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ARITHMETIC AND GEOMETRY
OF RATIONAL ELLIPTIC SURFACES

CECÍLIA SALGADO

ABSTRACT. Let E be a rational elliptic surface over
a number field k. We study the interplay between a
geometric property, the configuration of its singular fibers,
and arithmetic features such as its Mordell-Weil rank over
the base field and its possible minimal models over k.

1. Introduction. Let k be a number field and k a fixed algebraic
closure. Let X be a smooth, projective, geometrically integral surface
over k. Let B be a smooth projective curve over k. We say that
(X,π, σ) is an elliptic surface with base B if π : X → B is a flat
morphism defined over k and is a relatively minimal elliptic fibration,
i.e., the fibers do not contain (−1)-curves as components, σ is a section
to π and there is at least one (geometric) singular fiber. If, moreover,
the surface X is geometrically rational, i.e., X := X×kk is birational to
P2
k̄
, then X is called a rational elliptic surface. In this case, we clearly

have B ×k k ≃ P1
k̄
. This note is dedicated to connecting different

arithmetic and geometric features of such surfaces.

Over k, X is isomorphic to P2
k̄
blown-up at the nine, not necessarily

distinct, base points of a linear pencil of cubics. In this setting,
supposing moreover, that char (k) = 0, Miranda [8] classified pencils of
cubic curves in P2 using geometric invariant theory, and Persson gave
a list of all possible configurations of singular fibers, see [11]. Later,
Oguiso and Shioda [10] classified all Mordell-Weil lattices that could
arise in rational elliptic surfaces.

Over k, the surface X is not necessarily birational to P2
k, but to

del Pezzo surfaces or conic bundles, cf., [3, 7]. The singular fibers
of the elliptic fibration might not be defined over the ground field.

2010 AMS Mathematics subject classification. Primary 14G99, 14J26, 14J27.
Keywords and phrases. Elliptic surfaces, minimal models over arbitrary fields,

elliptic fibrations.
Received by the editors on August 22, 2014, and in revised form on March 6,

2015.
DOI:10.1216/RMJ-2016-46-6-2061 Copyright c⃝2016 Rocky Mountain Mathematics Consortium

2061
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Nevertheless, they form a set that is invariant under the action of
Gal (k/k).

Our goal is to study the interplay between an arithmetic and a
geometric property of rational elliptic surfaces, namely, the possible
minimal models over k, i.e., k-minimal models, and the configuration
of the singular fibers.

The paper is organized as follows. We first recall some arithmetic
and geometric facts as the construction of rational elliptic surfaces
over algebraically closed fields, the possible types of singular fibers,
the theory of minimal models over perfect fields and the Shioda-Tate
formula. Sections 3 and 4 contain the core of the paper. In Section 3, we
establish the connection between k-minimal models of rational elliptic
surfaces and the configuration of points in the projective plane blown-
up to obtain such surfaces. Section 4 relates k-minimal models to
singular fibers. In Section 5, we present some examples to illustrate the
theory discussed in the previous sections. Finally, in the appendix, we
treat the special case of rational elliptic surfaces that have a del Pezzo
surface of degree 2 as a k-model. We describe the possible fiber types
of such elliptic fibrations.

2. Preliminaries. Let k be a number field. By an elliptic surface
with base P1

k, we mean a triple (X,π, σ) such that X is a smooth
projective and geometrically integral surface, π : X → P1

k is a relatively
minimal elliptic fibration with at least one geometric singular fiber and
σ : P1

k → X is a section. The generic fiber of X is an elliptic curve over
k(P1) ≃ k(t). Therefore, it can be written as a Weierstrass equation:

Y 2 = X3 +A(t)X +B(t),

with 4A(t)3 + 27B(t)2 /∈ k.

The converse also holds, namely, any elliptic curve E over k(t)
extends uniquely to an elliptic surface with base P1, its Kodaira-Néron
model.

If X = X ×k k is birational to P2
k̄
, then the triple above is called

a rational elliptic surface. We shall deal solely with rational surfaces
with base P1 throughout this text. Therefore, we omit the term with
base P1. For these surfaces, A(t) and B(t) are polynomials in k(t) such
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that deg(A(t)) ≤ 4 and deg(B(t)) ≤ 6 in the equation above. We focus
on them in what follows.

Rational surfaces can be elliptic in at most one way, i.e., they admit
at most one elliptic fibration. This allows us to write X instead of
(X,π, σ) when dealing with such surfaces.

We proceed to the geometric construction of such objects.

2.1. Construction of rational elliptic surfaces. We work, during
this subsection, over k. Let F and G be two distinct homogeneous
cubic polynomials in k[X,Y, Z]. Suppose F is smooth.

The linear pencil of cubics generated by F and G:

Λ = {tF + uG = 0; (t : u) ∈ P1}

has nine base points (counted with multiplicities). The blow up of P2

in those points defines a rational surface XΛ which, when endowed with
the obvious morphism π,

XΛ

π

))SSS
SSS

SSS
SSS

SSS
SSS

��
P2

α 7→(F (α):G(α))
//_________ P1

becomes an elliptic surface. This motivates the next definition.

Definition 2.1. Let Λ be a smooth pencil of cubics in P2, and let
X → P1 be a rational elliptic surface. We say that Λ induces X if
there exists an isomorphism (of elliptic surfaces) between X and the
elliptic surface XΛ defined by the above construction.

The surface XΛ is birational to the elliptic surface:

X ′
Λ = {([x, y, z], [t, u]) ∈ P2 × P1 : tF (x, y, z) + uG(x, y, z) = 0}.

Conversely, we have:

Proposition 2.2 ([8]). Every smooth rational elliptic surface, over an
algebraically closed field, is induced by some smooth pencil of cubics
in P2.

Proof. See, for example, [2]. �
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2.2. Singular fibers. By definition, there are only finitely many
singular fibers. Also, in the definition, we assumed that elliptic surfaces
have at least one singular fiber. In the case of rational elliptic surfaces,
giving a bound for the number of singular fibers and describing which
types in Tate’s list, cf., [14], for example, might occur amounts to the
exercise of splitting the Euler number as sums of positive integers and
then going through the list of singular fibers. The Euler number, in
this case, is 12. In particular, there are at most 12 singular fibers.
This information is encoded, for example, in the discriminant of the
Weierstrass equation, which for rational elliptic surfaces has degree at
most 12 as expected.

After a further examination of the discriminant, we easily see that
an additive, respectively multiplicative, singular fiber has at most 10,
respectively 9, components.

The next items follow trivially from the above discussion.

(i) There are at least 2 and at most 12 singular fibers.
(ii) The types of singular fibers which might occur are: In, with n ≤ 9,

II, III, IV , I∗n, with n ≤ 4, IV ∗, III∗ and II∗.

2.3. Minimal models of rational surfaces over non-closed
fields. The theory in this subsection was developed by Enriques fol-
lowed by Iskovskikh [3], Manin and Tsfasman [7]. It extends the
classical theory of minimal models of surfaces to the case of arbitrary
fields. We assume throughout this subsection that k is an arbitrary
non-algebraically closed field.

Definition 2.3. A smooth projective surface X is said to be k-minimal
if every k-birational morphism f : X → X ′, where X ′ is a k-surface, is
an isomorphism, or, equivalently, if X does not contain a set of pairwise
skew (−1) curves invariant under the action of Gal (k/k).

Definition 2.4. We call the degree of a surface the self-intersection of
its canonical bundle. It is denoted by dX := ω2

X .

We only state the main results without proofs; for that purpose, we
remind the reader that a del Pezzo surface X is a complete smooth
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surface whose anti-canonical bundle ω−1
X is ample, i.e., it is a Fano

surface.

Theorem 2.5. Let X be a k-minimal rational surface. Then X is
isomorphic to a surface in one of the following families:

(F1) A del Pezzo surface with Pic (X/k) ≃ Z.
(F2) A conic bundle with Pic (X/k) ≃ Z2.

Every X in (F1) is minimal. If X belongs to (F2), then it is not
minimal precisely when one of the two cases hold : (1) dX = 3, 5, 6
or, (2) X is isomorphic to P2 blown-up in a single point, and hence,
dX = 8. There are no minimal surfaces with dX = 7.

Certain surfaces endowed with a conic fibration are also del Pezzo
surfaces, namely, if dX = 3, 5, 6 or dX = 1, 2, 4 and X has two distinct
fibrations, or dX = 8 and X ≃ P1

k̄
× P1

k̄
or P2

k̄
is blown-up in a point.

Note that, since they are Fano varieties, del Pezzo surfaces have
degree 1 ≤ dX ≤ 9. Over an algebraically closed field, a del Pezzo
surface X of degree 1 ≤ dX ≤ 7 or dX = 9 is isomorphic to P2 blown-
up in 9− dX distinct points in general position; if dX = 8, then either
X ∼= P1 × P1, or X is P2 blown-up at a single point, see [4, Theorem
24.3].

Definition 2.6. We say that a surface X is k-birationally trivial, or
k-rational if there is a birational map P2 → X defined over k.

Theorem 2.7 ([7], Theorem 3.3.1). Let X be a k-minimal del Pezzo
surface or a k-minimal conic bundle. If dX ≤ 4, then X is not k-
birationally trivial. If dX ≥ 5 and X(k) ̸= ∅, then X is k-rational.

Remark 2.8. A priori, most k-minimal rational surfaces with dX ≥ 1
with X(k) ̸= ∅ can occur as a k-minimal model of a rational elliptic
surface E . The condition X(k) ̸= ∅ is imposed by the existence of a
section of E → B defined over k that is contracted to a k-rational point.
The condition dX ≥ 1 follows from dE = 0.

2.4. The Shioda-Tate formula. We recall the Shioda-Tate formula
over an algebraically closed field and its version over a number field k.
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Let π : E → B be an elliptic surface defined over a number field k
with zero section σ0. Let

Fv = π−1(v) = n1C1 + · · ·+ nsCs

be the fiber over v ∈ B(k), where Ci denote its irreducible components.
Let

Fv =
⊕
i

ZCi

ZF
.

Let G denote the absolute Galois group of k. Since the action of G
sends fibral divisors to fibral divisors, the finite sum

F =
⊕

reducible fibers

Fv

is stable under the action of G. Taking the embedding of the Mordell-
Weil group in the Néron-Severi group that sends a section σ to σ − σ0

gives the isomorphism below.

Theorem 2.9 (Shioda-Tate formula). Let E be an elliptic surface.
Identify the Mordell-Weil group E (k(B)) with its image in NS(E /k)
by means of the map σ 7→ σ − σ0. Then, we have the following
decomposition of G-modules

NS(E /k)⊗Q ≃ (E (k(B))⊗Q)⊕ (⟨O,F ⟩+ F ),

where ⟨O,F ⟩ is the subspace of NS(E /k) generated by the image of the
zero section and an irreducible fiber.

In particular, we have the following.

Corollary 2.10. Let E be an elliptic surface. Let ρ be the rank of its
Néron-Severi group, r the rank of its generic fiber over k and mv the
number of irreducible components of the fiber Fv. Then

ρ = r + 2 +
∑
v

(mv − 1).

For the proof of Theorem 2.9, see [12, 13].

Taking Galois-invariants in Theorem 2.9, we obtain an equality over
number fields.
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Corollary 2.11.

rank (NS(E /k)) = 2 + rank (E (k(B))) + rank (FG).

Remark 2.12 (Upper bound for the rank of the MW group of RES).
Let E → B ≃ P1 be a rational elliptic surface. Then, by Propo-
sition 2.2, it is isomorphic, over the algebraic closure, to the blow
up of P2 in the nine, not necessarily distinct, base points of a pen-
cil of cubics. It follows that rank (Pic (E /k)) = 10. Since NS (E /k) ≃
Pic (E /k)/Pic0(E /k), Corollary 2.10 implies that rank (E (k(B)) ≤ 8.

3. k-minimal models and base points. Let E → B be a rational
elliptic surface defined over a number field k. Let p1, . . . , pr, with r ≤ 9,
be the distinct base points of a cubic pencil that induces E . We explore
the relations between possible k-minimal models of E and its Mordell-
Weil rank over the base field as well as the configuration of the points
p1, . . . , pr. For that, it is worth recalling the following definition.

Definition 3.1. Let p1, . . . , pr, with r ≤ 9, be points in the projective
plane. We say that p1, . . . , pr are in general position if, among these
points, there are not three collinear, six lying on a conic, nor eight on
a cubic singular in one of them.

Theorem 3.2. Let E be as above and X a k-minimal model of E .
Then the following statements hold.

ia) X is a del Pezzo surface of degree 1 with Pic (X/k) ≃ Z if and
only if the rank of the generic fiber of E is 8 over k and 0 over
k.

ib) If X is a del Pezzo surface of degree 1 with Pic (X/k) ≃ Z2,
then the rank of the generic fiber of E is 8 over k and 1 over
k.

ic) If the rank of the generic fiber of E is 8 over k and 1 over k,
then there is a k-minimal model X ′ of E that is a del Pezzo
surface of degree 1 with Pic (X ′/k) ≃ Z2 or a del Pezzo surface
of degree 2 with Pic (X ′/k) ≃ Z.

ii) If X has degree d, then rank (E (k(B))) ≤ d.
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iii) Suppose X ≃ P2
k. The rank of the generic fiber of E over k is

8 if and only if E is obtained from X by blowing up 9 distinct
k-rational points in general position.

Proof. The proof consists of several applications of the Shioda-Tate
formula. Assume that X is a k-minimal del Pezzo surface of degree 1.
Then there is a birational map f : E → X which is the contraction of
a (−1)-curve, say C, in E . We show that E does not have a reducible
fiber. If F = F1 + F2 + · · ·+ Fm, where Fi are the reduced irreducible
components of F in E , then, by the adjunction formula, F 2

i = −2.
Suppose, without loss of generality, that C · F1 = 1 and C · Fj = 0,
for j ≥ 2. Then, for j ≥ 2, the image of Fj in X are (−2)-curves, but
this contradicts the fact that X is a Fano surface. Hence, there are
no reducible fibers in E . In particular, the Mordell-Weil rank of the
generic fiber over k is as large as possible, i.e., eight.

We deal now with the Mordell-Weil rank of E over k. By The-
orem 2.5, the Picard group of X satisfies Pic (X/k) ≃ Z or Z2 and
therefore, Pic (E /k) ≃ Z2 or Z3. Since E has no reducible fibers, we
conclude, after applying Corollary 2.11, that rank (E (k(B))) = 0 or 1,
depending on rankPic (E /k). This proves ib) and the first implication
of ia).

Conversely, if rankE (k(B)) = 8, then E does not have reducible
fibers by Theorem 2.9. If rankE (k(B)) = 1, then the contraction of
the zero section of E yields a del Pezzo surface X of degree 1 with
Pic (X/k) ≃ Zm, m ≤ 2. This last surface is minimal if and only if
there is a generator of the Mordell-Weil group of E (k(B)) that does
not intersect the zero section. If it is minimal, then it is a del Pezzo
surface of degree 1 that is also a conic bundle. If it is not minimal,
then the contraction of a generator of the Mordell-Weil group gives us
a del Pezzo surface of degree 2 with Pic (X/k) ≃ Z.

Since X is k-minimal, it satisfies Pic (X/k) ≃ Z or Z2. As E is the
blow-up of X in d points, its Néron-Severi group has rank at most 2+d.
By Corollary 2.11, rank (E (k(B))) ≤ d, proving ii).

The last statement follows after observing that the blow-up points in
non-general position correspond to the existence of reducible fibers. �
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Remark 3.3. The hypotheses on the geometric generic rank on ia) are
crucial for assuring that a k-minimal model of E cannot be a del Pezzo
surface of higher degree. In ic), we cannot assure that every k-minimal
model is a del Pezzo of degree at most 2 because the Mordell-Weil group
of E (k(B)) may contain a large Galois-orbit. This is not the case in ia)
as there are no torsion sections.

4. k-minimal models and singular fibers. Throughout this sec-
tion, k is a number field. Let E be a rational elliptic surface defined
over k and X a k-minimal model of E . Our goal in this section is to
describe the types of reducible fibers that a rational elliptic surface can
have according to its minimal models over k and vice-versa.

We first give a restriction of the degree of the minimal model imposed
by the presence of a unique reducible fiber of any type.

Proposition 4.1. Let E be a rational elliptic surface and F a reducible
fiber. If E does not admit another fiber with same Kodaira type as F ,
then any k-minimal model of E has degree at least two.

Proof. Let C be the 0 section, F the reducible fiber mentioned in the
statement and F0 its component cut by C. Then F0 is a (−2)-curve in
E , which is defined over the ground field k. It is enough to observe that
the contraction of C takes F0 to a (−1)-curve defined over k, which we
may contract. �

The following is a trivial consequence of the Shioda-Tate formula
together with the fact that rational elliptic surfaces have degree 0, i.e.,
K2

E = 0.

Lemma 4.2. Let E be a rational elliptic surface and X a k-model,
not necessarily minimal of E . Suppose that X has degree d ≥ 1 and
Pic (X/k) ≃ Zn. Then Pic (E /k) ≃ Zm with n+ 1 ≤ m ≤ n+ d.

In what follows, we apply Lemma 4.2 together with a more detailed
analysis of how the absolute Galois group acts on the singular fibers.

Proposition 4.3. Let π : E → P1 be a rational elliptic surface and X
a k-minimal model of E . Assume that X has degree d.
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The following hold :

A) If X is a del Pezzo surface, then the reducible fibers of E belong
to the list :
(a) semistable, i.e., of type In, with n ≤ 2d− 1,
(b) I∗n, if n ≤ d− 3 and d ≥ 3,
(c) additive of types III or IV , if 2 ≤ d ≤ 9,
(d) additive of type IV ∗, respectively III∗, respectively II∗, if

d ≥ 6, respectively 8, respectively 9.
B) If X is a conic bundle that is not a del Pezzo surface, then the

reducible fibers of E belong to the list above including the extra
possibilities below :
(a) I4, I5, I6, if d = 2,
(b) I2, I3, III and IV , if d = 1.

Proof. We deal first with A), that is, we suppose that the elliptic
surface E has a k-minimal model that is isomorphic to a del Pezzo
surface X of degree d. Since X does not have (−2)-curves, components
of reducible fibers in E are given by the blow-up of points that lie on
(−1)-curves in X or of infinitely near points in X. Note that the most
efficient way of producing (−2)-curves is by blowing up points that
lie on the intersection of (−1)-curves. Now we analyze this situation
according to the type of singular fiber:

(i) semi-stable: Since each component of a semi-stable fiber inter-
sects precisely two others, its components arise after the blow-up of
points in the intersection of at most two (−1)-curves. As the map
E → X is the blow-up of d points, a semi-stable fiber has at most 2d
components, and therefore, is of type In with n ≤ 2d− 1.

(ii) additive of type I∗n (potentially multiplicative): Since such fibers
have at least one component that intersects precisely three other
components, its components arise as the blow-up of points in the
intersection of at most four (−1)-curves. If d = 1, then these fiber
types do not occur since it takes at least two blow-ups from the minimal
model to obtain such a configuration of (−2)-curves on a rational elliptic
surface. If d = 2, then, in order to get such a fiber we would have to
blow-up infinitely near points in the intersection of four (−1)-curves,
but this would yield a section of the elliptic fibration intersecting a non-
reduced component of a fiber, which cannot happen. Hence, if d = 2,
then E does not have singular fibers of type I∗n. If d ≥ 3, then there
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are at most three (−1)-curves through the same point and an additive
fiber of type I∗n has at most d+1 components and therefore n ≤ d− 3.

(iii) reduced additive (II, III and IV ): It follows from the proof
of Theorem 3.2 that, if d = 1, then X admits only irreducible fibers;
therefore, the only additive fibers it admits are of type II. The other
configurations occur for any d ̸= 1. For d = 2, see the appendix. From
the existence of such fibers for d = 2, the same holds for higher values
of d.

(iv) non-reduced additive of type IV ∗, III∗ or II∗: These types of
fibers have several non-reduced components with distinct multiplicities,
which guarantee that many of them, if not all, are defined over the
ground field. Fibers of type II∗, respectively III∗, have all components
defined over the ground field assuring that the Picard rank of the elliptic
surface is 10, respectively at least 9 over the ground field. Therefore,
any minimal model must have degree 9, respectively 8. A fiber of type
IV ∗ might have components defined over a degree 2 extension of the
ground field. Taking that into account, the Picard rank of the elliptic
surface over k is al least 7, implying that any k-minimal model has
degree at least 6.

We treat case B), i.e., conic bundles. The conic bundles that occur
as minimal models of rational elliptic surfaces have degree d = 1, 2 or 4
and do not admit (−n)-curves for n ≥ 3. Their anticanonical divisor is
therefore always big and nef, i.e., they are weak del Pezzo surfaces. The
(−2)-classes lie in the orthogonal complement of the canonical divisor
and form a D8−d root lattice in a conic bundle of degree d, see [4].
These (−2)-classes are in general not effective, but in the special case
in which they are effective, we get at most 8−d (−2)-curves in the conic
bundle surface in a D8−d configuration. If d = 4, then X is k-birational
to a del Pezzo surface of degree 4, and therefore, any rational elliptic
surface above it cannot have other singular fibers than the ones stated
in the first part of the proof. If X has degree 2, then it admits at most
seven (−2)-curves which fit in a D6.

For conic bundles of degree 2, let F be a fiber of the elliptic surface.
Since X has at most six (−2)-curves in a D6, any fiber of the elliptic
surface has at most seven components. If F is non-reduced, then its
contribution to the rank of the Picard group over the ground field is
at least 3, which means that the Picard group has rank at least 5,
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and therefore, any k-minimal model has degree at least 3. Also,
note that, contracting a (−1)-curve defined over the ground field, e.g.,
the 0 section, and the subsequent (−1)-curve corresponding to the
component of F that intersects this section, then the degree 2 surface
one obtains has at least one (−1)-curve defined over k and is therefore
non-minimal. If F is reduced, then it cannot contain seven components
as it would yield an A6 which cannot be embedded into D6.

For degree 1, we use Proposition 4.1 which tells us that any reducible
singular fiber of the rational elliptic surface comes in pairs or larger sets.
To find which configurations are allowed, we must search for lattices L
of ADE-type such that mL, m ≥ 2, can be embedded in D7. By [9],
we see that this can occur only for L = An with n ≤ 2, which is enough
to conclude the proof. �

Corollary 4.4. Let E be a rational elliptic surface defined over a
number field k. If E has a non-reduced fiber, then E is k-rational.

Proof. This is an immediate consequence of A), part (d), in Propo-
sition 4.3, together with Theorem 2.7. �

We conclude this section with the next simple, yet interesting obser-
vation.

Proposition 4.5. The universal elliptic modular surfaces over X1(N)
of levels N = 4, 5 and 6 are Q-rational.

Proof. The universal elliptic modular surface of level 4 has singular
fibers of types (I∗0 , I4, 2I1). Each four torsion section intersects a
different reduced irreducible component of the I∗0 fiber. As torsion
sections do not intersect, we may contract all of them simultaneously,
again obtaining four disjoint (−1)-curves. The contraction of the latter
yields a rational surface of degree 8, which is always rational over the
ground field. For levels 5 and 6, it suffices to simultaneously contract
the non-intersecting torsion sections to obtain a rational surface of
degree at least 5. These are, as well, always rational over its ground
field. �

For more details on the universal modular elliptic surface see [13].
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5. Examples.

Example 5.1. We give an example of a rational elliptic surface defined
over Q for which P2 is not a Q-minimal model.

Consider the cubic surface X in P3 given by the following equation:

T 3
0 + T 3

1 + T 3
2 + 2T 3

3 = 0.

It is a Q-minimal surface, see for example, [4, Example 21.9], such
that Pic (X) ≃ Z and Pic (X/Q) ≃ Z7. Let i : X ↪→ P3 be the closed
immersion given by the anti-canonical bundle Ω−1

X . The anti-canonical
divisor satisfies:

ω−1
X ≃ i∗(OP3(1)).

A linear pencil in |ω−1
X | has three base points.

We consider a linear pencil such that one base point is defined over
Q and the others are conjugate under Gal (Q/Q).

The pencil is the following:

{tF + uG = 0; (t : u) ∈ P1}, where F = T0 − T1 and G = T2.

The base points are

P1 = (1 : 1 : 0 : −1),

P2 = (1 : 1 : 0 : −e2iπ/3)

and

P3 = (1 : 1 : 0 : −e4iπ/3).

The blow up of X in these three points gives rise to a (isotrivial)
rational elliptic surface whose Weierstrass equation given by

E : Y 2 = X3 +

(
28

27
t6 +

1

216
t3
)
.

Its singular fibers are of types I∗0 and 3II.

Example 5.2. We present a rational elliptic surface defined over Q
with four Galois-conjugate fibers of type I2 and arithmetic Mordell-
Weil rank 0.
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Let S be the double cover of P2 ramified above the quartic

Q : x4 + f2(y, z)x
2 + f4(y, z), where fi has degree i.

Then, by varying the coordinates y, z in P1, one obtains an elliptic
fibration. The rational elliptic surface is given by the blow up of S at
the points (1 : 0 : 0 : 1) and (1 : 0 : 0 : −1) in the weighted projective
space P(1, 1, 1, 2).

The surface S above is a del Pezzo surface of degree 2. We dedicate
further attention to rational elliptic surfaces that have a del Pezzo
surface of degree 2 as k-minimal models in the appendix that follows.

Acknowledgments. The author would like to thank Ronald van
Luijk, Damiano Testa and Marc Hindry for enlightening discussions,
Matthias Schuett for helpful comments on a first manuscript, and the
referee for the careful report and suggestions that improved the article.

APPENDIX

A. del Pezzo surfaces of degree two and rational elliptic
surfaces above them. Throughout the appendix, we work over an
arbitrary field k with characteristic different from 2.

We focus on rational elliptic surfaces which have a del Pezzo of
degree 2 as k-minimal models. The latter can be regarded as a double
cover of P2 ramified over a quartic curve. We describe the possible
fiber types of the rational elliptic surfaces according to the behavior of
certain lines in relation to the quartic curve mentioned above.

Let X be a del Pezzo surface of degree 2, let p be a point on X,
and let X ′ → X be the blow-up of X at p. The anticanonical linear
system on the surface X ′ is a pencil of genus 1 curves. Blowing up
X ′ at the unique base point of |−KX′ |, we obtain a rational elliptic
surface X ′′ → P1. In this appendix, we describe the possible singular
fibers of the elliptic surface X ′′. Recall that κ : X → P2 is the double
cover branched over a smooth plane quartic B. The fibers of the elliptic
fibration correspond to lines in P2 through the point q = κ(p). Thus, to
determine the fiber types of the elliptic fibration, it suffices to describe
configurations of a line L in P2 through q with respect to the quartic B.
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Singular fibers correspond to degenerate configurations, where the line
is not transverse to the quartic. In Table 1, we denote by (L ·B)q the
intersection multiplicity of the line L with the quartic B at the point q.
We also define

• a simple tangent line to be a line with exactly one point of
intersection multiplicity 2 with B,

• a simple inflection line to be a line with exactly one point of
intersection multiplicity 3 with B,

• a simple bitangent line to be a line with exactly two points of
intersection multiplicity 2 with B,

• a flex bitangent line to be a line with exactly one point of
intersection multiplicity 4 with B.

Table 1. Fiber types.

Point Line with respect to B Kodaira type

Anywhere Transverse I0

(L ·B)q ≤ 1 Simple tangent line I1

(L ·B)q = 2 Simple tangent line I2

(L ·B)q ≤ 1 Simple inflection line II

(L ·B)q = 3 Simple inflection line III

(L ·B)q = 0 Simple bitangent line I2

(L ·B)q = 2 Simple bitangent line I3

(L ·B)q = 0 Flex bitangent line III

(L ·B)q = 4 Flex bitangent line IV

The entries of Table 1 corresponding to the cases in which the point q
lies on B, namely, (L ·B)q ≥ 1, can be found in [11, Table 3].

Remark A.1. Note the contrast between rational elliptic surfaces that
admit a del Pezzo surface of degree 1 as k-minimal models and those
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that admit as a k-minimal model a del Pezzo surface of degree 2. The
former have only irreducible fibers and therefore always have geometric
Mordell-Weil rank equal to 8, while the latter admit all the fiber
types described in Table 1 (and Theorem 3.2) and can have geometric
Mordell-Weil rank ranging between 4 and 8.
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