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SMOOTH CENTER MANIFOLDS
FOR RANDOM DYNAMICAL SYSTEMS

PENG GUO AND JUN SHEN

ABSTRACT. In this paper, we will prove the existence
and Hölder continuity of smooth center-unstable and center-
stable manifolds for random dynamical systems based on
their Lyapunov exponents. Furthermore, we obtain the
existence and Hölder continuity of smooth center manifolds.

1. Introduction. The theory of invariant manifolds is a fundamen-
tal tool for describing and understanding nonlinear dynamical systems.
They are widely used to investigate the qualitative behavior of flows,
bifurcation characteristics and linearization, etc. The study of invari-
ant manifolds dates back to the paper of Hadamard [16]. His method
is based on graph transform. Later, Lyapunov [24] and Perron [26]
used analytic method to study invariant manifolds. Since then, there
has been some literature regarding invariant manifolds, including the
stable, unstable, center, center-stable and center-unstable manifolds for
finite- or infinite-deterministic dynamical systems, see Pliss [27], Kel-
ley [19], Hale [17], Henry [18], Carr [6], Vanderbauwhede and van
Gils [29], Chow and Lu [12, 13], Bates and Jones [2], Chow, Lin and
Lu [9], Chow, Li and Wang [8], Chow, Liu and Yi [10, 11], Bates, Lu
and Zeng [3, 5], etc.

Recently, there has been some work done on invariant manifolds for
stochastic and random dynamical systems by Wanner [30], Arnold [1],
Mohammed and Scheutzow [25], Schmalfuß [28], Duan, Lu and
Schmalfuß [14], etc. Wanner’s method, which is based on the Ba-
nach fixed point theorem, is essentially the Lyapunov-Perron approach.
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Later, Arnold used a similar technique for studying this problem. In
contrast to this method, Mohammed and Scheutzow applied the tech-
nique of semimartingales to study invariant manifolds for stochastic
differential equations.

Assume that φ(n, ω, 0) = 0 for all n ∈ Z and ω ∈ Ω, where (Ω,F ,P)
is a probability space. Then φ(n, ω, x) can be rewritten as

φ(n, ω, x) = Φ(n, ω)x+ f(n, ω, x),

where Φ(n, ω) = Dφ(n, ω, 0) and f(n, ω, x) is the higher order term.
When Φ(n, ω) is non-uniform pseudo hyperbolic, Li and Lu [20] and
Lian and Lu [21] studied the existence and smoothness of stable and
unstable manifolds in Rd and Banach space, respectively. When Φ(n, ω)
has zero Lyapunov exponents, Arnold [1] used the Lyapunov norm to
investigate the existence and smoothness of global center manifolds. In
this paper, we will use a cut-off procedure and the Lyapunov-Perron
technique to prove existence and the Hölder continuity of local smooth
center-unstable, center-stable and center manifolds for a nonlinear
random dynamical systems φ(n, ω, x) in Rd and give the tempered-
from-above estimations on the derivatives of all orders. The basic ideas
of our approach are to convert non-uniform exponential trichotomy
into non-uniform exponential dichotomy and then use the results of
center-unstable and center-stable manifolds to derive the results of
center manifolds. Moreover, although the coefficient in non-uniform
exponential dichotomy is a tempered random variable with the growth
rate of sub-exponent, we consider a proper spectral gap and a smaller
neighborhood tempered from below to ensure that existence and the
Hölder continuity of smooth local invariant manifolds above without
the nonlinear term having a sufficiently small Lipschitz constant.

The paper is organized as follows. In Section 2, we recall some
basic concepts of random dynamical systems, the multiplicative ergodic
theorem and relevant results, and then we use the cut-off function to
modify the high order. In Section 3, we will successively investigate
the existence, smoothness and Hölder continuity of the center-unstable,
center-stable and center manifolds.

2. Random dynamical systems. In this section, we first intro-
duce some basic concepts of random dynamical systems, the multi-
plicative ergodic theorem and relevant results. Then, we make some
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essential assumptions. In the end, we use the standard cut-off function
to modify the nonlinear term.

Let T = R or Z. We denote the Borel σ-algebra on Rd and T by
B(Rd) and B(T), respectively.

Definition 2.1. (Ω,F ,P, (θt)t∈T) is called a metric dynamical system
if:

(i) the mapping θ : T× Ω → Ω is (B(T)⊗F ,F)-measurable;
(ii) θ0 = idΩ, the identity on Ω, θt+s = θt ◦ θs for all t, s ∈ T;
(iii) θtP = P for all t ∈ T.

Definition 2.2. A mapping

φ : T× Ω× Rd −→ Rd, (t, ω, x) 7→ φ(t, ω, x)

is called a random dynamical system over a metric dynamical system
(Ω,F ,P, (θt)t∈T) if:

(i) φ is (B(T)⊗F ⊗ B(Rd),B(Rd))-measurable;
(ii) the mapping φ(t, ω) := φ(t, ω, ·) : Rd → Rd forms a cocycle over

θt:

φ(0, ω) = id for all ω ∈ Ω,

φ(s+ t, ω) = φ(t, θsω) ◦ φ(s, ω) for all s, t ∈ T and for all ω ∈ Ω.

If φ is a random dynamical system and, for every (t, ω) ∈ T×Ω, the
mapping

φ(t, ω) : Rd −→ Rd, x 7→ φ(t, ω)x

is Ck and φ is called a Ck smooth random dynamical system.

In this paper, we consider time-discrete CN , N ≥ 2 random dynami-
cal systems. For every n ∈ Z and ω ∈ Ω we suppose that φ(n, ω, 0) = 0.
Then we rewrite φ(n, ω, x) as

(2.1) φ(n, ω, x) = Φ(n, ω)x+ f(n, ω, x),

where Dxφ(n, ω, 0) := Φ(n, ω) ∈ Gl (d;R) and the nonlinear term
f(n, ω, ·) and its derivative vanish at x = 0. By the cocycle property of
φ, Φ(n, ω) is a linear cocycle with two-sided time over (Ω,F ,P, (θn)n∈Z).
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Let A(ω) := Φ(1, ω) and F (ω, x) := f(1, ω, x). Then the time-one
map φ(1, ω)x can be written as

φ(1, ω)x = A(ω)x+ F (ω, x),

where F (ω, 0) = 0 andDxF (ω, 0) = 0. In addition, Φ(n, ω) is generated
by A(ω):

Φ(n, ω) =


A(θn−1ω) · · ·A(ω), n > 0,

I, n = 0,

A−1(θnω) · · ·A−1(θ−1ω), n < 0.

Let {xn}n∈Z be an orbit of φ(n, ω, x) with initial value x0, i.e., xn :=
φ(n, ω, x0). Then, {xn}n∈Z satisfies the equation

xn+1 = A(θnω)xn + F (θnω, xn).

Next we give a discrete variation of constants formula.

Lemma 2.3 (Discrete variations of constant formula). Assume that
{xn}n∈Z+ is a positive orbit of φ(n, ω, x). Then {xn}n∈Z+ satisfies
(2.2)

xn = Φ(n, ω)x0 +

n−1∑
i=0

Φ(n− 1− i, θi+1ω)F (θiω, xi) for all n ≥ 1.

Let {xn}n∈Z− be a negative orbit of φ(n, ω, x). For every k < n,
{xn}n∈Z− satisfies

(2.3) xn = Φ(n− k, θkω)xk +
n−1∑
i=k

Φ(n− 1− i, θi+1ω)F (θiω, xi).

This lemma is from [20]. The details are omitted here for brevity.

The following concept plays an important role in the study of random
dynamical systems.
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Definition 2.4.

(i) A random variable R : (Ω,F) → (R+ \ {0},B(R+ \ {0})) is called
tempered with respect to a metric dynamical system θn if

lim
n→±∞

1

n
logR(θnω) = 0P-almost surely.

(ii) A random variable R : (Ω,F) → (R+,B(R+)) is called tempered
from above if

lim
n→±∞

1

n
log+R(θnω) = 0P-almost surely.

(iii) A random variable R : (Ω,F) → ((0,+∞],B(0,+∞]) is called
tempered from below if 1/R is tempered from above.

Moreover, we recall that a multifunction W = {W (ω)}ω∈Ω of
nonempty closed sets W (ω), ω ∈ Ω, contained in Rd is called a random
set if

ω 7−→ inf
y∈W (ω)

|x− y|

is a random variable for every x ∈ Rd.

Definition 2.5. A random set W (ω) is called an invariant set for a
random dynamical system φ(n, ω, x) if

φ(n, ω,W (ω)) =W (θnω) for all n ∈ Z.

The following theorem is the multiplicative ergodic theorem [1,
pages 134, 153].

Theorem 2.6 (Multiplicative ergodic theorem). Let Φ be a linear
random dynamical system over the metric dynamical system (Ω,F ,P,
(θn)n∈Z). Assume that

log+ ∥A(·)∥ ∈ L1(Ω,F ,P), log+ ∥A−1(·)∥ ∈ L1(Ω,F ,P).

Then there exists an invariant subset Ω̃ ⊂ Ω of full measure such that

for each ω ∈ Ω̃ the following hold :

(i) the limn→+∞(Φ(n, ω)∗Φ(n, ω))1/2n =: Ψ(ω) > 0 exists.
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(ii) Let eλp(ω)(ω) < · · · < eλ1(ω) be the different eigenvalues of Ψ(ω),
and let Up(ω)(ω), . . . , U1(ω) be the corresponding eigenspaces with
multiplicities di(ω) := dimUi(ω). Then:

p(θω) = p(ω),

λi(θω) = λi(ω) for all i ∈ {1, . . . , p(ω)},
di(θω) = di(ω) for all i ∈ {1, . . . , p(ω)},

Rd = U1(ω)⊕ · · · ⊕ Up(ω)(ω).

(iii) If (Ω,F ,P, (θn)n∈Z) is ergodic, the functions p(ω), λi(ω) and

di(ω) are constant on Ω̃.

(iv) For each ω ∈ Ω̃, there exists a splitting

Rd = E1(ω)⊕ · · · ⊕ Ep(ω)(ω)

of Rd into random subspaces Ei(ω) with dimension di(ω). More-
over, if P i(ω) : R → Ei(ω) denotes the corresponding projection
onto Ei(ω), then

A(ω)P i(ω) = P i(θω)A(ω),

equivalently,

A(ω)Ei(ω) = Ei(θω).

(v) We have

lim
n→±∞

1

n
log |Φ(n, ω)x| = λi(ω) ⇐⇒ x ∈ Ei(ω) \ {0}.

(vi) The functions ω 7→ p(ω) ∈ {1, . . . , d}, ω 7→ λi(ω) ∈ R, ω 7→
di(ω) ∈ {1, . . . , d}, ω 7→ Ei(ω) and ω 7→ P i(ω) are measurable.

Here λi(ω) and Ei(ω) are so-called Lyapunov exponents and Ose-
ledet spaces, respectively.

In the remainder of this paper, we denote Ω̃ by Ω and assume that
all statements are true for ω ∈ Ω.

From now on, we always assume the following.

Hypothesis 2.7. Φ(n, ω) = Dxφ(n, ω, 0) satisfies the multiplicative
ergodic theorem.
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We divide the Lyapunov exponents into three groups based on their
signs. Let

σu(ω) := {λi(ω) > 0},
σs(ω) := {λi(ω) < 0},
σc(ω) := {λi(ω) = 0},

and denote

Eu(ω) :=
⊕

λi(ω)∈σu(ω)

Ei(ω),

Es(ω) :=
⊕

λi(ω)∈σs(ω)

Ei(ω),

Ec(ω) :=
⊕

λi(ω)∈σc(ω)

Ei(ω),

with corresponding projections

Pu(ω) : Rd 7−→ Eu(ω),

P s(ω) : Rd 7−→ Es(ω),

P c(ω) : Rd 7−→ Ec(ω).

Then
Rd = Eu(ω)⊕ Es(ω)⊕ Ec(ω).

We call Eu(ω) the unstable Oseledets subspace, Es(ω) the stable Ose-
ledets subspace and Ec(ω) the center Oseledets subspace. Let du(ω),
ds(ω) and dc(ω) denote the dimensions of Eu(ω), Es(ω) and Ec(ω),
respectively. From Theorem 2.6, du(ω), ds(ω) and dc(ω) are measur-
able functions from Ω to {1, . . . , d}, and P s(ω), Pu(ω) and P c(ω) are
measurable projections. Thus, Ω can be decomposed into a union of l
disjoint θ-invariant measurable sets:

Ω =
l∪

i=1

Ωi,

where, on each Ωi, du(ω), ds(ω) and dc(ω) are constant. We will build
the center-unstable manifold, the center-stable manifold and the center
manifold over Ωi. Then we may patch them together to get dimension-
varying invariant manifolds on the whole Ω. In particular, when
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(Ω,F ,P, (θn)n∈Z) is ergodic, du(ω), ds(ω) and dc(ω) are all constant
over Ω.

To assure the existence of center manifolds, we need to assume that

Hypothesis 2.8. σc(ω) ̸= ∅, i.e., Φ(n, ω) has zero Lyapunov expo-
nents.

The next lemma is a consequence of the multiplicative ergodic
Theorem 2.6.

Lemma 2.9. There exist θ-invariant random variable β(ω) > 0,
constant κ and tempered random variable K(ω) : Ω → [1,+∞) such
that

∥Φ(n, ω)Pu(ω)∥ ≤ K(ω)eβ(ω)n for all n ≤ 0,

∥Φ(n, ω)P s(ω)∥ ≤ K(ω)e−β(ω)n for all n ≥ 0,

∥Φ(n, ω)P c(ω)∥ ≤ K(ω)eκ|n| for all n ∈ Z.

Proof. We choose

β(ω) := min{|λi(ω)| : λi(ω) ∈ σu(ω) ∪ σs(ω), i = 1, . . . , p(ω)} − κ,

where κ is small such that β(ω) > 0. By [1, Corollary 4.3.5],
there exists a tempered random variable K ′(ω) such that, for each
i = 1, . . . , p(ω), as x ∈ Ei(ω),

1

K ′(ω)
eλi(ω)n−κ|n||x| ≤ |Φ(n, ω)x| ≤ K ′(ω)eλi(ω)n+κ|n||x|.

Taking K(ω) := dK ′(ω), we complete the proof. �

As ω varies, β(ω) may be arbitrarily small and K(ω) may be
arbitrarily large. However, along each orbit θnω, β(ω) is a constant
and K(ω) can increase only at a subexponential rate.

Although the invariant splitting of Rd = E1(ω) ⊕ . . . ⊕ Ep(ω)(ω)
depends on the sample point, by [1, Corollary 4.3.12], we can choose a
new coordinate system so that the corresponding Oseledet spaces are
deterministic. We restate the facts as follows.
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Lemma 2.10. There exists a measurable map

P : Ω −→ Gl (d,R)

such that :

(i) Φ(n, ω) is conjugate to a block diagonal random dynamical system,
i.e.,

P (θnω)Φ(n, ω)P−1(ω)=Ψ(n, ω)=diag(Ψ1(n, ω), . . . ,Ψp(ω)(n, ω)),

where Ψi(n, ω) are cocycles of size di(ω).
(ii) The transformation P preserves the Lyapunov spectrum

{(λi(ω), di(ω)) | 1 ≤ i ≤ p(ω)}

and the corresponding Oseledet spaces

Ẽi(ω) = {0} × · · · × {0} × Rdi(ω) × {0} × · · · × {0} ⊂ Rd.

(iii) ∥P (ω)∥ and ∥P−1(ω)∥ are tempered.

From Lemma 2.10, we know that the unstable, stable and center
Oseledet subspaces for Ψ are:

Ẽu(ω) :=
⊕

λi(ω)∈σu(ω)

Ẽi(ω),

Ẽs(ω) :=
⊕

λi(ω)∈σs(ω)

Ẽi(ω),

Ẽc(ω) :=
⊕

λi(ω)∈σc(ω)

Ẽi(ω).

Then Rd has orthogonal decomposition:

Rd = Ẽu(ω)⊕ Ẽs(ω)⊕ Ẽc(ω).

We still denote Pu(ω) and P s(ω) by the corresponding projections.
The next lemma is a direct result of Lemmas 2.9 and 2.10.

Lemma 2.11. Assume that Hypotheses 2.7 and 2.8 hold. There exist
random variables β : Ω → (0,+∞) and constant α > 0 satisfying α <
β(ω)/[2(N +1)2] and a tempered random variable K(ω) : Ω → [1,+∞)
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such that :

∥Ψ(n, ω)Pu(ω)∥ ≤ K(ω)eβ(ω)n for all n ≤ 0,

∥Ψ(n, ω)P s(ω)∥ ≤ K(ω)e−β(ω)n for all n ≥ 0,

∥Ψ(n, ω)P c(ω)∥ ≤ K(ω)eα|n| for all n ∈ Z.

Denote

P cu(ω) = P c(ω) + Pu(ω), P cs(ω) = P c(ω) + P s(ω),

Ecu(ω) = Ec(ω)⊕ Eu(ω), Ecs(ω) = Ec(ω)⊕ Es(ω).

We call Ecu(ω) center-unstable Oseledet subspaces and Ecs(ω) center-
stable Oseledet subspaces. On Ωi, by Lemma 2.10, Rd has an invariant
splitting Rd = Ecu ⊕ Es (Rd = Ecs ⊕ Eu) independent of ω. Surely,
the projection operators P cu, P s (P cs, Pu) are also independent of ω
on Ωi. For each x ∈ Rd, we can decompose it to

x = xcu + xs for some xcu ∈ Ecu and xs ∈ Es,

x = xcs + xu for some xcs ∈ Ecs and xu ∈ Eu.

To simplify the notation, we will use Ω to denote Ωi. By Lemma 2.11,
we obtain the next corollary.

Corollary 2.12. Assume that Hypotheses 2.7 and 2.8 hold. There exist
random variables α, β : Ω → (0,+∞) satisfying α(ω) < β(ω)/[2(N +
1)2] and a tempered random variable K(ω) : Ω → [1,+∞) such that :

∥Ψ(n, ω)P cu(ω)∥ ≤ K(ω)e−α(ω)n for all n ≤ 0,

∥Ψ(n, ω)P s(ω)∥ ≤ K(ω)e−β(ω)n for all n ≥ 0,

and

∥Ψ(n, ω)Pu(ω)∥ ≤ K(ω)eβ(ω)n for all n ≤ 0,

∥Ψ(n, ω)P cs(ω)∥ ≤ K(ω)eα(ω)n for all n ≥ 0.

The random linear transformation P (ω) transforms the random
dynamical system φ(n, ω, x) to

φ̃(n, ω, x) = P (θnω)φ(n, ω, P−1(ω)x) = Ψ(n, ω)x+ f̃(n, ω, x),
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where f̃(n, ω, x) = P (θnω)f(n, ω, P−1(ω)x). Without loss of general-
ity, under Hypotheses 2.7 and 2.8, we always obtain that the linear part
Φ(n, ω) of random dynamical system φ(n, ω, x) satisfies Lemma 2.11
and Corollary 2.12. Moreover, we fix the θ-invariant random variable
Θ(ω) : Ω → (0,+∞), which will be determined later. By [20, Lemma
2.7], we can choose K(ω) such that

(2.4) e−Θ(ω)|n|K(ω) ≤ K(θnω) ≤ eΘ(ω)|n|K(ω).

Moreover, now we need to generalize the results in [20, Lemma 2.7]
for the following case.

Lemma 2.13. Let f : Ω → (0,+∞) be tempered from above and
σ : Ω → (0,+∞) a θ-invariant random variable. Then there exists
a random variable tempered from above R(ω) such that :

(i) f(ω) ≤ R(ω),
(ii) R(θnω) ≤ eσ(ω)|n|R(ω).

Proof. Since f is tempered from above, there is for each ε a Cε with

f(θnω) ≤ Cε(ω)e
ε|n|.

Set
Rε(ω) := sup

n∈Z
{1, f(θnω)e−ε|n|}.

Clearly, 1 ≤ Rε(ω) <∞. Then,

f(θnω) ≤ Rε(ω)e
ε|n|.

It is obvious that Rε satisfies (i). Next, we prove that Rε(ω) is tempered
from above. Note that, for all n,m ∈ Z,

f(θn+mω) ≤ Rε(ω)e
ε|m|eε|n|

and
f(θn+mω) = f(θn(θmω)) ≤ Rε(θ

mω)eε|n|.

So, for all m ∈ Z, we get that

Rε(θ
mω) ≤ Rε(ω)e

ε|m|,
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which yields

lim sup
m→±∞

1

|m|
logRε(θ

mω) ≤ ε.

Following Rε(ω) ≥ 1, we have

lim sup
m→±∞

1

|m|
log+Rε(θ

mω) = lim sup
m→±∞

1

|m|
logRε(θ

mω) = 0,

where the second equality is a consequence of [1, Proposition 4.1.3].
Then Rε(ω) is tempered from above. For k ∈ N, let

Ω̃k =

{
ω ∈ Ω

∣∣∣ 1

k
≤ σ(ω) <

1

k − 1

}
.

By the above analysis, on each Ω̃k, there exists a random variable
tempered from above R1/k such that

f(θnω) ≤ R1/k(ω)e
|n|/k ≤ R1/k(ω)e

σ(ω)|n|.

Define a random variable R : Ω → (0,+∞) by R(ω) = R1/k(ω) for

ω ∈ Ω̃k. Hence, Lemma 2.13 is established. �

For the nonlinear term f(1, ω, x), we suppose that:

Hypothesis 2.14. There exists a ball

U(ω) = B(0, ρ0(ω)) = {x ∈ Rd | |x| < ρ0(ω)},

where ρ0 : Ω → (0,+∞) is tempered from below such that

sup
x∈U(ω)

∥Dk
xf(1, ω, x)∥Lk(Rd,Rd) ≤ B̃k(ω)

for all 0 ≤ k ≤ N < +∞, ω ∈ Ω,

where the B̃k are tempered from above and the Lk(Rd,Rd) are the
Banach space of all k-linear maps from Rd to Rd with the norm
∥ · ∥Lk(Rd,Rd).

In addition, to investigate the Hölder continuity of smooth invariant
manifolds, we also assume that:
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Hypothesis 2.15. There are tempered-from-above random Ã : Ω →
(0,+∞) and θ-invariant random variables τ : Ω → (0, 1] such that, for
each ω ∈ Ω,

∥DN
x f(1, ω, x)−DN

x f(1, ω, y)∥LN (Rd,Rd) ≤ Ã(ω)|x− y|τ(ω)

for all x, y ∈ U(ω).

Then, we introduce the cut-off function to modify the nonlinear term
f(1, ω, x). Let σ(s) be a C∞ function from (−∞,+∞) to [0, 1] with

σ(s) = 1 for |s| ≤ 1,

σ(s) = 0 for |s| ≥ 2,

sup
s∈R

|σ′(s)| ≤ 2.

Assume that ρ : Ω → (0,+∞) is a random variable tempered from
below such that 2ρ(ω) ≤ ρ0(ω). We modify f(1, ω, x) as follows.

Fρ(ω, x) =

{
σ(|x|/ρ(ω))f(1, ω, x) |x| ≤ 2ρ(ω),

0 |x| > 2ρ(ω).

Then f(1, ω, ·) is extended to the outside of U(ω). By a simple
calculation, we obtain the following.

Lemma 2.16.

(i) Fρ(ω, x) = f(1, ω, x) for all |x| ≤ ρ(ω);

(ii) ∥DxFρ(ω, x)∥L(Rd,Rd) ≤ 10B̃2(ω)ρ(ω) for all ω ∈ Ω and x ∈ Rd;

(iii) supx∈Rd ∥Dk
xFρ(ω, x)∥Lk(Rd,Rd) ≤ Bk(ω) for all 2 ≤ k ≤ N and

ω ∈ Ω, where each Bk(ω) is a random variable tempered from
above.

(iv) ∥Dk
xFρ(ω, x) − Dk

xFρ(ω, y)∥Lk(Rd,Rd) ≤ Ak(ω)|x − y|τ(ω) for all

0 ≤ k ≤ N and x, y ∈ Rd, where each Ak(ω) is random variable
tempered from above.

Set

L1(α, β) :=
eβ(ω)

β(ω)/(2(N + 1)2)− α(ω)
+

2

β(ω)
eβ(ω).
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We choose ρ(ω) such that

ρ(ω) ≤ min

{
L1(α, β)

−1

30K(θω)K(ω)B̃2(ω)
,

1

10K(θω)K(ω)B̃2(ω)
,

1

20B̃2(ω)K(θω)e|β(ω)|

}
.

The choice of numbers here is not optimal but is for convenience. Let
B1(ω) := (K(θω)K(ω))−1. The condition

∥DxFρ(ω, x)∥ ≤ 1

2K(θω)e|β(ω)|

implies that
ψ(1, ω, x) := Φ(1, ω)x+ Fρ(ω, x)

is a CN diffeomorphism on Rd. Then ψ(1, ω, x) generates a CN

modified random dynamical system.

Recall that {xn}n∈Z is an orbit of φ(n, ω, x0) if and only if

xn+1 = Φ(1, θnω)xn + f(1, θnω, xn) for all n ∈ Z.

Then by Lemma 2.16 (i), we obtain that, for every sequence xn ∈
B(0, ρ(θnω)), xn = φ(n, ω, x0) if and only if

(2.5) xn+1 = Φ(1, θnω)xn + Fρ(θ
nω, xn) for all n ∈ Z.

From now on, we consider modified equation (2.5). To simplify the
notation, the modified random dynamical system is still denoted by
φ(n, ω, x).

Let γ : Ω → R− be a θ-invariant random variable. We define the
Banach spaces

C+
γ(ω) :=

{
x = {xn}n∈Z+ | xn ∈ Rd, sup

n∈Z+

|xn|eγ(ω)n < +∞
}

with the norm
|x|+γ(ω) := sup

n∈Z+

|xn|eγ(ω)n,

C−
γ(ω) :=

{
x = {xn}n∈Z− | xn ∈ Rd, sup

n∈Z−
|xn|e−γ(ω)n < +∞

}
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with the norm
|x|−γ(ω) := sup

n∈Z−
|xn|e−γ(ω)n

and

Cγ(ω) :=
{
x = {xn}n∈Z | xn ∈ Rd, sup

n∈Z
|xn|eγ(ω)|n| < +∞

}
with the norm

|x|γ(ω) := sup
n∈Z

|xn|eγ(ω)|n|.

For the modified random dynamical system φ, we define the center-
stable set as

W cs(ω) := {x0 ∈ Rd | x = {xn}n∈Z+ ∈ C+
γ(ω)},

the center-unstable set as

W cu(ω) := {x0 ∈ Rd | x = {xn}n∈Z− ∈ C−
γ(ω)}

and the center set as

W c(ω) := {x0 ∈ Rd | x = {xn}n∈Z ∈ Cγ(ω)}.

Obviously, W cs(ω),W cu(ω) and W c(ω) are invariant for the random
dynamical system φ(n, ω, x).

3. Center-unstable, center-stable and center manifolds. In
this section, we will show the existence and smoothness of center-
unstable, center-stable and center manifolds for the modified random
dynamical system φ(n, ω, x) under certain conditions.

Before giving the center-unstable manifold theorem, we introduce
two important lemmas as follows.

Lemma 3.1. Assume that Hypotheses 2.7 and 2.8 hold. Let γ(ω) be a
θ-invariant random variable satisfying 0 > γ(ω) > −β(ω). Then, x =
{xn}n∈Z− ∈ C−

γ(ω) is an orbit of φ(n, ω, x) if and only if x = {xn}n∈Z−

satisfies the following equations:
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xn = Φcu(n, ω)ξ −
−1∑
i=n

Φcu(n− 1− i, θi+1ω)F cu
ρ (θiω, xi)

+
n−1∑

i=−∞
Φs(n− 1− i, θi+1ω)F s

ρ (θ
iω, xi) for all n ≤ −1,(3.1)

x0 = ξ +
−1∑

i=−∞
Φs(−1− i, θi+1ω)F s

ρ (θ
iω, xi),

where ξ := xcu0 = P cux0, Φτ (n, ω) := Φ(n, ω)P τ and F τ
ρ (ω, x) :=

P τFρ(ω, x) for τ = cu and s.

Proof. Assume that x = {xn}n∈Z− ∈ C−
γ(ω) is the orbit of φ(n, ω, x).

By equation (2.3), we have, for every k < n ≤ 0,

xn = Φ(n− k, θkω)xk +

n−1∑
i=k

Φ(n− 1− i, θi+1ω)Fρ(θ
iω, xi).

Let n = 0. Then Φ(−k, θkω) = Φ−1(k, ω) yields

xk = Φ(k, ω)x0 −
−1∑
i=k

Φ(k − 1− i, θi+1ω)Fρ(θ
iω, xi).

Switching index k back to n, we obtain

xn = Φ(n, ω)x0 −
−1∑
i=n

Φ(n− 1− i, θi+1ω)Fρ(θ
iω, xi)(3.2)

for all n ≤ −1.

Using projection P cu in equation (3.2), we find that xn’s center-
unstable component satisfies

(3.3) xcun = Φcu(n, ω)xcu0 −
−1∑
i=n

Φcu(n− 1− i, θi+1ω)F cu
ρ (θiω, xi).

Applying the stable projection P s to equation (2.3), we get

(3.4) xsn = Φs(n− k, θkω)xsk +
n−1∑
i=k

Φs(n− 1− i, θi+1ω)F s
ρ (θ

iω, xi).
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Since {xn}n∈Z− ∈ C−
γ(ω), it then follows from Lemma 2.12 that

|Φs(n−k, θkω)xsk| ≤ K(θkω)e−β(ω)(n−k)eγ(ω)k|x|−γ(ω) −→ 0 as k → −∞,

where the fact that K(ω) is tempered is used. Thus, letting k → −∞
in equation (3.4), we obtain

(3.5) xsn =

n−1∑
i=−∞

Φs(n− 1− i, θi+1ω)F s
ρ (θ

iω, xi).

In particular, when n = 0,

(3.6) xs0 =
−1∑

i=−∞
Φs(−1− i, θi+1ω)F s

ρ (θ
iω, xi).

By equations (3.3), (3.5) and (3.6), equation (3.1) is established. The
converse direction follows from straightforward computation. Thus, the
proof is complete. �

Lemma 3.2. Assume that Hypotheses 2.7–2.14 hold. For each

γ(ω) ∈
[
− β(ω)

2
,− β(ω)

2(N + 1)2

]
,

equation (3.1) has a unique solution x(ξ, ω) ∈ C−
γ(ω) with xcu0 = ξ for

all ξ ∈ Ecu, and

(i) the solution x(ξ, ω) is independent of

γ(ω) ∈
[
− β(ω)

2
,− β(ω)

2(N + 1)2

]
;

(ii) x(ξ, ω) is B(Ecu)⊗F-measurable and x(ξ, ω) is Lipschitz contin-
uous in ξ with

Lipx(·, ω) ≤ 3K(ω)

2
.

Furthermore, for any

γ ∈
[
− β(ω)

2(N + 1)
,− β(ω)

2(N + 1)2

]
,

(iii) x(·, ω) is CN from Ecu to C−
Nγ(ω) with x(0, ω) = 0 and

Dξxn(0, ω) = Φcu(n, ω);
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(iv) for each 1 ≤ i ≤ N , there exists a θ-invariant random variable
ζ(ω) = ζγ(ω) > 0 such that

∥Di
ξx(ξ, ω)∥Li(Ecu,C−

iγ(ω)+ζ(ω)
) ≤ Ki(ω),

where each Ki(ω) is random variable tempered from above;
(v) in addition, if Hypothesis 2.15 holds, x(·, ω) is CN,τ(ω) from

Ecu to C−
(N+τ(ω))γ(ω).

Proof. First, we will prove that equation (3.1) has a unique solution
x = x(ξ, ω) which is Lipschitz continuous with ξ ∈ Ecu.

Let T cu(x, ξ, ω) denote the right hand side of equation (3.1). Set
y = {yn}n∈Z− =: T cu(x, ξ, ω). Multiplying both sides of equation (3.1)
by e−γ(ω)n, by virtue of Lemma 2.16, we get that

e−γ(ω)n|yn| ≤ K(ω)|ξ|+ 1

3
L1(α, β)

−1L(α, β, γ)|x|−γ(ω)(3.7)

for all n ≤ −1,

where

L(α, β, γ) := −
e−γ(ω)

α(ω) + γ(ω)
+

eβ(ω)

γ(ω) + β(ω)
.

Similarly, we have

|y0| ≤ |ξ|+ 1

3
L1(α, β)

−1 eβ(ω)

γ(ω) + β(ω)
|x|−γ(ω).

Thus, T cu(·, ξ, ω) is a self-map on C−
γ(ω).

For every x,x ∈ C−
γ(ω), we obtain

|yn − yn| ≤
−1∑
i=n

∥Φcu(n− 1− i, θi+1ω)∥

× |F cu
ρ (θiω, xi)−F cu

ρ (θiω, xi)|+
n−1∑

i=−∞
∥Φs(n−1−i, θi+1ω)∥

× |F s
ρ (θ

iω, xi)− F s
ρ (θ

iω, xi)| for all n ≤ −1,
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where y = {yn}n∈Z− := T cu(x, ξ, ω), which implies

|yn − yn|e−γ(ω)n ≤ 1

3
L1(α, β)

−1L(α, β, γ)|x− x|−γ(ω).

Similarly,

|y0 − y0| ≤
1

3
L1(α, β)

−1 eβ(ω)

γ(ω) + β(ω)
|x− x|−γ(ω).

Then, we obtain that

|T cu(x, ξ, ω)− T cu(x, ξ, ω)|−γ(ω) ≤
1

3
L1(α, β)

−1L(α, β, γ)|x− x|−γ(ω).

Since

(3.8) L(α, β, γ) ≤ L1(α, β) for all γ ∈
[
− β(ω)

2
,− β(ω)

2(N + 1)2

]
,

it then follows that T cu(·, ξ, ω) is a uniform contraction with respect
to the parameter ξ. By the contraction mapping principle, we have
that, for each ξ ∈ Ecu, T cu(·, ξ, ω) has a unique fixed point x(ξ, ω).
Obviously, x(0, ω) = 0. Moreover, for every ξ, ξ0 ∈ Ecu and n ≤ −1,
we have

|xn(ξ, ω)− xn(ξ0, ω)|e−γ(ω)n ≤ K(ω)|ξ − ξ0|

+
1

3
L1(α, β)

−1L(α, β, γ)|x(ξ, ω)− x(ξ0, ω)|−γ(ω).

Hence,

(3.9) |x(ξ, ω)− x(ξ0, ω)|−γ(ω) ≤
3K(ω)

2
|ξ − ξ0|.

Since x(ξ, ω) is the ω-wise limit of iteration of contraction mapping
T cu starting at 0 and T cu maps a F-measurable function to a measur-
able function, x(ξ, ω) is F-measurable. Besides, equation (3.9) shows
that, for any ω ∈ Ω, x(·, ω) is Lipschitz continuous. By [7, Lemma
III.14], x(ξ, ω) is B(Ecu)⊗F-measurable.

Noting that

−β(ω)
2

≤ γ′(ω) ≤ γ′′(ω) ≤ − β(ω)

2(N + 1)2
,
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we have that C−
γ′′(ω) ⊂ C−

γ′(ω). Then, a fixed point in C−
γ′′(ω) must be

in C−
γ′(ω). This implies that x(ξ, ω) is independent of

γ(ω) ∈
[
− β(ω)

2
,− β(ω)

2(N + 1)2

]
.

For each

γ(ω) ∈
[
− β(ω)

2(N + 1)
,− β(ω)

2(N + 1)2

]
,

we choose a θ-invariant random variable ζ(ω) > 0 such that

−β(ω)
2

< ℓγ(ω) + ζ(ω) < ℓγ(ω) + 2ζ(ω) < − β(ω)

2(N + 1)2

for all ℓ = 1, . . . , N.

Next we prove that x(·, ω) ∈ CN by induction. In order to fulfill this
goal, we first prove that x(·, ω) is differentiable from Ecu to C−

γ(ω)+ζ(ω)

and then show that Dξx(·, ω) : Ecu → L(Ecu, C−
γ(ω)) is continuous.

Define the linear operator G : C−
γ(ω)+ζ(ω) → C−

γ(ω)+ζ(ω) by

(Gv)n = −
−1∑
i=n

Φcu(n− 1− i, θi+1ω)DxF
cu
ρ (θiω, xi(ξ0, ω))vi

+

n−1∑
i=−∞

Φs(n− 1− i, θi+1ω)DxF
s
ρ (θ

iω, xi(ξ0, ω))vi(3.10)

for all n ≤ −1,

(Gv)0 =

−1∑
i=−∞

Φs(−1− i, θi+1ω)DxF
s
ρ (θ

iω, xi(ξ0, ω))vi.

It is clear that G is a bounded linear operator on C−
γ(ω)+ζ(ω) with the

norm

∥G∥ ≤ 1

3
L1(α, β)

−1L(α, β, γ + ζ).

By equation (3.8), we see that Id − G has a bounded inverse in
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C−
γ(ω)+ζ(ω). Let

In = −
−1∑
i=n

Φcu(n−1−i, θi+1ω)

(
F cu
ρ (θiω, xi(ξ, ω))−F cu

ρ (θiω, xi(ξ0, ω))

−DxF
cu
ρ (θiω, xi(ξ0, ω))(xi(ξ, ω)− xi(ξ0, ω))

)
+

n−1∑
i=−∞

Φs(n−1−i, θi+1ω)

(
F s
ρ (θ

iω, xi(ξ, ω))−F s
ρ (θ

iω, xi(ξ0, ω))

−DxF
s
ρ (θ

iω, xi(ξ0, ω))(xi(ξ, ω)− xi(ξ0, ω))

)
for all n ≤ −1,

I0 =
−1∑

i=−∞
Φs(−1− i, θi+1ω)

(
F s
ρ (θ

iω, xi(ξ, ω))− F s
ρ (θ

iω, xi(ξ0, ω))

−DxF
s
ρ (θ

iω, xi(ξ0, ω))(xi(ξ, ω)− xi(ξ0, ω))

)
.

We denote the bounded operator Lcu : Ecu → C−
γ(ω)+ζ(ω) by (Lcuξ)n :=

Φcu(n, ω)ξ. Set I := {In}n∈Z− . Next, we prove the claim |I|−γ(ω)+ζ(ω) =

o(|ξ − ξ0|). Divide e−(γ(ω)+ζ(ω))nIn by a sum of four terms, i.e.,
e−(γ(ω)+ζ(ω))nIn = I ′n + I ′′n + I ′′′n + I ′′′′n , where

I ′n = −e−(γ(ω)+ζ(ω))n
N̄−1∑
i=n

Φcu(n− 1− i, θi+1ω)

×
(
F cu
ρ (θiω, xi(ξ, ω))− F cu

ρ (θiω, xi(ξ0, ω))

−DxF
cu
ρ (θiω, xi(ξ0, ω))(xi(ξ, ω)− xi(ξ0, ω))

)
for n < N ≤ −1 and I ′n = 0 for 0 ≥ n ≥ N ,

I ′′n = −e−(γ(ω)+ζ(ω))n
−1∑
i=N̄

Φcu(n− 1− i, θi+1ω)

×
(
F cu
ρ (θiω, xi(ξ, ω))− F cu

ρ (θiω, xi(ξ0, ω))
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−DxF
cu
ρ (θiω, xi(ξ0, ω))(xi(ξ, ω)− xi(ξ0, ω))

)
for n < N ≤ −1 and change N to n if −1 ≥ n ≥ N and I ′′n = 0 if
n = 0,

I ′′′n = e−(γ(ω)+ζ(ω))n

¯̄N−1∑
i=−∞

Φs(n− 1− i, θi+1ω)

×
(
F s
ρ (θ

iω, xi(ξ, ω))− F s
ρ (θ

iω, xi(ξ0, ω))

−DxF
s
ρ (θ

iω, xi(ξ0, ω))(xi(ξ, ω)− xi(ξ0, ω))

)
for N < n ≤ 0 and change N − 1 to n− 1 for N ≥ n, and

I ′′′′n = e−(γ(ω)+ζ(ω))n
n−1∑
i= ¯̄N

Φs(n− 1− i, θi+1ω)

×
(
F s
ρ (θ

iω, xi(ξ, ω))− F s
ρ (θ

iω, xi(ξ0, ω))

−DxF
s
ρ (θ

iω, xi(ξ0, ω))(xi(ξ, ω)− xi(ξ0, ω))

)
for N < n ≤ 0 and I ′′′′n = 0 for N ≥ n. Here, −N and −N are
large positive numbers to be chosen later. We first observe that, for
n < N ≤ −1,

|I ′n| ≤ eα(ω)+(−α(ω)−γ(ω)−ζ(ω))n

+
N̄−1∑
i=n

20K(θi+1ω)B̃2(θ
iω)ρ(θiω)e(γ(ω)+2ζ(ω)+α(ω))i

· |x(ξ, ω)− x(ξ0, ω)|−γ(ω)+2ζ(ω)

≤ 2L1(α, β)
−1

−3(α(ω) + γ(ω) + 2ζ(ω))

× e−γ(ω)−2ζ(ω)+ζ(ω)N̄ |x(ξ, ω)− x(ξ0, ω)|−γ(ω)+2ζ(ω)

≤ 2L1(α, β)
−1

−3(α(ω) + γ(ω) + 2ζ(ω))
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× e−γ(ω)−2ζ(ω)+ζ(ω)N̄ · 3K(ω)

2
|ξ − ξ0|,

where the last inequality follows from equation (3.9). Choose −N large
enough so that

(3.11) sup
n∈Z−

|I ′n| ≤
ε

4
|ξ − ξ0|.

Fix N . We have that, for every n ∈ Z−,

|I ′′n | ≤ |x(ξ, ω)− x(ξ0, ω)|−γ(ω)

×
(
eα(ω)+(−α(ω)−γ(ω)−ζ(ω))n

−1∑
i=N̄

K(θi+1ω)e(γ(ω)+α(ω))i

×
∫ 1

0

∥DxF
cu
ρ (θiω, sxi(ξ, ω) + (1− s)xi(ξ0, ω))

−DxF
cu
ρ (θiω, xi(ξ0, ω))∥ ds

)
.

Since Fρ(ω, x) ∈ CN N ≥ 2, for each ε > 0, there exists δi = δi(ω)
such that, if |ξ − ξ0| < δi,

∥DxF
cu
ρ (θiω, sxi(ξ, ω) + (1− s)xi(ξ0, ω))

−DxF
cu
ρ (θiω, xi(ξ0, ω))∥

≤ ε

−6NK(ω)K(θi+1ω)e(γ(ω)+α(ω))ieα(ω)

for i = N, . . . ,−1.

Letting δ = minN̄≤i≤−1{δi} and recalling equation (3.9), we obtain as

|ξ − ξ0| < δ,

(3.12) sup
n∈Z−

|I ′′n | ≤
ε

4
|ξ − ξ0|.

Similarly, we choose −N large enough so that

(3.13) sup
n∈Z−

|I ′′′n | ≤ ε

4
|ξ − ξ0|,
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and there exists δ = δ(ω) such that, as |ξ − ξ0| < δ,

(3.14) sup
n∈Z−

|I ′′′′n | ≤ ε

4
|ξ − ξ0|.

Taking δ̃ := min{δ, δ} and combining (3.11)–(3.14), we obtain that

|I|−γ(ω)+ζ(ω) ≤ ε|ξ − ξ0| for |ξ − ξ0| < δ̃.

Then the claim is true. Thus,

x(ξ, ω)− x(ξ0, ω) = (Id− G)−1Lcu(ξ − ξ0) + o(|ξ − ξ0|).

This yields x(ξ, ω) is differentiable in ξ and

Dξx(ξ, ω) ∈ L(Ecu, C−
γ(ω)+ζ(ω)).

By equation (3.1), we find Dξx(·, ω) : Ecu → L(Ecu, C−
γ(ω)+ζ(ω))

satisfies

Dξxn(ξ, ω) = Φcu(n, ω)

−
−1∑
i=n

Φcu(n−1−i, θi+1ω)DxF
cu
ρ (θiω, xi(ξ, ω))Dξxi(ξ, ω)

+
n−1∑

i=−∞
Φs(n−1−i, θi+1ω)DxF

s
ρ (θ

iω, xi(ξ, ω))Dξxi(ξ, ω)(3.15)

for all n ≤ −1,

Dξx0(ξ, ω)=Id +
−1∑

i=−∞
Φs(−1−i, θi+1ω)DxF

s
ρ (θ

iω, xi(ξ, ω))Dξxi(ξ, ω).

Furthermore,

∥Dξx(ξ, ω)∥L(Ecu,C−
γ(ω)+ζ(ω)

) ≤
3K(ω)

2
.

By the contraction mapping principle, Dξx(ξ, ω) is a unique solution
of equation (3.15). Recalling that DxF (ω, 0) = 0 and x(0, ω) = 0, we
have Dξxn(0, ω) = Φcu(n, ω).

To prove that Dξx(ξ, ω) is continuous with respect to ξ, we define
the operator G1 : L(Ecu, C−

γ(ω)) → L(Ecu, C−
γ(ω)) by the right hand side
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of equation (3.10) with ξ in place of ξ0. Let H := {Hn}n∈Z− , where

Hn = −
−1∑
i=n

Φcu(n− 1− i, θi+1ω)(DxF
cu
ρ (θiω, xi(ξ, ω))

−DxF
cu
ρ (θiω, xi(ξ0, ω)))Dξxi(ξ0, ω)

+
n−1∑

i=−∞
Φs(n− 1− i, θi+1ω)(DxF

s
ρ (θ

iω, xi(ξ, ω))

−DxF
s
ρ (θ

iω, xi(ξ0, ω)))Dξxi(ξ0, ω) for all n ≤ −1,

H0 =
−1∑

i=−∞
Φs(−1− i, θi+1ω)(DxF

s
ρ (θ

iω, xi(ξ, ω))

−DxF
s
ρ (θ

iω, xi(ξ0, ω)))Dξxi(ξ0, ω).

Then, we have

(3.16) Dξx(ξ, ω)−Dξx(ξ0, ω) = G1(Dξx(ξ, ω)−Dξx(ξ0, ω)) +H.

Using the same procedure as for I, we get ∥H∥L(Ecu, C−
γ(ω)

) = o(1) as

ξ → ξ0. On the other hand, it follows from equation (3.10) that

∥G1∥ ≤ 1

3
L1(α, β)

−1L(α, β, γ).

Equation (3.8) implies Id−G1 has a bounded inverse in L(Ecu, C−
γ(ω)).

In view of equation (3.16) we see that Dξx(ξ, ω) is continuous with
respect to ξ.

Now, we use inductive assumption to prove that x(·, ω) is Cj from
Ecu to C−

jγ(ω) for all 1 ≤ j ≤ m − 1, 2 ≤ m ≤ N . Assume that there

exist random variables tempered from above Kj(ω) such that

(3.17) ∥Dj
ξx(ξ, ω)∥Lj(Ecu,C−

jγ(ω)+ζ(ω)
) ≤ Kj(ω)

and prove it for j = m. By simple computation, when m ≥ 3,
Dm−1

ξ x(·, ω) satisfies the following:

Dm−1
ξ xn(ξ, ω) = −

−1∑
i=n

Φcu(n− 1− i, θi+1ω)DxF
cu
ρ (θiω, xi(ξ, ω))
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×Dm−1
ξ xi(ξ, ω) +

n−1∑
i=−∞

Φs(n− 1− i, θi+1ω)DxF
s
ρ (θ

iω, xi(ξ, ω))

×Dm−1
ξ xi(ξ, ω)−

−1∑
i=n

Φcu(n− 1− i, θi+1ω)Rcu
m−1,i(ξ, ω)

(3.18)

+
n−1∑

i=−∞
Φs(n− 1− i, θi+1ω)Rs

m−1,i(ξ, ω)

for all n ≤ −1,

Dm−1
ξ x0(ξ, ω) =

−1∑
i=−∞

Φs(−1− i, θi+1ω)DxF
s
ρ (θ

iω, xi(ξ, ω))

×Dm−1
ξ xi(ξ, ω) +

−1∑
i=−∞

Φs(−1− i, θi+1ω)Rs
m−1,i(ξ, ω),

where

Rτ
m−1,i(ξ, ω) =

m−3∑
l=0

(
m− 2

l

)
Dm−2−l

ξ

(
DxF

τ
ρ (θ

iω, xi(ξ, ω))
)
Dl+1

ξ xi(ξ, ω)

for τ = cu, s. In the case of m = 2, see equation (3.15). We only
prove m ≥ 3 for brevity. The proof for m = 2 is similar. By the
chain rule, we obtain that each term in Rτ

m−1,i(ξ, ω) contains factors

Dl1
x F

τ
ρ (θ

iω, xi(ξ, ω)) for some 2 ≤ l1 ≤ m − 1, and at least two

derivatives Dl2
ξ xi(ξ, ω) and D

l3
ξ xi(ξ, ω) for some l2, l3 ∈ {1, . . . ,m− 2}.

SinceDl
ξx(ξ, ω) ∈ C−

lγ(ω) for l = 1, . . . ,m−1 and F is CN , Rcu
m−1,i(·, ω) :

Ecu → Lm−1(Ecu, Ecu) and Rs
m−1,i(·, ω) : Ecu → Lm−1(Ecu, Es) are

C1. Furthermore, we have

∥DξR
τ
m−1,i(ξ, ω)∥ ≤ Bm(θiω)K̃m(ω)e(mγ(ω)+2ζ(ω))i for τ = cu, s,

where Bm(ω) = max1≤i≤mBi(ω) and K̃m(ω) is the mth-order polyno-
mial of K1(ω), . . . ,Km−1(ω) with positive integer coefficients that are
tempered from above. Let J(ξ, ω) := {Jn(ξ, ω)}n∈Z− , where

Jn(ξ, ω) = −
−1∑
i=n

Φcu(n− 1− i, θi+1ω)Rcu
m−1,i(ξ, ω)
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+
n−1∑

i=−∞
Φs(n− 1− i, θi+1ω)Rs

m−1,i(ξ, ω) for all n ≤ −1,(3.19)

J0(ξ, ω) =
−1∑

i=−∞
Φs(−1− i, θi+1ω)Rs

m−1,i(ξ, ω).

Note that, for n ≤ i ≤ −1,

(3.20) ∥Φcu(n− 1− i, θi+1ω)DξR
cu
m−1,i(ξ, ω)∥

≤
(
K(θi+1ω)Bm(θiω)eζ(ω)i

)
× K̃m(ω)e−α(ω)(n−1−i)e(mγ(ω)+ζ(ω))i,

and, for i ≤ n− 1 ≤ −1,

(3.21) ∥Φs(n− 1− i, θi+1ω)DξR
s
m−1,i(ξ, ω)∥

≤
(
K(θi+1ω)Bm(θiω)eζ(ω)i

)
× K̃m(ω)e−β(ω)(n−1−i)e(mγ(ω)+ζ(ω))i.

Since K(θi+1ω)Bm(θiω)eζ(ω)i is bounded by a tempered-from-above
random variable K∗(ω) independent of i (see Lemma 2.13), by equa-
tions (3.19)–(3.21), we get that Jn(ξ, ω) in ξ is C1 for all n ≤ 0 and

∥DξJn(ξ, ω)∥e−(mγ(ω)+ζ(ω))n ≤ K∗(ω)K̃m(ω)L(α, β,mγ + ζ).

We consider a linear operator G on Lm−1(Ecu, C−
mγ(ω)+ζ(ω)) that is

defined by equation (3.10). Let Im := {Imn }n∈Z− , where

Imn = −
−1∑
i=n

Φcu(n− 1− i, θi+1ω)
(
DxF

cu
ρ (θiω, xi(ξ, ω))

−DxF
cu
ρ (θiω, xi(ξ0, ω))

)
Dm−1

ξ xi(ξ, ω)

+
n−1∑

i=−∞
Φs(n− 1− i, θi+1ω)

(
DxF

s
ρ (θ

iω, xi(ξ, ω))

−DxF
s
ρ (θ

iω, xi(ξ0, ω))
)
Dm−1

ξ xi(ξ, ω) +Rm
n
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for all n ≤ −1,

Im0 =
−1∑

i=−∞
Φs(−1− i, θi+1ω)(DxF

s
ρ (θ

iω, xi(ξ, ω))

−DxF
s
ρ (θ

iω, xi(ξ0, ω)))D
m−1
ξ xi(ξ, ω) +Rm

0 ,

and

Rm
n =

−1∑
i=n

Φu(n− 1− i, θi+1ω)DxxF
cu
ρ (θiω, xi(ξ0, ω))

× (xi(ξ, ω)− xi(ξ0, ω))D
m−1
ξ xi(ξ, ω)

−
n−1∑

i=−∞
Φs(n− 1− i, θi+1ω)DxxF

s
ρ (θ

iω, xi(ξ0, ω))

× (xi(ξ, ω)− xi(ξ0, ω))D
m−1
ξ xi(ξ, ω) for all n ≤ −1,

Rm
0 = −

−1∑
i=−∞

Φs(n− 1− i, θi+1ω)DxxF
s
ρ (θ

iω, xi(ξ0, ω))

× (xi(ξ, ω)− xi(ξ0, ω))D
m−1
ξ xi(ξ, ω).

Let Rm := {Rm
n }n∈Z− . By equation (3.18), we have

(3.22) Dm−1
ξ x(ξ, ω)−Dm−1

ξ x(ξ0, ω)

− G(Dm−1
ξ x(ξ, ω)−Dm−1

ξ x(ξ0, ω))

= J(ξ, ω)− J(ξ0, ω) + Im −Rm.

Since ∥G∥ ≤ 1/3, the inverse operator (Id − G)−1 exists in Lm−1(Ecu,
C−

mγ(ω)+ζ(ω)). Then equation (3.22) is equivalent to

Dm−1
ξ x(ξ, ω)−Dm−1

ξ x(ξ0, ω) = (Id− G)−1(DξJ(ξ0, ω)(ξ − ξ0)−Rm)

+ (Id− G)−1(J(ξ, ω)− J(ξ0, ω)

−DξJ(ξ0, ω)(ξ − ξ0) + Im).

Using the same method as for I, by inductive assumption we obtain

∥Im∥Lm−1(Ecu,C−
mγ(ω)+ζ(ω)

) = o(|ξ − ξ0|),

as ξ → ξ0. Furthermore,
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∥J(ξ, ω)− J(ξ0, ω)−DξJ(ξ0, ω)(ξ − ξ0) + Im∥Lm−1(Ecu,C−
mγ(ω)+ζ(ω)

)

= o(|ξ − ξ0|),

as ξ → ξ0. Hence, D
m
ξ x(ξ, ω) exists and

Dm
ξ x(ξ, ω) ∈ Lm(Ecu, C−

mγ(ω)+ζ(ω)).

From equation (3.18), we find Dm
ξ x(·, ω) : Ecu → Lm(Ecu,

C−
mγ(ω)+ζ(ω)) satisfies

Dm
ξ xn(ξ, ω)=−

−1∑
i=n

Φcu(n−1−i, θi+1ω)DxxF
cu
ρ (θiω, xi(ξ, ω))

×Dξxi(ξ, ω)D
m−1
ξ xi(ξ, ω)−

−1∑
i=n

Φcu(n−1−i, θi+1ω)DxF
cu
ρ (θiω, xi(ξ, ω))

×Dm
ξ xi(ξ, ω) +

n−1∑
i=−∞

Φs(n−1−i, θi+1ω)DxxF
s
ρ (θ

iω, xi(ξ, ω))

×Dξxi(ξ, ω)D
m−1
ξ xi(ξ, ω)+

n−1∑
i=−∞

Φs(n−1−i, θi+1ω)DxF
s
ρ (θ

iω, xi(ξ, ω))

×Dm
ξ xi(ξ, ω)−

−1∑
i=n

Φcu(n− 1− i, θi+1ω)DξR
cu
m−1,i(ξ, ω)(3.23)

+
n−1∑

i=−∞
Φs(n−1−i, θi+1ω)DξR

s
m−1,i(ξ, ω)

for all n ≤ −1,

Dm
ξ x0(ξ, ω)=

−1∑
i=−∞

Φs(−1−i, θi+1ω)DxxF
s
ρ (θ

iω, xi(ξ, ω))

×Dξxi(ξ, ω)D
m−1
ξ xi(ξ, ω)+

−1∑
i=−∞

Φs(−1−i, θi+1ω)DxF
s
ρ (θ

iω, xi(ξ, ω))

×Dm
ξ xi(ξ, ω) +

−1∑
i=−∞

Φs(−1− i, θi+1ω)DξR
s
m−1,i(ξ, ω).
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Set

Km(ω) :=
L(α, β,mγ + ζ)[K∗(ω)K1(ω)Km−1(ω) +K∗(ω)K̃m(ω)]

1− (1/3)L1(α, β)−1L(α, β,mγ + ζ)
.

By simple computation, we have

∥Dm
ξ x(ξ, ω)∥Lm(Ecu,C−

mγ(ω)+ζ(ω)
) ≤ Km(ω).

Next we prove that Dm
ξ x(·, ω) : Ecu → Lm(Ecu, C−

mγ(ω)) is contin-

uous. We change ξ0 to ξ on the right hand side of equation (3.10) and
define the operator as G1 : Lm(Ecu, C−

mγ(ω)) → Lm(Ecu, C−
mγ(ω)). Let

Q := {Qn}n∈Z− , where

Qn=−
−1∑
i=n

Φcu(n−1−i, θi+1ω)DxxF
cu
ρ (θiω, xi(ξ, ω))

×Dξxi(ξ, ω)D
m−1
ξ xi(ξ, ω) +

n−1∑
i=−∞

Φs(n−1−i, θi+1ω)DxxF
s
ρ (θ

iω, xi(ξ, ω))

×Dξxi(ξ, ω)D
m−1
ξ xi(ξ, ω)−

−1∑
i=n

Φcu(n− 1− i, θi+1ω)DξR
cu
m−1,i(ξ, ω)

+
n−1∑

i=−∞
Φs(n−1−i, θi+1ω)DξR

s
m−1,i(ξ, ω)

for all n ≤ −1,

Q0 =
−1∑

i=−∞
Φs(−1− i, θi+1ω)DxxF

s
ρ (θ

iω, xi(ξ, ω))

×Dξxi(ξ, ω)D
m−1
ξ xi(ξ, ω) +

−1∑
i=−∞

Φs(−1− i, θi+1ω)DξR
s
m−1,i(ξ, ω).

From equations (3.23) and (3.10) we have

Dm
ξ x(ξ, ω)−Dm

ξ x(ξ0, ω) = G1(D
m
ξ x(ξ, ω)−Dm

ξ x(ξ0, ω)) +Q.

Obviously, ∥G1∥ ≤ 1/3. This implies that Id−G1 has a bounded inverse
in Lm(Ecu, C−

mγ(ω)). By the same procedure as for H, we can prove
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that
∥Q∥Lm(Ecu, C−

mγ(ω)
) = o(1) as ξ → ξ0.

Then Dm
ξ x(ξ, ω) is continuous in Lm(Ecu, C−

mγ(ω)). By inductive

assumption, the results in Lemma 3.2 (iii)–(iv) are established.

It remains to prove that x(·, ω) ∈ CN,τ(ω). Clearly, for each

γ ∈
[
− β(ω)

2(N + 1)
,− β(ω)

2(N + 1)2

]
,

x(·, ω) is Ci from Ecu to C−
(i+τ(ω))γ(ω) for i = 1, . . . , N . Following

equations (3.9), (3.15) and (3.17), Lemmas 2.13 and 2.16,

∥Dξxi(ξ, ω)−Dξxi(ξ0, ω)∥e−(1+τ(ω))γ(ω)i

≤ 1

3
L1(α, β)

−1L(α, β, (1 + τ)γ)∥Dξx(ξ, ω)−Dξx(ξ0, ω)∥−(1+τ(ω))γ(ω)

+ V a
1 (ω)|ξ − ξ0|τ(ω),

where

V a
1 (ω) :=

(
3K(ω)

2

)τ(ω)

A1(ω)K1(ω)L(α, β, (1 + τ)γ)

and A1(ω) is the tempered-from-above random variable such that
K(θi+1ω)A1(θ

iω)eζ(ω)i ≤ A1(ω). Then, by equation (3.8), we get that

∥Dξx(ξ, ω)−Dξx(ξ0, ω)∥−(1+τ(ω))γ(ω)

≤ V a
1 (ω)

1− (1/3)L1(α, β)−1L(α, β, (1 + τ)γ)
|ξ − ξ0|τ(ω).

Let

Ka
1 (ω) :=

V a
1 (ω)

1− (1/3)L1(α, β)−1L(α, β, (1 + τ)γ)
.

We assume that, for all 1 ≤ j ≤ m−1, 2 ≤ m ≤ N , there exist random
variables tempered from above Ka

j (ω) such that

∥Dj
ξx(ξ, ω)−Dj

ξx(ξ0, ω)∥
−
(j+τ(ω))γ(ω) ≤ Ka

j (ω)|ξ − ξ0|τ(ω)

and prove it for j = m. By inductive assumption, we obtain that, for
each ξ, ξ0 ∈ Ecu and τ = s, u,
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(3.24) ∥DξR
τ
m−1,i(ξ, ω)−DξR

τ
m−1,i(ξ0, ω)∥

≤
[
Am(θiω)K̃m(ω)e[γ(ω)(m+τ(ω))+2ζ(ω)]i

(
3K(ω)

2

)τ(ω)

+Bm(θiω)
˜̃
Km(ω)e[γ(ω)(m+τ(ω))+2ζ(ω)]i

]
|ξ − ξ0|τ(ω),

where Am(ω) = max0≤i≤mAi(ω), Bm(ω) = max1≤i≤mBi(ω) and

K̃m(ω) and
˜̃
Km(ω) are, respectively, the mth-order polynomial of

K1(ω), . . . ,Km−1(ω) and the mth-order polynomial of K1(ω),K
a
1 (ω),

. . . ,Km−1(ω),K
a
m−1(ω) with positive integer coefficients that are tem-

pered from above.

Applying Lemma 2.13 again, we directly see that K(θi+1ω)×
A2(θ

iω)e2ζ(ω)i, K(θi+1ω)Am(θiω)e2ζ(ω)i, K(θi+1ω)B2(θ
iω)eζ(ω)i and

K(θi+1ω)Bm(θiω)e2ζ(ω)i are bounded by tempered-from-above random
variables A2(ω), Am(ω), B2(ω) and Bm(ω) independent of i. Using
equations (3.23) and (3.24), by simple calculations we have

∥Dm
ξ xi(ξ, ω)−Dm

ξ xi(ξ0, ω)∥e−(m+τ(ω))γ(ω)i

≤ 1

3
L1(α, β)

−1L(α, β, (m+ τ)γ)

× ∥Dm
ξ x(ξ, ω)−Dm

ξ x(ξ0, ω)∥−(m+τ(ω))γ(ω) +Ka(ω)|ξ − ξ0|τ(ω),

where

Ka(ω) :=

[
A2(ω)

(
3K(ω)

2

)τ(ω)

K1(ω)Km−1(ω)

+B2(ω)K
a
1 (ω)Km−1(ω) +B2(ω)K1(ω)K

a
m−1(ω)

+A1(ω)

(
3K(ω)

2

)τ(ω)

Km(ω)

+Am(ω)K̃m(ω)

(
3K(ω)

2

)τ(ω)

+Bm(ω)
˜̃
Km(ω)

]
L(α, β, (m+ τ)γ).

Set

Ka
m(ω) :=

Ka(ω)

1− (1/3)L1(α, β)−1L(α, β, (m+ τ)γ)
.
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Then we obtain that

(3.25) ∥Dm
ξ x(ξ, ω)−Dm

ξ x(ξ0, ω)∥−(m+τ(ω))γ(ω) ≤ Ka
m(ω)|ξ − ξ0|τ(ω).

It follows from inductive assumption that the proof of Lemma 3.2 is
complete. �

Now we provide the center-unstable manifold theorem.

Theorem 3.3 (Center-unstable manifold theorem). Assume that Hy-
potheses 2.7–2.14 hold. Then the center-unstable set is a CN manifold,
which is given by

W cu(ω) = {ξ + hcu(ξ, ω) | ξ ∈ Ecu},

where hcu : Ecu × Ω → Es satisfies the following :

(i) hcu(ξ, ω) is B(Ecu)⊗F-measurable and hcu(ξ, ω) is CN in ξ with

Lip hcu(·, ω) < 1, hcu(0, ω) = 0, Dξh
cu(0, ω) = 0;

(ii) ∥Di
ξh

cu(ξ, ω)∥ ≤ K̂i(ω) for all 0 ≤ i ≤ N < +∞, where each

K̂i(ω) is random variable tempered from above;
(iii) W cu

loc(ω) = {x ∈ W cu(ω) | x ∈ B(0, ρ(ω))} is a local unstable-
center manifold of the original system (2.1);

(iv) in addition, if Hypothesis 2.15 holds, hcu(·, ω) ∈ CN,τ(ω), and

there is a random variable tempered from above K̂N+1(ω) such
that

∥DN
ξ h

cu(ξ, ω)−DN
ξ h

cu(ξ0, ω)∥≤K̂N+1(ω)|ξ−ξ0|τ(ω) for all ξ, ξ0∈Ecu.

Proof. We define hcu : Ecu × Ω → Es by

hcu(ξ, ω) := xs0(ξ, ω)

=
−1∑

i=−∞
Φs(−1− i, θi+1ω)F s

ρ (θ
iω, xi(ξ, ω)).

By Lemma 3.1, we see that

W cu(ω) = {x0(ξ, ω) | ξ ∈ Ecu} = {ξ + hcu(ξ, ω) | ξ ∈ Ecu}.
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Take

γ(ω) := − β(ω)

2(N + 1)2
,

and let Θ(ω) := −γ(ω) in equation (2.4). For every ξ, ξ0 ∈ Ecu, we
have that

|hcu(ξ, ω)− hcu(ξ0, ω)|

≤
−1∑

i=−∞
10K(θi+1ω)B̃2(θ

iω)ρ(θiω)e−β(ω)(−1−i)eγ(ω)i

× |x(ξ, ω)− x(ξ0, ω)|−γ(ω).

Since

|x(ξ, ω)− x(ξ0, ω)|−γ(ω) ≤
3K(ω)

2
|ξ − ξ0|,

together with K(ω) ≤ K(θiω)e−γ(ω)|i|, we have

|hcu(ξ, ω)− hcu(ξ0, ω)| ≤
eβ(ω)L1(α, β)

−1

2
|ξ − ξ0|

−1∑
i=−∞

e(2γ(ω)+β(ω))i.

Thus, we obtain

|hcu(ξ, ω)− hcu(ξ0, ω)| ≤
1

2
L1(α, β)

−1L(α, β, 2γ)|ξ − ξ0| ≤
1

2
|ξ − ξ0|.

It is clear that (i)–(ii) follow from Lemma 3.2 (ii)–(iv), and (iii) is true.
Moreover, measurability of W cu(ω) is a consequence of the continuity
and measurability of hcu(ξ, ω).

To this end, we note inequality (3.25) and obtain

∥DN
ξ h

cu(ξ, ω)−DN
ξ h

cu(ξ0, ω)∥ = ∥P s(DN
ξ x0(ξ, ω)−DN

ξ x0(ξ0, ω))∥

≤ Ka
N (ω)|ξ − ξ0|τ(ω).

Let K̂N+1(ω) := Ka
N (ω). The proof is complete. �

The existence and Hölder continuity of smooth center-stable mani-
folds of the random dynamical system φ(n, ω, x) are established in ex-
actly the same way. We summarize the center-stable manifold theorem
as follows.
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Theorem 3.4 (Center-stable manifold theorem). Assume that Hy-
potheses 2.7–2.14 hold. Then the center-stable set is a CN manifold
which is given by

W cs(ω) = {ξ + hcs(ξ, ω) | ξ ∈ Ecs},

where hcs : Ecs × Ω → Eu satisfies the following :

(i) hcs(ξ, ω) is B(Ecs)⊗F-measurable and hcs(ξ, ω) is CN in ξ with

Lip hcs(·, ω) < 1, hcs(0, ω) = 0, Dξh
cs(0, ω) = 0;

(ii) for all 0 ≤ i ≤ N < +∞, we have that ∥Di
ξh

cs(ξ, ω)∥ ≤ Ki(ω),

where each Ki(ω) is random variable tempered from above;
(iii) W cs

loc(ω) = {x ∈ W cs(ω) | x ∈ B(0, ρ(ω))} is a local center-stable
manifold of the original system (2.1);

(iv) in addition, if Hypothesis 2.15 holds, hcs(·, ω) ∈ CN,τ(ω) and there
is a random variable tempered from above KN+1(ω) such that

∥DN
ξ h

cs(ξ, ω)−DN
ξ h

cs(ξ0, ω)∥≤KN+1(ω)|ξ−ξ0|τ(ω) for all ξ, ξ0∈Ecs.

Since the above preparations have been finished, we are now ready
to prove the center manifold theorem.

Theorem 3.5 (Center manifold theorem). Assume that Hypotheses
2.7–2.14 hold. Then the center set is a CN manifold, which is given by

W c(ω) = {ζ + hc(ζ, ω) | ζ ∈ Ec},

where hc : Ec × Ω → Eu ⊕ Es satisfies the following :

(i) hc(ζ, ω) is B(Ec) ⊗ F-measurable and Lipschitz continuous with
respect to ζ;

(ii) hc(ζ, ω) is CN in ζ with hc(0, ω) = 0 and Dζh
c(0, ω) = 0, and for

each 0 ≤ i ≤ N < +∞, there exists a random variable tempered
from above K ′

i(ω) such that ∥Di
ζh

c(ζ, ω)∥ ≤ K ′
i(ω);

(iii) W c
loc(ω) = {x ∈ W c(ω) | x ∈ B(0, ρ(ω))} is a local center

manifold of the original system (2.1);
(iv) in addition, if Hypothesis 2.15 holds, then hc(·, ω) ∈ CN,τ(ω), and

there is a random variable tempered from above K ′
N+1(ω) such

that

∥DN
ζ h

c(ζ, ω)−DN
ζ h

c(ζ0, ω)∥≤K ′
N+1(ω)|ζ−ζ0|τ(ω) for all ζ, ζ0∈Ec.
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Proof. Obviously, (iii) is true. For any x ∈ W c(ω), we have
x = ξ + η + ζ, where ξ ∈ Eu, η ∈ Es and ζ ∈ Ec. Note that x ∈ W cu

and x ∈ W cs. By Theorem 3.3, we have η = hcu(ξ + ζ, ω). Similarly,
Theorem 3.4 implies ξ = hcs(η + ζ, ω). Thus,

η = hcu(hcs(η + ζ, ω) + ζ, ω).

For each fixed ω ∈ Ω, by Theorems 3.3 (i) and 3.4 (i), Liphcu(·, ω) ·
Liphcs(·, ω) < 1. Moreover, recall that hcs(·, ω), hcu(·, ω) ∈ CN . It
then follows from the contraction mapping principle with a parameter
that there exists a CN mapping hc1 : Ec × Ω → Es such that
η = hc1(ζ, ω). Similarly, there exists a CN mapping hc2 : Ec × Ω → Eu

such that ξ = hc2(ζ, ω). Instead of hc(ζ, ω), it is not difficult to see that
both hc1(ζ, ω) and hc2(ζ, ω) satisfy (i), and by the inductive approach
that they satisfy (ii) and (iv). Set

hc(ζ, ω) := hc1(ζ, ω) + hc2(ζ, ω).

The proof is complete. �
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