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ON SCHAUDER BASIS PROPERTIES OF
MULTIPLY GENERATED GABOR SYSTEMS

MORTEN NIELSEN

ABSTRACT. Let A be a finite subset of L2(R) and
p, q ∈ N. We characterize the Schauder basis properties in
L2(R) of the Gabor system

G(1, p/q,A) = {e2πimxg(x− np/q) : m,n ∈ Z, g ∈ A},
with a specific ordering on Z×Z×A. The characterization is
given in terms of a Muckenhoupt matrix A2 condition on an
associated Zibulski-Zeevi type matrix.

1. Introduction. For a fixed function g ∈ L2(R), the corresponding
Gabor system is the collection of functions

G(a, b, g) = {e2πimaxg(x− bn) : m,n ∈ Z}.

Such systems were introduced by Gabor with the aim of creating
sparse and efficient time-frequency localized expansions of signals using
elements from G(a, b, g). A major contribution to the theory of Gabor
systems was made by Daubechies et al. [3] by studying the problem
of obtaining expansions relative to G(a, b, g) in a Hilbert space frame
setup giving a much more systematic approach to such expansions. The
frame approach in [3] paved the way for a very extensive study of the
frame properties of Gabor systems, see e.g., [2, 4, 6] and the references
therein.

In this paper, we consider multiple-generated Gabor systems of the
form

G(1, p/q,A) = {e2πimxg(x− np/q) : m,n ∈ Z, g ∈ A},

with A a finite subset of L2(R) and p, q ∈ N.
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There are a number of interesting stability questions related to
G(1, p/q,A). One immediate question regards completeness. We let
G = Span (G(1, p/q,A)). The question is then whether G = L2(R) or G
is a proper subspace of L2(R). This question was addressed by Zibulski
and Zeevi [14], where a complete characterization of completeness is
given in terms of properties of a certain corresponding matrix generated
by the so-called Zak transform. The Zak transform-based approach by
Zibulski and Zeevi will play a central role in the present paper.

Frame properties of G(1, p/q,A) were considered [14] and further
studied in [1, 5, 10]. Multiple-generated Gabor Riesz bases for L2(R)
and/or for G (so-called Riesz sequences) were also characterized by
Bownik and Christensen [1], see also [5] for the single window case.

Expansions relative to a Riesz basis converge unconditionally. In the
present paper, we move one step further to the borderline case where
the convergence might be conditional and depend upon the precise
ordering of the system G(1, p/q,A).

We recall that an ordered family B = {xn : n ∈ N} of vectors in
a Hilbert space H is a Schauder basis for H if for every x ∈ H there
exists a unique sequence {αn := αn(x) : n ∈ N} of scalars such that

(1.1) lim
N→∞

N∑
n=1

αnxn = x

in the norm topology of H. Clearly, any Riesz basis for H is also a
Schauder basis for H. For Riesz bases the convergence in equation (1.1)
is unconditional. However, it is well known that conditional Schauder
bases exist.

We give a complete characterization of when the system G(1, p/q,A)
with the proper ordering forms a Schauder basis for G and L2(R). The
problem of characterizing Gabor Schauder bases in the case of one gen-
erator was first considered by Heil and Powell [7]. They obtained a
complete characterization in terms of a so-called Muckenhoupt A2 con-
dition on a certain multivariate weight obtained by the Zak transform.
Our result will reproduce the result obtained [7] in the case of a sin-
gleton A and p = q = 1. Our characterization will be given in terms
of a certain matrix Muckenhoupt A2 condition first introduced by the
author [9].
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2. Zak transform analysis of Gabor systems. Let us introduce
some notation that will be used throughout the paper. For p ∈ N, we
define the domain as

(2.1) Tp := [0, 1)× [0, 1/p).

We call a measurable (periodic) matrix function W : Tp → CN×N a
matrix weight if W (x) is a non-negative definite Hermitian matrix for
almost every x, and W is in L1, i.e., the matrix norm ∥W∥ belongs to
L1(Tp).

We define the matrix weighted L2, denoted L2(Tp,W ) to be the set
of vector functions f : Tp → CN such that

∥f∥2L2(Tp,W ) :=

∫ 1

0

∫ 1/p

0

|W 1/2(x, u)f(x, u)|2 dx du

=

∫ 1

0

∫ 1/p

0

⟨W (x, u)f(x, u), f(x, u)⟩CN dx du < ∞,

where the Lebesgue measure is used. We can turn L2(Tp,W ) into a
Hilbert space by factorizing over N = {f : ∥f∥L2(Tp,W ) = 0}. Whenever
W (x) is strictly positive definite, N is exactly the set of vector functions
f defined on Tp that vanish almost everywhere.

The main tool we will use to analyze Gabor systems is the Zak
transform. The Zak transform is defined for f ∈ L2(R) by

Zf(x, u) =
∑
k∈Z

f(x− k)e2πiku, x, u ∈ T.

The Zak transform is a unitary transform of f ∈ L2(R) onto L2(T2).

We now turn to the multiple-generated Gabor setup. Suppose we
have L generators A = {gℓ}L−1

l=0 ⊂ L2(R). For fixed p, q ∈ N, the
associated Gabor system is given by

G := G(1, p/q,A) = {gℓm,n}m,n∈Z,

with gℓm,n := e2πimxgℓ(x−np/q). A straightforward calculation shows,
see e.g., [5, Lemma 3.2],

(2.2) Zgℓm,(nq+r)(x, u) = e2πimxe−2πinpuZgℓ
(
x−r

p

q
, u

)
, 0 ≤ r < q.
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For notational convenience, we set

(2.3) Em,n(x, u) := e2πimxe−2πinpu.

Let us consider a finite expansion

(2.4) f =
L−1∑
ℓ=0

q−1∑
r=0

∑
m,n∈Z

cℓm,nq+rg
ℓ
m,nq+r.

Put

(2.5) τ lr(x, u) =
∑

m,n∈Z

cℓm,nq+rEm,n(x, u).

Then, by equation (2.2),

(2.6) Zf(x, u) =
L−1∑
ℓ=0

q−1∑
r=0

τ ℓr (x, u)Zgℓ
(
x− r

p

q
, u

)
.

We now follow the approach of Zibulski and Zeevi [14] and introduce a
convenient matrix notation. We let Gℓ := Gℓ(x, u) be the q× p-matrix
given by

(2.7) Gℓ
r,k = Zgℓ

(
x− r

p

q
, u+

k

p

)
, 0 ≤ r < q, 0 ≤ k < p.

We form the Lq × p-matrix as

(2.8) G =


G0

G1

...
GL−1

 ,

and put

(2.9) W = GG∗ ≥ 0.

We mention that in order to study completeness in L2(R) of the
system G(1, p/q,A) and to study its frame properties one often turns
to the p×p-matrix G∗G, see [14, 1]; for example, G = L2(R) if and only
if G∗G has full rank almost everywhere. However, as we will see below,
basis properties of G(1, p/q,A) are more closely related to properties
of the matrix in equation (2.9).
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Notice that W given by equation (2.9) is an Lq × Lq-matrix, with
entry (sq + r, tq + ℓ) given by

p−1∑
k=0

Zgs
(
x− r

p

q
, u+

k

p

)
Zgt

(
x− ℓ

p

q
, u+

k

p

)
.

Also notice that each entry in W is in L1(Tp). This follows from the
Cauchy-Schwarz inequality using that Zgs ∈ L2(T2), s = 0, . . . , L− 1.

We now form the vector τ (u, x) ∈ CLq by letting (τ(u, x))sq+r =
τsr (x, u), 0 ≤ s ≤ L− 1, 0 ≤ r < q. We now obtain the following result.

Theorem 2.1. Let p, q ∈ N. Suppose that

A = {g0, . . . , gL−1} ⊂ L2(R),

G = Span{G(1, p/q,A)},

and W is the non-negative definite matrix given by equation (2.9). Then
the map Z : L2(Tp,W ) → G given by
(2.10)

Z(f) = Z−1

( L−1∑
ℓ=0

q−1∑
r=0

(f)ℓq+rZgℓ
(
x− r

p

q
, u

))
, f = [f0, . . . , fLq−1]

T ,

is an isometric isomorphism.

Proof. Let {ej}Lq−1
j=0 denote the standard basis for CLq. It follows

from equation (2.2) and equation (2.10) that

(2.11) Z(eℓq+rEm,n) = gℓm,nq+r.

Now, take a vector-function τ (x, u) ∈ L2(Tp,W ) of the form

τ (x, u) :=

L−1∑
ℓ=0

q−1∑
r=0

τ ℓr (x, u)eℓq+r,

where each
τ ℓr (x, u) =

∑
m,n∈Z

cℓm,nq+rEm,n(x, u)
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is a trigonometric polynomial. We notice that, by equation (2.11) and
linearity,

f := Z(τ ) =
L−1∑
ℓ=0

q−1∑
r=0

∑
m,n∈Z

cℓm,nq+rg
ℓ
m,nq+r.

Hence, using ⟨f, f⟩ = ⟨Zf,Zf⟩ and equation (2.6), we obtain

⟨f, f⟩ =
∫ 1

0

∫ 1

0

L−1∑
ℓ=0

q−1∑
r=0

τ ℓr (x, u)Zgℓ
(
x− r

p

q
, u

)

×
L−1∑
t=0

q−1∑
s=0

τ ts(x, u)Zgt
(
x− s

p

q
, u

)
dx du

=

∫ 1

0

∫ 1/p

0

∑
r,ℓ

∑
s,t

τ ℓr (x, u)

×
[ p−1∑
k=0

Zgℓ
(
x−r

p

q
, u+

k

p

)
Zgt

(
x−s

p

q
, u+

k

p

)]
τ ts(x, u) dx du

= ∥τ∥2L2(Tp,W ).

The vectors with trigonometric polynomial entries are dense in L2(Tp,
W ), and the images under Z of such vectors are clearly dense in G.
Hence, we may conclude that Z extends to an isometric isometry from
L2(Tp,W ) onto G. �

3. Bi-orthogonal systems and Schauder bases. Let us recall
some elementary facts about Schauder bases and bi-orthogonal se-
quences in a Hilbert space H. Suppose that B = {xn : n ∈ N} is
a Schauder basis for H, i.e., that for every x ∈ H there exists a unique
sequence {αn := αn(x) : n ∈ N} of scalars such that

lim
N→∞

N∑
n=1

αnxn = x

in the norm topology of H. The unique choice of scalars, and the fact
that we are in a Hilbert space, implies that x → αn(x) is a continuous
linear functional for every n ∈ N. Furthermore, for every n ∈ N, there
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exists a unique vector yn such that αn(x) = ⟨x, yn⟩. It follows that

(3.1) ⟨xm, yn⟩ = δm,n, m, n ∈ N.

A pair of sequences ({un}n∈N, {vn}n∈N) in H is a bi-orthogonal
system if ⟨um, vn⟩ = δm,n, m,n ∈ N. We say that {vn}n∈N is a dual
sequence to {un}n∈N, and vice versa.

A dual sequence is not necessarily uniquely defined. In fact, it is
unique if and only if the original sequence is complete in H, i.e., if the
span of the original sequence is dense in H.

Suppose that B = {xn : n ∈ N} is complete and has a unique dual
sequence {yn}. Then, B is a Schauder basis for H if and only if the
partial sum operators

SN (x) =

N∑
n=1

⟨x, yn⟩xn

are uniformly bounded on H.

Finally, we call B = {xn : n ∈ N} a basis sequence if it is a Schauder
basis for its closed linear span.

3.1. Bi-orthogonal Gabor systems. We obtain the next result

for multiple-generated Gabor systems. We let {ej}Lq−1
j=0 denote the

standard basis for CLq.

Proposition 3.1. Let p, q ∈ N. Suppose A = {g0, . . . , gL−1} ⊂ L2(R),
and define G = Span{G(1, p/q,A)}. Let W be the non-negative definite
matrix given by equation (2.9). Then G(1, p/q,A) has a uniquely
defined bi-orthogonal system if and only if W−1 ∈ L1(Tp). In the
case where W−1 ∈ L1(Tp), the dual element to gℓm,nq+r, m,n ∈ Z,
0 ≤ r < q, is given by

˜gℓm,nq+r := pZ(W−1Em,neℓq+r).

Proof. Let us first suppose that W−1 ∈ L1(Tp). We notice that

∥W−1Em,neℓq+r∥2L2(Tp,W )

=

∫ 1

0

∫ 1/p

0

⟨WW−1Em,neℓq+r,W
−1Em,neℓq+r⟩CLq dx du
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=

∫ 1

0

∫ 1/p

0

(W−1)ℓq+r,ℓq+r(x, u) dx du < ∞,

so ˜gℓm,nq+r = Z(W−1Em,neℓq+r) is well defined. We have, for
n, n′,m,m′ ∈ Z, 0 ≤ r, r′ < q and 0 ≤ ℓ, ℓ < L,

⟨ ˜gℓ
′

m′,n′q+r′ , g
ℓ
m,nq+r⟩L2(R)

= p⟨Z(W−1Em′,n′eℓ′q+r′),Z(eℓq+rEm,n)⟩L2(R)

= p⟨W−1Em′,n′eℓ′q+r′ , eℓq+rEm,n⟩L2(Tp,W )

= p

∫ 1

0

∫ 1/p

0

Em−m′,n′−n⟨eℓ′q+r′ , eℓq+r⟩CLq dx du

= δm,m′δn,n′δℓ,ℓ′δr,r′ ,

so {g̃ℓm,n} is indeed a dual sequence to G(1, p/q,A).

We turn to the converse statement. Suppose that {g̃ℓm,n} ⊂ G ⊆
L2(R) is a dual sequence to G(1, p/q,A). The map Z is onto G, so we

can write g̃ℓm,n = Z(f ℓm,n) for some f ℓm,n ∈ L2(Tp,W ). Then

δm,m′δn,n′δℓ,ℓ′δr,r′ = ⟨gℓm,nq+r,
˜gℓ
′

m′,n′q+r′⟩L2(R)

= ⟨Z(eℓq+rEm,n),Z(f ℓ
′

m′,n′)⟩L2(R)

=

∫ 1

0

∫ 1/p

0

(f ℓ
′

m′,n′)HWeℓq+rEm,n(x, u) dx du.

We have (f ℓ
′

m′,n′)HWeℓq+r ∈ L1(Tp) since f ℓ
′

m′,n′ ∈ L2(Tp,W ) and

W ∈ L1(Tp). Also, {pEm,n} forms an orthonormal trigonometric basis
for L2(Tp), and since the Fourier transform is injective on L1(Tp), we
get that for almost all (x, u) ∈ Tp,

(f ℓ
′

m′,n′(x, u))HW (x, u) = pE−m,−n(x, u)e
T
ℓq+r.

Hence, W has full rank almost everywhere, and we may solve for fm′,n′

to obtain
fm′,n′ = pW−1(Em,neℓq+r). �

3.2. Rectangular partial sums. As before, let us consider A =
{g0, . . . , gL−1} ⊂ L2(R), and let G = Span{G(1, p/q,A)}. Let us
suppose thatW−1 ∈ L1(Tp) so thatG(1, p/q,A) has a dual system in G.
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For any f = Z(τ ) ∈ G, and N1, N2 ∈ N, we consider the rectangular
partial sum operator TN1,N2

: G → G given by

TN1,N2
f =

L−1∑
ℓ=0

q−1∑
r=0

∑
|m|≤N1,|n|≤N2

⟨f, ˜gℓm,nq+r⟩gℓm,nq+r.

We would like to study the boundedness properties of {TN1,N2}N1,N2

on G. We mention that it is necessary for TN1,N2 to be uniformly
bounded on G if G(1, p/q,A) forms a Schauder basis for G with an
ordering “compatible” with rectangular partial sums. However, proving
uniform boundedness of {TN1,N2}N1,N2 is not quite enough to conclude
that G(1, p/q,A) forms a Schauder basis for G. We study this in detail
in subsection 3.3.

From Proposition 3.1 we obtain that ˜gℓm,nq+r := pZ(W−1Em,neℓq+r).
Therefore,

SN1,N2τ

:=

L−1∑
ℓ=0

q−1∑
r=0

( ∑
|m|≤N1,|n|≤N2

⟨Z(τ ),Z(pEm,nW
−1eℓq+r)⟩L2(R)Em,n

)
eℓq+r

=

L−1∑
ℓ=0

q−1∑
r=0

( ∑
|m|≤N1,|n|≤N2

⟨τ , pEm,nW
−1eℓq+r⟩L2(Tp,W )Em,n

)
eℓq+r

=
L−1∑
ℓ=0

q−1∑
r=0

( ∑
|m|≤N1,|n|≤N2

⟨τ , pEm,neℓq+r⟩L2(Tp)Em,n

)
eℓq+r.

Also notice that Z(TN1,N2τ ) = pSN1,N2f using equation (2.2). And,
since ∥f∥L2(R) = ∥τ∥L2(Tp,W ), we deduce that

p∥SN1,N2∥G→G = ∥TN1,N2∥L2(Tp,W )→L2(Tp,W ).

We can thus study the boundedness of {SN1,N2}N1,N2 by studying
properties of the trigonometric system in L2(Tp,W ). The connection
between convergence of the Fourier series in a weighted L2-space and
the so-called Muckenhoupt condition on the weight was first made
precise in the seminal paper by Hunt, Muckenhoupt and Wheeden [8].
In this paper, we need a Muckenhoupt condition in the matrix setting.
Muckenhoupt matrix weights and their connection to convergence of
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Fourier series was studied by Treil and Volberg [12, 13]. The following
class of product Muckenhoupt weights was introduced in [9].

Definition 3.2. LetW be a N×N matrix weight on Tp, i.e., a (1, 1/p)-
periodic measurable function defined on Tp whose values are positive
semi-definiteN×N matrices. We say thatW satisfies the Muckenhoupt
product A2-matrix-condition, provided that

sup
I×J

∥∥∥∥( 1

|I × J |

∫
I

∫
J

W (x, u) dx du

)1/2

(3.2)

×
(

1

|I × J |

∫
I

∫
J

W−1(x, u) dx du

)1/2∥∥∥∥ < ∞,

where the sup is over all rectangles I × J ⊂ Tp. The collection of all
such weights is denoted by A2(Tp).

We note that W ∈ A2 implies W,W−1 ∈ L1(Tp). It is not difficult
to prove, see [9, Lemma 3.4], that W ∈ A2 implies that W (x, ·) and
W (·, u) are uniform in the corresponding univariate matrix A2 class for
almost every x, respectively almost every u. So, for the u variable, we
have

(3.3)

ess sup
u∈[0,1/p)

sup
I

∥∥∥∥( 1

|I|

∫
I

W (x, u) dx du

)1/2

×
(

1

|I|

∫
I

W−1(x, u) dx

)1/2∥∥∥∥ < ∞,

and similarly for W (·, u). This fact will be used in the proof of
Theorem 3.1.

We now call on the following product version of the Muckenhoupt,
Hunt and Wheeden theorem proved by the author in [9].

Theorem 3.3. Let W : Tp → CLq×Lq be a matrix weight with

W,W−1 ∈ L1(Tp). Let {ej}Lq−1
j=0 denote the standard basis for CN .

Then, the rectangular partial sum operators
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SN1,N2f(x, u)

:=
L−1∑
ℓ=0

q−1∑
r=0

( ∑
m,n∈Z

|m|≤N1,|n|≤N2

⟨f , pEm,neℓq+r⟩L2(Tp)Em,n(x, u)

)
eℓq+r,

are uniformly bounded on L2(Tp;W ) if and only if W ∈ A2.

Remark 3.4. Theorem 3.3 is stated for weights on the torus T2 [9],
but the proof in [9] translates verbatim to the case of domain Tp.

We can now deduce the next result.

Corollary 3.5. Let p, q ∈ N. Suppose that A = {g0, . . . , gL−1} ⊂
L2(R), and define G = Span{G(1, p/q,A)}. Let W be the non-
negative definite matrix given by equation (2.7). Then the partial sum
operators {SN1,N2}Ñ1,Ñ2∈N are uniformly bounded on G if and only if

W ∈ A2(Tp).

3.3. Schauder bases. We now turn to the question of turning the
system G(1, p/q,A) into a Schauder basis. Guided by Corollary 3.5,
we need to find an enumeration of G(1, p/q,A) that respects the
rectangular partial sums.

We follow Heil and Powell [7] and consider the following class of
enumerations.

Definition 3.6. Let Λ be the set containing all enumerations {(kj ,nj)}∞j=1

of Z2 defined in the following recursive manner.

(1) The initial terms (k1, n1) . . . (kJ1 , nJ1) are either

(0, 0), (1, 0), (−1, 0), . . . (A1, 0), (−A1, 0)

or
(0, 0), (0, 1), (0,−1), . . . , (0, B1), (0,−B1),

for some positive integers A1 or B1.
(2) If {(kj , nj)}Jk

j=1 has been constructed to be of the form

{−Ak, . . . , Ak} × {−Bk, . . . , Bk}
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for some non-negative integers Ak, Bk, then terms are added either
to the top and bottom or the left and right sides to obtain either
the rectangle

{−Ak, . . . , Ak} × {−(Bk + 1), . . . , Bk + 1}

or
{−(Ak + 1), . . . , Ak + 1} × {−Bk, . . . , Bk}.

For example, terms would first be added to the left side ordered as

(−(Ak+1), 0), (−(Ak+1), 1), (−(Ak+1),−1), . . . ,

(−(Ak+1), Bk), (−(Ak+1),−Bk),

and likewise for the right side. The top and bottom proceed
analogously.

Given σ ∈ Λ, we lift σ to an enumeration σ̃ of {0, 1, . . . , L− 1}×Z2,
defined as follows

(3.4) (0, σ(1)), (1, σ(1)), . . . , (Lq − 1, σ(1)), (0, σ(2)), . . . ,

(Lq − 1, σ(2)), (0, σ(3)), . . . .

Let us now assume that A = {g0, g1, . . . , gL−1} ⊂ L2(R) such

that the system G(1, p/q,A) has a unique dual system {g̃ℓm,n} in

G = Span{G(1, p/q,A)}.
For j ∈ N, we write σ̃(j) = (ℓj ,mj , nj). We let

G(σ̃(j)) := gℓjmj ,nj
,

F (σ̃(j)) = g̃
ℓj
mj ,nj ,

and introduce the partial sum operators

T σ
J f :=

J∑
j=1

⟨f, F (σ̃(j))⟩G(σ̃(j)), f ∈ G.

We also need to consider the associated partial sum operator in

L2(T2;W ). Let {ej}Lq−1
j=0 be the standard basis for CLq. Put

e(ℓ,m, n) := Em,neℓ, and ẽ(ℓ,m, n) := Z(pEm,nW
−1eℓ). Then
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Sσ
J τ :=

J∑
j=1

⟨τ , ẽ(σ̃(j)⟩L2(Tp,W )e(σ̃(j)), τ ∈ L2(Tp,W ),

satisfies Z(Sσ
J τ) = T σ

J f for Z(τ ) = f ∈ G.
It is now immediate from our general discussion of Schauder bases

that the following conditions are equivalent:

(i) the system G(1, p/q,A) is a Schauder basis for G with the ordering
induced by σ ∈ Λ;

(ii) the partial sum operators T σ
J are uniformly bounded on G.

This leads to the next result, Theorem 3.7. The first part of the proof
of Theorem 3.7 follows from the approach outlined by the author in [9,
Corollary 3.4]. We include here the details for the benefit of the reader.

Theorem 3.7. Let p, q ∈ N. Suppose that A = {g0, . . . , gL−1} ⊂
L2(R), and define G = Span{G(1, p/q,A)}. Let W be the non-negative
definite matrix given by equation (2.7). Then the following statements
are equivalent :

(a) supσ∈Λ supJ ∥T σ
J ∥ < ∞.

(b) W ∈ A2(Tp).

Moreover, at the critical density Lq = p, W ∈ A2(Tp) implies that
G(1, p/q,A) forms a Schauder basis for L2(R).

Remark 3.8. For L = p = q = 1, the condition in Theorem 3.7 reduces
to the scalar condition |Zg0|2 ∈ A2(T2), which is exactly that derived
by Powell and Heil [7].

We will need the following facts for the proof of Theorem 3.7. We
let DN denote the univariate Dirichlet kernel, given by

(3.5) D0(t) = 1, DN (t) =
sin 2π(N + 1/2)t

sinπt
, N ≥ 1,

and, for f ∈ L2(T), N ≥ 0,

(3.6) SN (f) :=
N∑

k=−N

f̂(k)e2πik· = f ∗DN :=

∫
T
f(t)DN (· − t) dt.
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We lift SN to the vector setting by letting

SN (τ ) :=

Lq−1∑
j=0

SN (⟨τ , ej⟩)ej .

It is known that

(3.7) ess sup
u∈[0,1/p)

sup
N

∥SN∥L2(T,W (·,u))→L2(T,W (·,u)) < ∞

for weights W satisfying the univariate A2 condition equation (3.3),
see [9, Corollary 3.2]. This is very closely related to the fact that the
Hilbert transform is bounded for such weights, see [12, 13]. We refer
to [9] for further details. The same result of course holds for W (x, ·).

Proof of Theorem 3.7. It suffices to consider the operator Sσ
J τ on

L2(Tp,W ). Given a rectangle

R = {−N1, . . . , N1} × {−N2, . . . , N2}, N1, N2 ∈ N0,

we can use Definition 3.6 to construct an enumeration σ ∈ Λ such
that σ({1, . . . , J}) = R for some J ∈ N. Then Sσ

N ·J = SN1,N2
, and

therefore, supN1,N2≥0 ∥SN1,N2∥ < ∞. Hence, W ∈ A2 by Corollary 3.5.
Conversely, we fix f ∈ G and pick σ ∈ Λ. For any J , we let NJ be
the largest integer Nj ≤ J for which T σ

Nj
f = TL,Kf , for some integers

L,K. Now, by Corollary 3.5,

∥T σ
J f∥L2(R) ≤ ∥TL,Kf∥L2(R) + ∥(T σ

J − TL,K)f∥L2(R)

≤ C∥f∥L2(R) + ∥(T σ
J − TL,K)f∥L2(R).

Hence, it suffices to bound the norm of the term

(3.8) (Tσ
J − TL,K)f =

J∑
j=NJ

⟨f, F (σ̃(j))⟩G(σ̃(j)).

According to Definition 3.6, the sum (3.8) contains terms that have
been added to the top and bottom or left and right side of an rectangle.
The cases are treated in a similar fashion. For definiteness, assume that
equation (3.8) adds terms to the top of the rectangle.

We study the equivalent problem in L2(Tp,W ). Choose τ with
Z(τ) = f , so that Z(Sσ

J τ) = T σ
J f . Note that the ordering σ̃ given
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by equation (3.4) ensures that the sum (Sσ
J − SL,K)τ can be rewritten

as

(Sσ
J − SL,K)τ =

L−1∑
ℓ=0

q−1∑
r=0

M∑
m=−M

⟨τ , pe2πimxe−2πi(K+1)pueℓq+r⟩L2(Tp)(3.9)

× e2πimxe−2πi(K+1)pueℓq+r +R,

where the remainder R is a sum of at most 2Lq − 1 terms of the type
⟨τ , pEm,neℓ⟩Em,neℓ. We observe that, in general,

∥⟨τ , pEm,neℓ⟩Em,neℓ∥L2(T2;W ) ≤ p∥W∥L1(Tp)∥W
−1∥L1(Tp)∥τ∥L2(Tp,W ),

which follows from Hölder’s inequality. We can therefore use the trian-
gle inequality uniformly to estimate the remainder R in equation (3.9)
in terms of ∥τ∥L2(T2;W ). Next, we note that∥∥∥∥ L−1∑

ℓ=0

q−1∑
r=0

M∑
m=−M

⟨τ ,pe2πimxe−2πi(K+1)pueℓq+r⟩L2(Tp)

× e2πimxe−2πi(K+1)pueℓq+r

∥∥∥∥
L2(Tp,W )

=

∥∥∥∥ L−1∑
ℓ=0

q−1∑
r=0

M∑
m=−M

p⟨τe2πi(K+1)pu,

e2πimxeℓq+r⟩L2(Tp)e
2πimxeℓq+r

∥∥∥∥
L2(Tp,W )

.

For notational convenience, we define the vector function as

f(x) := p

∫ 1/p

0

τ (x, u)e2πi(K+1)pu du = S0(τ (x, ·)e2πi(K+1)p·),

where S0 is the 0-order partial sum operator. We recall that W (·, u)
and W (x, ·) are uniformly matrix A2-weights for almost every u and
almost every x, respectively. We now use the boundedness estimate
(3.7) to obtain that∥∥∥∥ L−1∑

ℓ=0

q−1∑
r=0

M∑
m=−M

p⟨τe2πi(K+1)pu, e2πimxeℓq+r⟩L2(Tp)e
2πimxeℓq+r

∥∥∥∥
L2(Tp,W )
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=

∫ 1/p

0

∫ 1

0

|W 1/2(x, u)DM ∗ f |2dx du

≤ C

∫ 1/p

0

∫ 1

0

|W 1/2(x, u)f |2dx du

= C

∫ 1/p

0

∫ 1

0

|W 1/2(x, u)S0(τ (x, ·)e2πi(K+1)p·)|2du dx

≤ C ′
∫ 1/p

0

∫ 1

0

|W 1/2(x, u)τe2πi(K+1)pu|2du dx

= C ′∥τ∥2L2(Tp,W ),

where we also used that S0 is bounded uniformly on L2(T;W (x, ·)) for
almost every x. Combining estimates, we conclude that

∥(T σ
J − TL,K)f∥L2(R) = ∥(Sσ

J − SL,K)τ∥L2(Tp,W )

≤ C ′∥τ∥L2(Tp,W )

= C ′∥f∥L2(R),

with C ′ independent of J .

For the last part, we notice that, whenever the Lq × Lq matrix
W = GG∗ is positive definite almost everywhere, then p = Lq =
rank (GG∗) ≤ rank(G) ≤ p almost everywhere since G is of size Lq×p.
Hence, rank (G) = p almost everywhere. The fact that G = L2(R) now
follows from [14, Theorem 2]. �

Remark 3.9. Suppose that G(1, p/q,A) ordered by σ ∈ Λ forms a
Schauder basis for G = Span{G(1, p/q,A)} with A = {g0, . . . , gL−1}.
Then clearly, by Theorem 3.7, the corresponding weight W satisfies
W ∈ A2(Tp). It is easy to directly check that, for any subset A′ ⊂ A,

G(1, p/q,A′) forms a Schauder basis for G′ = Span{G(1, p/q,A′)}.
Let W ′ be the weight corresponding to G(1, p/q,A′), where we notice
that W ′ is a submatrix of W . We deduce from Theorem 3.7 that the
submatrix W ′ must also belong to A2(Tp).

4. Example. We conclude this paper by giving an example of a
conditional multiple-generated Gabor Schauder basis for L2(R). Let us
consider the case L = p, p ≥ 2, and q = 1. Take univariate polynomials
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P0(x), . . . PL−1(x) and exponents a0, . . . , aL−1 ∈ R satisfying

−1 < deg(Pj)aj < 1, j = 0, 1, . . . , L− 1.

Then it is well known that |Pi|ai satisfies the scalar A2-condition, i.e.,

(4.1) sup
I

(
1

|I|

∫
I

|Pj |ajdx · 1

|I|

∫
I

|Pj |−ajdx

)
< +∞,

where the sup is over all intervals I ⊂ [0, 1), see [11, Chapter 5]. We
now set

gℓ(x) := χ[0,1)(x+ ℓ)|Pℓ(x+ ℓ)|aℓ/2.

It is easy to verify that gℓ ∈ L2(R). Notice that

Zgℓ(x, u) = |Pℓ(x)|aℓ/2e2πiℓu.

We now form the matrix W = GG∗ defined by equation (2.9). Notice
that entry r, s of W is given by

L−1∑
k=0

Zgr
(
x, u+

k

L

)
Zgs

(
x, u+

k

L

)

=
L−1∑
k=0

|Pr(x)|ar/2|Ps(x)|as/2e2πir(u+k/L)e−2πis(u+k/L)

= |Pr(x)|ar/2|Ps(x)|as/2e2πi(r−s)u
L−1∑
k=0

e2πi(r−s)k/L

= Lδr,s|Pr(x)|ar .

It is now straightforward to use equation (4.1) to verify the diagonal
matrix W ∈ A2. Hence, for A = {g0, . . . , gL−1}, the system G(1, L,A)
forms a Schauder basis for L2(R) according to Theorem 3.7 since
Lq = L = p.

Moreover, we note that, by choosing appropriate polynomials Pj ,
we can easily obtain a matrix G containing unbounded row vectors on
[0, 1) × [0, 1/p) and/or row vectors not bounded away from 0 in norm
on [0, 1) × [0, 1/p). It thus follows from [1, Theorem 2.2] that the
corresponding system G(1, L,A) cannot form an unconditional Riesz
basis for L2(R). We thus obtain an example of a conditional multiple-
generated Gabor Schauder basis for L2(R).
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