) (λ = 0)

ζ = λξ + (1 − λ)ζ0 ∈ (ξ, ζ0)

(0 < λ < 1)

C(ξ; ρ, r)

Figure 5. Points ζ ∈ Γ ∩ ∂C(ρ, r) where C(ρ, r) = C(ξ; ρ, r).

(3.8) If 0 < ρ < r ≤ R and (3.7) holds, then Bn(ξ + rn(ξ); r) ⊂ Ω.

Before proving (3.8), we explain how it implies that B+
ξ ∩ Γ = ∅.

We already know that (3.7) holds for some r = r0 ∈ (0, R] (and
some ρ ∈ (0, r0)). According to (3.8), Bn(ξ + r0n(ξ); r0) ⊂ Ω, so, if
r0 = R, we are done. Suppose r0 < R, and put r1 := min{R, (3/2)r0}.
A glance at the appropriate picture reveals that (3.7) holds with r = r1
and ρ = 2r0 − r1 ∈ (0, r1), so by (3.8), Bn(ξ + r1n(ξ); r1) ⊂ Ω and
we are done if r1 = R. If r1 < R, then r1 = 3

2r0 < R and we put

r2 := min{R, 3
2r1} and iterate this process. Since rk = (3/2)kr0 < R

for only finitely many k ∈ N, eventually this process stops with some
rk = R.

It remains to establish (3.8). We claim that if (3.7) holds for some
r ∈ (0, R] (and some ρ ∈ (0, r)), then for this r and all ρ ∈ (0, r),

(3.9) C(ρ, r) ⊂ {ξ} ∪ Ω;

therefore, Bn(ξ + rn(ξ); r) ∪ {ξ} =
∪

ρ∈(0,r) C(ρ, r) ⊂ {ξ} ∪ Ω, so

Bn(ξ + rn(ξ); r) ⊂ Ω and (3.8) follows. To corroborate this claim,
we argue by way of contradiction. To this end, we assume that (3.7)
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holds for some r ∈ (0, R] (and some ρ ∈ (0, r)), but there exists some
ρ ∈ (0, r) such that (3.9) is false. Evidently, there is then a smallest
ρ > 0 such that (3.9) is false, and for this ρ we have

C(ρ, r) ⊂ Ω = Ω ∪ ∂Ω = Ω ∪ Γ, but C(ρ, r) ∩ Γ ⊃ {ξ, ζ}

for some ζ ̸= ξ. Then ζ ∈ Γ ∩ ∂C(ρ, r), so n(ζ) is also normal to
∂C(ρ, r) at ζ. See Figure 5. It is not hard to check that

(3.10) n(ζ) · (ζ − ξ) ≤ 0.

Also, we see (by looking at Figure 5) that there exists a λ ∈ [0, 1)
such that

ζ = λ ξ + (1− λ)(ξ + r n(ξ)− ρn(ζ)).

Here, λ = 0 when ζ ∈ Sn−1(ξ + r n(ξ); ρ), and 0 < λ < 1 when
ζ ∈ ∂C(ρ, r)\Sn−1(ξ+r n(ξ); ρ) (and in this latter case, [ξ, ζ] ⊂ ∂C(ρ, r)
too). Using the above, we get

(3.11) ζ − ξ = (1− λ)[r n(ξ)− ρn(ζ)],

so with (3.10) we deduce that

r n(ξ) ·n(ζ) = ρ+
n(ζ) · (ζ − ξ)

1− λ
≤ ρ,

and therefore,

n(ξ) ·n(ζ) ≤ ρ

r
.

However, we now demonstrate that c := n(ξ) ·n(ζ) > ρ/r. This
contradiction reveals that our claim (just above (3.9)) is true, thus
completing our proof. To see that c > ρ/r, we use the Lipschitz
condition (3) on the vector field n in conjunction with equation (3.11)
to obtain

R |n(ξ)− n(ζ)| ≤ |ξ − ζ| = (1− λ)|r n(ξ)− ρn(ζ)|,

so

R2 (2− 2n(ξ) ·n(ζ)) ≤ (1− λ)2
(
r2 − 2rρn(ξ) ·n(ζ) + ρ2

)
or

2R2(1− c) ≤ r2 − 2rρc+ ρ2.

Since 0 < ρ < r ≤ R, this last inequality implies that c > ρ/r. �
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3.3. Proof of Theorem B. Let ε > 0 be given. We assume that
Bn
R,A

n
R ∈ O and that the associated conformal metrics ρBn

R
(x)|dx| and

ρAn
R
(x)|dx| are asymptotically quasihyperbolic. Thus, there exists an

r ∈ (0, R) so that for each z ∈ D ∈ {Bn
R,A

n
R}

dist(z, ∂D) < r =⇒ |ρD(z) dist(z, ∂D)− 1| < ε.

Let Ω ∈ OR, let x ∈ Ω, and suppose dist(x, ∂Ω) < r. Pick ξ ∈ ∂Ω
with |x − ξ| = dist(x, ∂Ω). Let B±

ξ be the two promised open balls of

radius R, and centers ξ ±Rn(ξ), whose boundary spheres are tangent
at ξ, and label these so that x ∈ B := B+

ξ ⊆ Ω. Then since Ω is

connected, Ω ⊆ A := Rn \ B−
ξ .

As O is translation invariant, A,B ∈ O. Thus, with M monotone
and B ⊆ Ω ⊆ A, we obtain

ρA(x) ≤ ρΩ(x) ≤ ρB(x).

Now A and B are translates of An
R,B

n
R, respectively, and the points

a := x− ξ +Rn(ξ) ∈ An
R

and

b := x− ξ −Rn(ξ) ∈ Bn
R

correspond to x. Evidently, dist(a, ∂An
R) = dist(x, ∂A) = dist(x, ∂B) =

dist(b, ∂Bn
R) = dist(x, ∂Ω) < r. Also, ρAn

R
(a) = ρA(x) and ρBn

R
(b) =

ρB(x). Therefore,

−ε < ρAn
R
(a) dist(a, ∂An

R)− 1 = ρA(x) dist(x, ∂A)− 1

≤ ρΩ(x) dist(x, ∂Ω)− 1 ≤ ρB(x) dist(x, ∂B)− 1

= ρBn
R
(b) dist(b, ∂Bn

R)− 1 < ε.

�

3.4. Proof of Theorem C. Assume that Σ is a non-empty closed
(n− 1)-dimensional C1 smooth embedded submanifold of Rn. First, we
show that reach(Σ) ≥ rbp(Σ).

Suppose that 0 < r < R < rbp(Σ). Let x ∈ Rn with d :=
dist(x,Σ) ∈ (0, r). Choose ξ ∈ Σ with d = |x − ξ|. Using notation
from the first paragraph of subsection 3.1, we have disjoint open balls
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B±
ξ = Bn(ξ ± Rn(ξ);R) whose boundary spheres are tangent at the

point ξ.

A standard argument shows that for each tangent vector v ∈ Tξ,
x − ξ ⊥ v so x − ξ ∈ Nξ. Since 0 < d < r < R, we see that
x lies in the Euclidean line segment (ξ − Rn(ξ), ξ + Rn(ξ)). Thus,
Bn(x; d) ⊂ B+ ∪ B−, so ξ is the unique point of Σ nearest to x.
Therefore, reach(Σ) ≥ rbp(Σ).

To establish the reverse inequality, suppose R > rbp(Σ). Then there
exists a point ξ ∈ Σ such that any two open balls of radius R whose
boundary spheres are tangent at ξ cannot both lie in Rn \ Σ. By
translating and rotating, as necessary, we can assume that ξ = 0 and
that the tangent hyperplane at ξ is Tξ = Rn−1 × {0}. Then,

(3.12) [B
n
(R en;R) ∪B

n
(−R en; )] ∩ Σ ) {ξ}.

Since Σ is a C1 smooth embedded submanifold of Rn, there exists an
ε ∈ (0, R) such that Σ ∩ Bn(±εen; ε) = ∅. Put

r := inf{t ∈ [ε,R] | [Bn
(t en; t) ∪B

n
(−t en; t)] ∩ Σ ) {ξ}};

so, r ∈ [ε,R] is the ‘first’ time that the two closed balls meet Σ in at
least two points. Then,

Bn(±r en; r) ∩ Σ = ∅,

and one of the two spheres Sn−1(±r en; r) meets Σ at both ξ = 0 and
at some point ζ ̸= ξ. It now follows that the center of said sphere
lies in Rn \ Σ and has two nearest points of Σ, so reach(Σ) ≤ r ≤ R.
Therefore, reach(Σ) ≤ rbp(Σ). �

3.5. A question. A natural question is whether or not there exists
a family of metrics M = {ρΩ(x)|dx|}Ω∈O such that the metric ratio
dist(x, ∂Ω)ρΩ(x) = ρΩ(x)|dx|/δ−1

Ω (x)|dx| having “uniform boundary
value 1” implies that ∂Ω has the rolling ball property. It is trivial that
this does not hold for the quasihyperbolic metric, and it is not hard to
find examples of domains Ω such that ∂Ω does not have the rolling ball
property and such that both the Ferrand and the Kulkarni-Pinkhall
metrics in Ω do have this metric ratio property. With this in mind,
we raise the following question; here λΩ(z)|dz| denotes the Poincaré
hyperbolic metric in Ω.
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What can be said about a hyperbolic plane domain Ω if
we know that

lim
dist(z,∂Ω)→0

z∈Ω

dist(z, ∂Ω)λΩ(z) = 1 ?
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9. P.A. Hästö, The Apollonian inner metric, Comm. Anal. Geom. 12 (2004),

927–947.

10. D.A. Herron, The Harnack and other conformally invariant metrics, Kodai
Math. J. 10 (1987), 9–19.

11. D.A. Herron, Z. Ibragimov and D. Minda, Geodesics and curvature of
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