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NOTES ON log(ζ(s))′′

JEFFREY STOPPLE

ABSTRACT. Motivated by the connection to the pair
correlation of the Riemann zeros, we investigate the second
derivative of the logarithm of the Riemann ζ function, in
particular, the zeros of this function. Theorem 1.2 gives a
zero-free region. Theorem 1.4 gives an asymptotic estimate
for the number of nontrivial zeros to height T . Theorem 1.7
is a zero density estimate.

1. Introduction. Bogomolny and Keating [4] were the first to
observe that the function (ζ ′(s)/ζ(s))′ appears in the pair correlation
for the Riemann zeros.1 In that context, Berry and Keating [2] wrote:

The appearance of ζ(s) indicates an astonishing resur-
gence property of the zeros: in the pair correlation of
high Riemann zeros, the low Riemann zeros appear as
resonances.

There has been extensive investigation into the zeros of ζ ′(s) and their
connection to the Riemann hypothesis, via the logarithmic derivative
ζ ′/ζ(s). However, there seems to be nothing in the literature about the
zeros of the derivative:

log(ζ(s))′′ =

(
ζ ′(s)

ζ(s)

)′

=
ζ(s)ζ ′′(s)− ζ ′(s)2

ζ(s)2
.

The connection to the pair correlation of the Riemann zeros is motiva-
tion for further study.

Further motivation comes from Montgomery’s review of Levin-
son [6], in which he says:

The author’s method can be applied to functions other
than G(s), and in particular one may use differential
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operators of higher order. Whether sharper results can
be obtained in this manner remains to be seen.

Notation. We let

ν(s) = ζ(s)ζ ′′(s)− ζ ′(s)2.

Elementary facts. Near s = 1,

log(ζ(s))′′ =
1

(s− 1)2
+O(1).

Near a zero ρ of ζ(s) of order nρ,

log(ζ(s))′′ =
−nρ

(s− ρ)2
+O(1),

so ν(s) has a zero of order 2nρ − 2. In particular, for a simple zero of
ζ(s), this tells us that ν(ρ) ̸= 0. There are no other poles. The zeros of
log(ζ(s))′′ are the zeros of ν(s), exclusive of any possible multiple zeros
of ζ(s).

For Re(s) > 1, we have that

(1.1) ν(s) =
∑
n

(∑
d|n

log(d)2 − log(d) log

(
n

d

))
n−s.

With Λ(n) the Von Mangoldt’s function and τ(n) the divisor function,
we have that

log(ζ(s))′′ =
∑
n

Λ(n) log(n)n−s, ζ(s)2 =
∑
n

τ(n)n−s.

Thus, we also have that

(1.2) ν(s) =
∑
n

(∑
d|n

Λ(d) log(d) τ

(
n

d

))
n−s.

We will let a(n) denote the Dirichlet series coefficients of ν(s), given
by either equation (1.1) or equation (1.2). Let

A(x) =
∑
n<x

a(n).
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We have that, for c > 1,

A(x) =
1

2πi

∫ c+i∞

c−i∞
ν(w)

xw

w
dw.

Moving the contour past the pole at s = 1, we have that, for 0 < c < 1,

(1.3) A(x) = x · p (log(x)) + 1

2πi

∫ c+i∞

c−i∞
ν(w)

xw

w
dw,

where

p(t) =
t3

6
+

(
C0 −

1

2

)
t2 + (1− 4C1 − 2C0)t+ 4C2 + 4C1 + 2C0 − 1,

where C0 is the Euler constant, and C1 and C2 are Stieltjes constants.
With p(t) as above, one can show by Euler MacLaurin summation [7,
Appendix B] and the “method of the hyperbola” [7, equation (2.9)]
that

(1.4) A(x) = x · p (log(x)) +O
(
x1/2 log(x)2

)
,

i.e., the integral in equation (1.3) is O(x1/2 log(x)2).
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Figure 1. Re((ζ′/ζ)′(1 + it)) is the resurgent contribution of ζ(s) to pair
correlation.
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Functional equation. As usual, let

χ(s) = 2(2π)s−1 sin

(
πs

2

)
Γ(1− s) =

π(s−1)/2Γ((1− s)/2)

π−s/2Γ(s/2)
.

Differentiating the functional equation ζ(s) = χ(s)ζ(1− s), we deduce
that
(1.5)

ν(s) = χ2(s)

(
ν(1− s) +

(
ψ′(1− s)−

(
π

2

)2

csc

(
πs

2

)2)
ζ(1− s)2

)
.

Here, ψ′(s) denotes the derivative of the DIGAMMA function:

ψ(s) =
Γ′(s)

Γ(s)
.

Stirling’s formula tells us that, as s→ ∞ in the region | arg(s)| ≤ π−δ,

ψ′(s) =
1

s
+O

(
1

s2

)
.

As t→ ∞, we have that, for σ > a fixed,

χ2(s) ≪ t1−2σ,(1.6)

χ2(s)

(
ψ′(1− s)−

(
π

2

)2

csc

(
πs

2

)2)
≪ t−2σ.(1.7)

Thus, as s→ ∞ in the region | arg(s)| ≤ π − δ,

(1.8) ν(s) =

{
O(1) σ ≥ 1 + δ > 1,

O(t1−2σ) σ ≤ −δ < 0.

From the functional equation,

ζ(1− s) = 2(2π)−s cos

(
πs

2

)
Γ(s)ζ(s),

we deduce

(1.9) log(ζ(1− s))′′ = −π
2

4
sec2

(
πs

2

)
+ ψ′(s) + log(ζ(s))′′.
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Asymptotics. With a(n) ≪ nϵ, we can estimate the sum of the series
for n ≥ 3 to obtain:

log(ζ(s))′′ =
log(2)2

2s
+O

(
exp(−σ)
1 + ϵ− σ

)
for σ > 1 + ϵ.

Now, | sec2(πs/2)| ≪ exp(−πt). Thus, we have the next proposition.

Proposition 1.1. As s→ ∞ in a vertical strip 1 + ϵ < σ < σ0,

(1.10) log(ζ(1− s))′′ =
log(2)2

2s
+O

(
exp(−σ)
1 + ϵ− σ

)
+O

(
1

s

)
.

On the other hand, if t→ ∞ with |s|2 < 2σ, then

(1.11) log(ζ(1− s))′′ =
1

s
+O

(
1

s2

)
.

On the border of these two asymptotic regimes, we will see a
cancelation where

1

s
≈ − log(2)2

2s
,

creating zeros of ν(s), which we refer to as asymptotically trivial of the
first kind. Equating modulus and argument, this occurs when

2σ ≈ log(2)2(σ2 + t2)1/2 or σ ≈ log(t)

log(2)
,

and also,

tan(t log(2)) ≈ t

σ
.

With σ and t positive, both cos(t log(2)) and sin(t log(2)) need to be
negative. Since σ is very small compared to t, we deduce that t log(2)
is slightly larger than 2πn+3π/2 for integer n, i.e., the imaginary part
is approximately 9.1n + 6.8. The real part is near 1 − log(t)/ log(2π).
One sees 11 examples of these asymptotically trivial zeros to the left of
the critical line on the right side of Figure 2.

There is a double pole of

−π
2

4
sec2

π(1− s)

2
+ ψ′(1− s)



1706 JEFFREY STOPPLE

Figure 2. Argument of log(ζ(s))′′. On the left, the vertical strip −9.5 ≤
σ ≤ 10.5, and 0 ≤ t ≤ 100. On the right, −14.5 ≤ σ ≤ 15.5 and
104 ≤ t ≤ 104 + 100. The dotted lines denote σ = 0 and σ = 1.

at the negative even integers. Equation (1.11) implies that, as s → ∞
with arg(s) a constant (π/2) − δ, arg(log(ζ(s))′′) is asymptotically
constant (in fact, asymptotic to δ). For each double pole arising from a
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negative even integer, ν(s) will have, by the argument principle, a pair
of complex conjugate zeros inside of the rays arg(s) = π ± δ. We refer
to these zeros as asymptotically trivial of the second kind. Examples in
the upper half plane can be seen on the bottom left of Figure 2; more
examples can be seen in Figure 3. It would be interesting to understand
the asymptotic behavior of the imaginary part of these zeros.

Figure 3. Argument of log(ζ(s))′′ in the region −30 ≤ σ ≤ 1, and
0 ≤ t ≤ 5.

Zero free region. From the general theory of Dirichlet series, ν(s)
has a right half plane free of zeros.

Theorem 1.2. For Re(s) ≥ 4.25, we have that ν(s) ̸= 0.

Remark 1.3. Mathematica shows that there is a zero near s =
3.494 + 23.285i.

Proof. We have, by the triangle inequality,

|ν(s)| ≥ a(2)

2σ
−

∞∑
n=3

a(n)

nσ
.

From summation by parts and the fact that

lim
y→∞

A(y)y−σ = 0

we deduce that, with parameter x to be determined,

|ν(s)| ≥ a(2)

2σ
−

x∑
n=3

a(n)

nσ
+
A(x)

xσ
− σ

∫ ∞

x

A(t)t−σ−1 dt.

From equation (1.4), it will suffice that we satisfy the two inequalities:

a(2)

2σ
−

x∑
n=3

a(n)

nσ
>

1.5

xσ/2
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and

A(x)

xσ
− σ

∫ ∞

x

p(log(t))t−σ dt−
∣∣∣∣10 · σ ∫ ∞

x

log(t)2t−σ−1/2 dt

∣∣∣∣ > − 1

xσ/2
.

Once x > 4 is fixed,

a(2)−
x∑

n=3

a(n)

(
2

n

)σ

is an increasing function of σ, bounded above by a(2), and (2/
√
x)σ is

decreasing to 0. Thus, if the first inequality holds at σ0, it will hold on
the interval [σ0,∞).

Next, observe

σ

∫ ∞

x

p(log(t))t−σ dt

= x−σ

(
x · p(log(x)) + q1

σ − 1
+

q2
(σ − 1)2

+
q3

(σ − 1)3
+

q4
(σ − 1)4

)
,

where the qj are certain polynomials in x and log(x) in terms of the
Stieltjes constants, positive for x ≥ 4. Meanwhile,

10 · σ
∫ ∞

x

log(t)2t−σ−1/2 dt

= x1/2−σ

(
10 log(x)2 +

r1
σ − 1/2

+
r2

(σ − 1/2)2
+

r3
(σ − 1/2)3

)
,

for certain ri, polynomials in log(x) with positive coefficients. Thus,
our second inequality is equivalent to:

xσ/2 > x · p(log(x)) + 10x1/2 log(x)2 −A(x)

+ x1/2
( 4∑

j=1

qj
(σ − 1)j

+
3∑

i=1

ri
(σ − 1/2)i

)
.

For fixed x ≥ 4, the left side increases in σ, and the right side decreases
in σ, so, again, this will hold on an interval [σ0,∞). With x = 40,
a calculation verifies that σ0 = 4.25 suffices. Furthermore, we deduce
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that, for σ > 4.25,

�(1.12)
a(2)

2σ
−

∞∑
n=3

a(n)

nσ
>

0.5

40σ/2
.

The number of zeros for ν(s). Let

Nν(T ) = ♯{ρ | ν(ρ) = 0, 0 < Im(ρ) < T, −4 < Re(ρ)}.

This count excludes the two flavors of asymptotically trivial zeros
described above, except for an O(1) error.

Theorem 1.4.

Nν(T ) = 2

(
T

2π
log

(
T

2π

)
− T

2π

)
− log(2)

π
T +O(log(T )).

Proof. Let C be the boundary (described positively) of the rectangle
with vertices 5 + i10, 5 + iT , −4 + iT and −4 + i10. There are no
asymptotically trivial zeros inside of C. By the functional equation
and the zero free region, the nontrivial zeros are inside of C. By the
argument principle, we need to estimate

1

2πi

∫
C

d

ds
log(ν(s)) ds

=
1

2πi

{∫ 5+i10

−4+i10

+

∫ 5+iT

5+i10

+

∫ −4+iT

5+iT

+

∫ −4+i10

−4+iT

}
d

ds
log(ν(s)) ds

=
1

2πi
(I1 + I2 + I3 + I4).

The integral I1 is O(1). Next, I2 equals

(1.13) log

(
a(2)

2s

)∣∣∣∣5+iT

5+i10

+ log

(
1 +

∞∑
n=3

a(n)

a(2)

(
2

n

)s)∣∣∣∣5+iT

5+i10

.

From equation (1.12), we see that

(1.14) 1−
∞∑

n=3

a(n)

a(2)

(
2

n

)−5

> 0.0025.
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Thus,

(1.15) Re

(
1 +

∞∑
n=3

a(n)

a(2)

(
2

n

)5+it)
> 0,

and the argument of the expression inside of the second logarithm in
equation (1.13) is bounded by ±π/2. From the contribution of the first
logarithm in equation (1.13), we deduce that I2 = −i log(2)T + O(1).
Via a fairly routine argument based on Jensen’s theorem,2 one sees
that I3 = O(log(T )).

Finally, for

I4 =

∫ −4+i10

−4+iT

d

ds
log(ν(s)) ds =

∫ −4+i150

−4+iT

d

ds
log(ν(s)) ds+O(1),

we will use functional equation (1.5) in the form:

(1.16)

ν(s) =χ2(s)ν(1−s)
(
1+

(
ψ′(1−s)−

(
π

2

)2

csc

(
πs

2

)2)
ζ(1−s)2

ν(1−s)

)
.

We observe that, for t ≥ 150,

(1.17)

∣∣∣∣ψ′(5− it)−
(
π

2

)2

csc

(
π(4 + it)

2

)2∣∣∣∣ < 1

140
,

by the exponential decay of the cosecant and Stirling’s formula of
asymptotes for ψ′(5− it). Also,

| log(ζ(5− it))′′| ≥ log(2)2

25
−

∞∑
n=3

Λ(n) log(n)

n5
≥ 0.0075,(1.18) ∣∣∣∣ζ(5− it)2

ν(5− it)

∣∣∣∣ ≤ 1

0.0075
< 135.

The product of equations (1.17) and (1.18) is < 1 in absolute value,
and thus,

Re

(
1 +

(
ψ′(5− it)−

(
π

2

)2

csc

(
π(4 + it)

2

)2)
ζ(5− it)2

ν(5− it)

)
> 0,
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and the argument of this expression is bounded between −π/2 and π/2.
This implies that, on the vertical line −4 + it, T ≥ t ≥ 150,

Im(log(ν(s))) = Im(log(χ2(s)ν(1− s))) +O(1).

Similarly, from equations (1.14) and (1.15), we deduce that, on this
line,

Im(log(ν(s))) = Im
(
log

(
χ2(s) log(2)22s−1

))
+O(1).

Via Stirling’s formula,

arg
(
χ2(s)

)∣∣∣−4+i150

−4+iT
= 2T log

(
T

2π

)
− 2T +O(1),

while
arg

(
log(2)22s−1

)∣∣−4+i150

−4+iT
= − log(2)T,

so

Im(I4) = 2T log

(
T

2π

)
− 2T − log(2)T +O(1). �

Zero density results.

Proposition 1.5. As before, for p(t),

(1.19) A(x) = x · p(log(x)) +Oϵ

(
x1/3+ϵ

)
.

Proof. Starting with equations (1.5) and (1.8), the proof very closely
follows the k = 2 case of the error estimates for the divisor function [11,
Theorem 12.2]. �

Proposition 1.6. Let

ϕ(s) =
(
1− 21−s

)4
ν(s).

The abscissa of convergence σc for the series defining ϕ(s) is ≤ 1/3.

Proof. The Dirichlet series expansion of ϕ(s) is
∑

n b(n)n
−s, where,

if 2j ||n,

b(n) =

min(4,j)∑
m=0

(
4

m

)
(−2)ma

(
n

2m

)
.
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With B(x) =
∑

n≤x b(n), we have that

B(x) =
4∑

m=0

(
4

m

)
(−2)m

∑
k≤x
2m|k

a

(
k

2m

)

=
4∑

m=0

(
4

m

)
(−2)m

∑
n≤x/2m

a(n).

From equation (1.19), we see that

B(x) =
4∑

m=0

(
4

m

)
(−2)m

(
x

2m
· p (log(x)−m log(2)) +Oϵ

(
x1/3+ϵ

))

= x ·
4∑

m=0

(
4

m

)
(−1)mp (log(x)−m log(2)) +Oϵ

(
x1/3+ϵ

)
.

With shift operator Ep(t) = p(t − log(2)) and difference operator
∆p = (I −E)p, the main term is x ·∆4p(log(x)) = 0, as p has degree 3
and ∆ reduces the degree. Thus,

B(x) = Oϵ

(
x1/3+ϵ

)
.

Therefore, for every ϵ > 0,

lim sup
x→∞

log |B(x)|
log(x)

≤ lim sup
x→∞

(1/3 + ϵ) log(x) + log(C(ϵ))

log(x)
≤ 1

3
+ ϵ,

and, by [7, Theorem 1.3], we obtain σc ≤ 1/3. �

Theorem 1.7. If, for positive δ, we denote by N5/6+δ(T ) the number
of zeros of ν(s) in the region |Im(s)| ≤ T , 5/6 + δ ≤ Re(s), then

N5/6+δ(T ) ≪δ T.

Proof. The zeros of ν(s) coincide with the zeros of ϕ(s). We will
imitate the proof of [8, Theorem 6.18]. For x0 > 4.25, and any integer
m, set Kr,m to be the circle with center s0 = x0+(1/2+m)i and radius
r = |x0 − 5/6 − δ + i/2|. The circle passes through 5/6 + δ +mi and
5/6+δ+(m+1)i. Increasing x0, if necessary, the circle lies to the right
of the line Re(s) = 5/6 + δ/2. Set KR,m to be the circle with center
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s0 = x0 + (1/2 +m)i and radius R = x0 − 5/6− δ/2. Finally, let

A = A(x0) = 2 inf
Re(s)=x0

|ϕ(s)|.

The proof of Theorem 1.2 implies that A > 0. Now, [8, page 260,
Corollary 2] a corollary to Jensen’s theorem implies that there exists
C = C(r,R,A) such that the number of zeros of ϕ(s) in the rectangle

5

6
+ δ ≤ Re(s) ≤ x0, m < Im(s) ≤ m+ 1,

does not exceed

C ·
∫∫

KR,m

|ϕ(x+iy)|2dx dy≤C ·
∫ x0+R

5/6+δ/2

∫ m+1/2+R

m+1/2−R

∣∣ϕ(x+iy)∣∣2dy dx.
Summing over integers m ∈ [−T, T ], we deduce that

N5/6+δ(T ) = O

(∫ x0+R

5/6+δ/2

∫ T+1/2+R

−T+1/2−R

∣∣ϕ(x+ iy)
∣∣2 dy dx).

From [8, page 315, Corollary], we deduce that∫ x0+R

5/6+δ/2

∫ T+1/2+R

−T+1/2−R

∣∣ϕ(x+ iy)
∣∣2 dy dx≪δ T. �

Remark 1.8. The referee pointed out a mistake in the proof of [8,
page 315, Corollary] and supplied a correction. In the notation of that
source for x ≥ 1/2 + ϵ, we have 2x − ϵ > 1 + ϵ so that g(2x − ϵ + it)
converges absolutely. This is all the proof requires, not the reference
to Bohr and uniform convergence.

Acknowledgments. Thanks to the anonymous referee for careful
reading of the manuscript and numerous helpful suggestions.

APPENDIX

A. Numerical methods. The graphics in Figures 2 and 3 require
the numerical computation of ζ(s)ζ ′′(s)−ζ ′(s)2 on a large grid of points
in the complex plane. Numerical computation of derivatives of a func-
tion f(x) is often done by a method called Richardson extrapolation [9,
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subsection 5.7]. One has that

f(x+ h)− f(x− h)

2h
= f ′(x) + 1

6f
(3)(x)h2 +O

(
h4

)
,

f(x+ 2h)− f(x− 2h)

4h
= f ′(x) + 2

3f
(3)(x)h2 +O

(
h4

)
,

so an appropriate linear combination of the left sides of the two
equations computes f ′(x) up to an error O(h4). This can readily be
generalized to computation of each value on a rectangular grid of points
of ζ(s)ζ ′′ − ζ ′(s)2, up to an error O(h8), with (asymptotically) a single
evaluation of ζ(s). One uses the saved function values at ζ(s ± h),
ζ(s ± ih) and ζ(s + (±h ± ih)), as well as ζ(s), and the solution to a
linear system of nine equations in nine unknowns.

ENDNOTES

1. See also the recent work of Rodgers [10], as well as Ford and
Zaharescu [5].

2. For example, [3].
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