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THE MINIMUM MATCHING ENERGY OF
BICYCLIC GRAPHS WITH GIVEN GIRTH

HONG-HAI LI AND LI ZOU

ABSTRACT. The matching energy of a graph was intro-
duced by Gutman and Wagner in 2012 and defined as the
sum of the absolute values of zeros of its matching poly-
nomial. Let θ(r, s, t) be the graph obtained by fusing two
triples of pendant vertices of three paths Pr+2, Ps+2 and
Pt+2 to two vertices. The graph obtained by identifying
the center of the star Sn−g with the degree 3 vertex u of
θ(1, g−3, 1) is denoted by Sn−g(u)θ(1, g−3, 1). In this paper,
we show that, Sn−g(u)θ(1, g − 3, 1) has minimum matching
energy among all bicyclic graphs with order n and girth g.

1. Introduction. All graphs in this paper are finite, simple and
nondirected. Let G = (V,E) be such a graph with order |V | = n and
size |E| = m. In a graph a matching is a set of pairwise nonadjacent
edges, and we denote the number of k-matchings of G by mk(G). Note
that m1(G) = m and mk(G) = 0 for k > ⌊n/2⌋. It is both consistent
and convenient to define m0(G) = 1. The matching polynomial of G is
defined as

α(G, x) =
∑
k≥0

(−1)kmk(G)xn−2k.

All the zeros of α(G, x) are real-valued and the theory of matching
polynomials is well elaborated in [3, 5].

Recently, Gutman and Wagner [7] introduced the matching energy
of a graph G, denoted by ME(G) and defined as
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(1.1) ME(G) =
2

π

∫ ∞

0

1

x2
ln

[∑
k≥0

mk(G)x2k

]
dx,

which coincides with the Coulson-type integral formula for the energy
which has been studied extensively (see an excellent monograph [13]
and [14] and the references therein for recent advances), when the
graph under consideration is a tree. As mentioned in [7], matching
energy can also be defined in another form as follows.

Let G be a simple graph, and let µ1, µ2, . . . , µn be the zeros of its
matching polynomial. Then

ME(G) =
n∑

i=1

|µi|.

The integral on the right side of equation (1.1) is increasing in all
the coefficients mk(G). This means that if two graphs G and G′ satisfy
mk(G) ≤ mk(G

′) for all k ≥ 1, then ME(G) ≤ ME(G′). If, in addition,
mk(G) < mk(G

′) for at least one k, then ME(G) < ME(G′). This then
motivates the introduction of a quasi-order ≽, defined by

G ≽ H ⇐⇒ mk(G) ≥ mk(H),

for all nonnegative integers k. If G ≽ H and there exists some k such
that mk(G) > mk(H), then we write G ≻ H. It is said that G is
m-greater than H if G ≽ H and strictly m-greater than H if G ≻ H.
It is easy to see that

G ≽ H =⇒ ME(G) ≥ ME(H)

and

G ≻ H =⇒ ME(G) > ME(H).

Initial work on matching energy of graphs is attributed to [7] and
then followed by Li and Yan [16] who characterized the maximal
connected graphs with given connectivity and chromatic numbers. The
extremal graphs in connected bicyclic graphs were determined by Ji,
Li and Shi [10] and further by Chen, Liu and Shi [1, 2] for unicyclic,
bicyclic and tricyclic graphs. More generally, the minimal matching
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energy of (m,n)-graphs with a given matching number was obtained
by Xu, Das and Zheng [19]. Huang, Kuang and Deng [9] characterized
the extremal graph for a random polyphenyl chain. For more results,
see [11, 12, 17] and there may be other results which are unknown to
the authors.

︷ ︸︸ ︷
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Figure 1. Two types of braces: ∞n(g, q) and θ(r, s, t).

Denote the set of all connected bicyclic graphs with order n and
girth g by Bn,g. We now define two special classes of bicyclic graphs.
Let ∞n(g, q) denote the graph obtained by the coalescence of two end
vertices of a path Pn−g−q+2 with one vertex of two cycles Cg and Cq,
respectively, and θ(r, s, t) the graph obtained by fusing two triples of
pendant vertices of three paths Pr+2, Ps+2 and Pt+2 to two vertices, as
given in Figure 1. The distance of two cycles Cg and Cq in G is defined
as

dG(Cg, Cq) = min{dG(x, y) | x ∈ V (Cg), y ∈ V (Cq)},

sometimes written as dG for short. Note that dG(Cg, Cq) = 0 if Cg and
Cq have a common vertex, e.g., for G = ∞n(g, q) such that q = n−g+1,
and in this case, ∞n(g, q) with q = n−g+1 is simply written as ∞(g, q)
for convenience. Clearly, any bicyclic graph must contain either graph
(i) or (ii) in Figure 1 as an induced subgraph, called its brace. Then
the set Bn,g can be partitioned into two subsets B1

n,g and B2
n,g, where

B1
n,g is the set of all bicyclic graphs which contain a brace of the form

∞n(g, q), and B2
n,g is the set of all bicyclic graphs which contain a

brace of the form θ(r, s, t).
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There have been some papers on characterizing the minimal Hosoya
index of graphs, see [4, 18]. In this paper, minimal graphs in Bi

n,g

for i = 1, 2, are determined respectively and, by comparing them, we
show that Sn−g(u)θ(1, g − 3, 1), obtained by identifying the center of
the star Sn−g with a vertex u of degree 3 in θ(1, g−3, 1), has minimum
matching energy among all bicyclic graphs in Bn,g.

2. Preliminaries. In this section, we shall present some basic re-
sults which will be used in the proof of our main results.

Given a graph G and an edge uv of G, we denote by G − uv
(respectively G − v) the graph obtained from G by deleting the edge
uv (respectively the vertex v and edges incident to it).

Lemma 2.1 ([10]). If u, v are adjacent vertices of G, then

mk(G) = mk(G− uv) +mk−1(G− u− v),

for all nonnegative integers k.

LetG(v)St+1 (or St+1(v)G) denote the graph obtained by identifying
the vertex v of a graph G with the center of the star St+1, as given in
Figure 2.

G v

︷
︸
︸

︷

t

Figure 2. G(v)St+1.

Note. Consider the graph in Figure 2.

• mk(G) is the number of k-matchings that do not contain any
of the edges of St+1.

• tmk−1(G − v) is the number of k-matchings that contain one
of these edges, as there are t choices for these edges in St+1.

Consequently, we have what follows without giving a formal proof.
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Lemma 2.2. Let G be a graph, and let v be a vertex of G. Then,
mk(G(v)St+1) = mk(G) + tmk−1(G− v).

Recall a result in [13], which establishes the order of the union of
two paths with a given number of vertices according to the quasi-order
as stated in the introduction.

Lemma 2.3 ([13]). Let n = 4k, 4k + 1, 4k + 2 or 4k + 3. Then,

Pn ≻ P2 ∪ Pn−2 ≻ P4 ∪ Pn−4 ≻ · · · ≻ P2k ∪ Pn−2k ≻ P2k+1 ∪ Pn−2k−1

≻ P2k−1 ∪ Pn−2k+1 ≻ · · · ≻ P3 ∪ Pn−3 ≻ P1 ∪ Pn−1.

Lemma 2.4 ([6]). If G1 ≻ G2, then G1 ∪H ≻ G2 ∪H, where H is an
arbitrary graph.

Applying Lemma 2.4, we can generalize Lemma 2.3 to the following
form, the union of three paths.

Lemma 2.5. Let r, s, t be nonnegative integers with r ≤ s− 2. If r is
even, then

Pr−2 ∪ Ps+2 ∪ Pt ≻ Pr ∪ Ps ∪ Pt ≻ Pr+1 ∪ Ps−1 ∪ Pt

≻ Pr−1 ∪ Ps+1 ∪ Pt.

Lemma 2.6 ([7]). Suppose that G is a connected graph and T an
induced subgraph of G such that T is a tree and is connected to the
rest of G only by a cut vertex v. If T is replaced by a star of the same
order and centered at v, then the matching energy decreases (unless T
is already such a star). If T is replaced by a path with one end at v,
then the matching energy increases (unless T is already such a path).

Recall the definition of a generalized π-transform in [15]. We say
Q is a branch of a connected graph G with root u if Q is a connected
induced subgraph of G for which u is the only vertex in Q that has
a neighbor not in Q. Let P and Q be branches of a component of
a graph G with a common root u0, which is also their only common
vertex. Assume that P is a path and u0 has at least one neighbor in
G that does not lie on P or Q. Form a graph from G by relocating
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the branch Q from u0 to v where v is the other end vertex of the path
P (by deleting edges u0w and adding new edges vw for every vertex w
in Q adjacent to u0). We refer to the resulting graph as a generalized
π-transform of G.

Theorem 2.7 ([15]). If G′ is a generalized π-transform of G, then
G′ ≻ G and so ME(G′) > ME(G).

v1 v = vr vn

G Cg Cq

(i) Pn(vr, v)G (ii) Sn(g, q)

Figure 3.

Let Pn(vr, v)G denote the graph obtained by identifying the vertex
vr of Pn with the vertex v of G (see Figure 3 (i)). For convenience, we
use Pn(v)G (or G(v)Pn) to stand for Pn(v1, v)G. Note that Pn(vr, v)G
and Pr(v)G(v)Pn−r+1 are isomorphic.

Theorem 2.8 ([8]). If v is an arbitrary vertex of the graph G, then
for n = 4k + i, i ∈ {−1, 0, 1, 2}, k ≥ 1,

Pn(v1, v)G ≻ Pn(v3, v)G ≻ · · · ≻ Pn(v2k+1, v)G ≻ Pn(v2k, v)G

≻ Pn(v2k−2, v)G ≻ · · · ≻ Pn(v2, v)G.

Let G be an arbitrary graph with a specified vertex v. The graph

obtained from G is denoted by Ĝi for i = 1, 2, . . . , n − 1 (as given in
Figure 4), by adding n − 1 new vertices to G in the following way.
Attach i − 1 pendant edges and a pendant path of length n − i at v.
By Theorem 2.8, we easily obtain the following.

Lemma 2.9. Ĝ1 ≻ Ĝ2 ≻ · · · ≻ Ĝn−1.

Proof. Ĝ1 ≻ Ĝ2 follows immediately from Theorem 2.8, as Ĝ1
∼=

Pn(v1, v)G and Ĝ2
∼= Pn(v2, v)G. In fact, other cases can be verified
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in the same way. Note that if we denote the graph G(v)Si by H, then

Ĝi
∼= Pn−i+1(v1, v)H and Ĝi+1

∼= Pn−i+1(v2, v)H. �

Let Sn(g, q) be the graph in B1
n,g with n+1− (g+ q) pendant edges

attached at the common vertex of Cg and Cq (see Figure 3 (ii)).

Theorem 2.10. Sn(g, q) ≽ Sn(g, g) with equality if and only if g = q.

Proof. Let u (u′, respectively) be the common vertex of Cg and
Cq (Cg, respectively) in Sn(g, q) (Sn(g, g), respectively), and u1u2

(u′
1u

′
2, respectively) an edge of Cq (Cg, respectively) such that u1 (u′

1,
respectively) is adjacent to u (u′, respectively). By Lemma 2.1, we
have

mk(Sn(g, q)) = mk(Sn(g, q)− u1u2) +mk−1(Sn(g, q)− u1 − u2)

and

mk(Sn(g, g)) = mk(Sn(g, g)− u′
1u

′
2) +mk−1(Sn(g, g)− u′

1 − u′
2).
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Note that

Sn(g, q)− u1u2
∼= Pq−1(u)Cg(u)Sn+3−g−q

Sn(g, g)− u′
1u

′
2
∼= Pg−1(u)Cg(u)Sn+3−2g.

If we denote the graph Pi−1(u)Cg(u)Sn+3−g−i by Gi, then Sn(g, q) −
u1u2

∼= Gq and Sn(g, g)− u′
1u

′
2
∼= Gg. By Lemma 2.9, we have

Gq ≻ Gq−1 ≻ · · · ≻ Gg.

Thus, Sn(g, q) − u1u2 ≽ Sn(g, g) − u′
1u

′
2 with equality if and only if

g = q.

In the same way, we also get Sn(g, g)− u1 − u2 ≽ Sn(g, g)− u′
1 − u′

2

with equality if and only if g = q. Therefore, Sn(g, q) ≽ Sn(g, g) with
equality if and only if g = q. �

Theorem 2.11. If t ≥ 2 and r is even, then

θ(r − 2, s+ 2, t) ≻ θ(r, s, t) ≻ θ(r + 1, s− 1, t)(2.1)

≻ θ(r − 1, s+ 1, t),

where r ≤ s− 2 and r + s+ 2 = g.

Proof. Let G = θ(r, s, t), which can be obtained by merging two
triples of pendant vertices u0, v0, w0 and ur+1, vs+1, wt+1 of three
paths

Pr+2 = u0u1 · · ·urur+1, Ps+2 = v0v1 · · · vsvs+1,

and
Pt+2 = w0w1 · · ·wtwt+1,

to two vertices, say u and v, respectively. By Lemma 2.1, we have

mk(G) = mk(G− uw1) +mk−1(G− u− w1)

= mk(G− uw1 − vwt) +mk−1(G− uw1 − v − wt)

+mk−1(G− u− w1 − vwt)

+mk−2(G− u− w1 − v − wt)

= mk(Pt ∪ Cg) + 2mk−1(Pg−1 ∪ Pt−1)

+mk−2(Pr ∪ Ps ∪ Pt−2).
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For convenience, let G1 = θ(r − 1, s+ 1, t), G2 = θ(r − 2, s+ 2, t) and
G3 = θ(r + 1, s − 1, t). Applying the same method to the graphs G1,
G2 and G3, we get

mk(G1) = mk(Pt ∪ Cg) + 2mk−1(Pg−1 ∪ Pt−1)

+mk−2(Pr−1 ∪ Ps+1 ∪ Pt−2),

mk(G2) = mk(Pt ∪ Cg) + 2mk−1(Pg−1 ∪ Pt−1)

+mk−2(Pr−2 ∪ Ps+2 ∪ Pt−2),

mk(G3) = mk(Pt ∪ Cg) + 2mk−1(Pg−1 ∪ Pt−1)

+mk−2(Pr+1 ∪ Ps−1 ∪ Pt−2).

Thus,

mk(G1)−mk(G) = mk−2(Pr−1 ∪ Ps+1 ∪ Pt−2)

−mk−2(Pr ∪ Ps ∪ Pt−2),

mk(G2)−mk(G) = mk−2(Pr−2 ∪ Ps+2 ∪ Pt−2)

−mk−2(Pr ∪ Ps ∪ Pt−2),

mk(G3)−mk(G1) = mk−2(Pr+1 ∪ Ps−1 ∪ Pt−2)

−mk−2(Pr−1 ∪ Ps+1 ∪ Pt−2).

By Lemma 2.5, it follows directly that if r ≤ s − 2 and r is even,
then

Pr−2 ∪ Ps+2 ∪ Pt ≻ Pr ∪ Ps ∪ Pt ≻ Pr+1 ∪ Ps−1 ∪ Pt

≻ Pr−1 ∪ Ps+1 ∪ Pt,

and so assertion (2.1) holds. �

As an immediate consequence, we have the following result.

Corollary 2.12. If t ≥ 2, then θ(r, s, t) ≽ θ(1, r+s−1, t) with equality
if and only if r = 1 or s = 1.

Proof. Without loss of generality, assume that r ≤ s. If r = 0, by
Theorem 2.11, we have either

θ(0, s, t) = θ(r, s, t) ≻ θ(r + 1, s− 1, t) = θ(1, s− 1, t)
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when s ≥ 2 or s = 1 and, in this case, θ(0, s, t) is already of the form
θ(1, r + s− 1, t).

Now assume that r ≥ 1. If r is even, then

θ(r, s, t) ≻ θ(r− 1, s+ 1, t) ≻ θ(r− 3, s+ 3, t) ≻ · · · ≻ θ(1, s+ r− 1, t).

If r is odd, then

θ(r, s, t) ≻ θ(r−2, s+2, t) ≻ θ(r−4, s+4, t) ≻ · · · ≻ θ(1, s+r−1, t). �

3. Main results. In this section, we first show that Sn(g, g) has
minimum matching energy in B1

n,g and Sn−g(u)θ(1, g − 3, 1) is the

minimal graph in B2
n,g. Further, by comparing these two graphs, we

conclude that Sn−g(u)θ(1, g − 3, 1) is the unique graph with minimum
matching energy in Bn,g.

Theorem 3.1. For any graph G ∈ B1
n,g, we have G ≽ Sn(g, g) with

equality if and only if G ∼= Sn(g, g).

Proof. For any graph G ∈ B1
n,g, its brace must be of the form

∞n(g, q) for some q ≥ g. By Lemma 2.6, if any tree branch is replaced
by a star of equal order centered at the root, its matching energy
strictly decreases unless the branch is already such a star. To show
that G ≽ Sn(g, g) for any G ∈ B1

n,g, it suffices to show it holds for such
a graph G, all of whose tree branches are stars. We distinguish two
cases according to the value of dG, the distance between Cg and Cq in
its brace.

Case 1. dG = 0. As above, if G has l tree branches, we can
assume that these l branches are stars. Without loss of generality,
for i = 1, . . . , l, we will assume G is the coalescence of the vertex ui in
its brace ∞(g, q) and the center of Sri+1. For convenience, we use the
notation Gi to denote such graphs recursively defined as follows. Let
G0 = ∞(g, q), and if Gi−1 is already defined, then Gi is defined to be
Gi−1(ui)Sri+1. Note that Gl = G.

Applying Lemma 2.2 to Sn(g, q), we have

(3.1) mk(Sn(g, q)) = mk(∞(g, q))+(n+1−g−q)mk−1(Pg−1∪Pq−1).
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Similarly applying Lemma 2.2 to G, we have

mk(G) = mk(Gl−1) + rlmk−1(Gl−1 − ul)

= mk(Gl−2) + rl−1mk−1(Gl−2 − ul−1) + rlmk−1(Gl−1 − ul)

= · · ·(3.2)

= mk(G0) +
l∑

i=1

rimk−1(Gi−1 − ui),

where
l∑

i=1

ri = n+ 1− g − q.

First, G0 = ∞(g, q). Second,

Gi−1 − ui ≽ ∞(g, q)− ui ≽ Pg−1 ∪ Pq−1 for i = 1, . . . , l,

because each graph is a subgraph of the former. If G � Sn(g, q),
then for some i, Gi−1 − ui has Pg−1 ∪ Pq−1 as a proper subgraph.
Therefore, G ≽ Sn(g, q) with equality if and only if G ∼= Sn(g, q). By
Theorem 2.10, the assertion holds.

Case 2. dG ≥ 1. By Lemma 2.6, we can assume that all tree branches
of G are stars. Suppose P = w1w2 · · ·wt is the unique path connecting
two cycles Cg and Cq in G. We proceed by induction on the number
of pendant vertices along the path P . If there are no pendant vertices
along the path, by applying the inverse generalized π-transform to G,
i.e., deleting all edges wtu, where u ∈ N(wt) \ {wt−1} and adding new
edges w1u, it becomes a graph in B1

n,g with dG(Cg, Cq) = 0 and so, by
Case 1, G ≽ Sn(g, g).

Now assume that there is at least a pendant edge uv on the path P .
By Lemma 2.1, we have mk(G) = mk(G− uv) +mk−1(G− u− v). By
the induction hypothesis, G − uv ≻ Sn−1(g, q). Also, it is easy to see
that G− u− v has Pg−1 ∪ Pq−1 as its subgraph. Thus,

mk(G) = mk(G− uv) +mk−1(G− u− v)

≥ mk(Sn−1(g, q)) +mk−1(Pg−1 ∪ Pq−1)

= mk(Sn(g, q)),

and strict inequality holds for at least one k. Therefore, G ≻ Sn(g, q)
and then G ≻ Sn(g, g) by Theorem 2.10. �
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Theorem 3.2. For any positive integers r, s, t with r + s + 2 =
g, let G1, G

′
1, G1

′′ ∈ B2
n,g be defined as G1 = G0(u)Sn−r−s−t−1,

G′
1 = G′

0(u)Sn−g−t+1 and G1
′′ = G′′

0(u)Sn−g, where G0 = θ(r, s, t),
G′

0 = θ(1, g − 3, t), G′′
0 = θ(1, g − 3, 1), as given in Figure 5. Then:

(i) G0 with a vertex of degree 2 deleted is strictly m-greater than G0

with a vertex of degree 3 deleted ;
(ii) for any G ∈ B2

n,g with θ(r, s, t) as its brace, G ≽ G1 with equality
if and only if G ∼= G1;

(iii) G1 ≽ G′
1 with equality if and only if G1

∼= G′
1;

(iv) G′
1 ≽ G1

′′ with equality if and only if G′
1
∼= G1

′′.

Consequently, for any G ∈ B2
n,g, G ≽ G1

′′ with equality if and only if
G ∼= G1

′′.

Proof.

(i) Choose two vertices of degrees 2 and 3 respectively in G0, say
wm and u. Consider G0 − wm, which can be viewed as a cycle Cg

together with two pendant paths, namely, P = uw1 · · ·wm−1 at u and
Q = vwt · · ·wm+1 at v, possibly of length 0. If one of the two paths
P or Q is of length 0, then we can choose an appropriate edge e such
that G0 −wm − e ∼= Pn−1. Since Pn−1 is m-greater than any tree T of
order n− 1, we have G0 − wm ≻ Pn−1 ≽ G0 − u as G0 − u is a tree.

Now assume that both P and Q are not of length 0. By Lemma 2.1,
we have

mk(G0 − wm)−mk(G0 − u) = mk(G0 − wm − uw1)

+mk−1(G0 − wm − u− w1)

−mk(G0 − u− wm−1wm)

−mk−1(G0 − u− wm−1 − wm).

Note that

G0 − wm − u− w1 and G0 − u− wm−1 − wm

are the union of the same graph Tg+t−m − wm (see Figure 5) and
the path Pm−2 and so are isomorphic. Thus, mk−1(G0 − wm − u −
w1) = mk−1(G0 − u − wm−1 − wm) for any k. It is clear that
G0−wm−uw1 is the union of a graph Pt−m+1(v)Cg and a path Pm−1,
and G0 − u − wm−1wm is the union of a graph Tg+t−m and a path
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Pm−1. Due to Pt−m+1(v)Cg ≻ Pr+s+t−m+2 ≻ Tg+t−m and Lemma 2.4,
we have G0 − wm − uw1 ≻ Pr+s+t−m+2 ∪ Pm−1 ≻ G0 − u− wm−1wm.
Therefore, G0 − wm ≻ G0 − u.

(ii) As in the proof of Theorem 3.1, by Lemma 2.6, we can assume
that all tree branches at the cycles of G are stars. Without loss of
generality, suppose that G is the coalescence of the vertex ti (here we
use new notation for these vertices) in G0 and the center of Sri+1 for

i = 1, . . . , l, and
∑l

i=1 ri = a. For convenience, we use Hi to denote
graphs defined recursively as follows. Let H0 = G0, and if Hi−1 is
already defined, then Hi is defined to be Hi−1(ti)Sri+1. Note that
Hl = G.

Applying Lemma 2.2, we have

(3.3) mk(G1) = mk(G0) + amk−1(G0 − u)

and
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mk(G) = mk(Hl−1) + rlmk−1(Hl−1 − tl)

= mk(Hl−2) + rl−1mk−1(Hl−2 − tl−1) + rlmk−1(Hl−1 − tl)

+ · · ·

= mk(G0) +

l∑
i=1

rimk−1(Hi−1 − ti).

First note that G0 − ti is a (proper) subgraph of Hi − ti, and so
Hi − ti ≽ G0 − ti. Further, by (i) above, we have G0 − ti ≻ G0 − u.
Therefore, Hi − ti ≻ G0 − ti ≻ G0 − u and then G ≻ G1 unless G is
already such a graph G1.

(iii) By Corollary 2.12, we have G0 ≽ G′
0. Note that G0 − u ∼=

Pr+s+1(ur+1, v)Pt and G′
0 − u ∼= Pr+s+1(u2, v)Pt. By Lemma 2.9, we

get G0 − u ≽ G′
0 − u. So we have

mk(G1) = mk(G0) + amk−1(G0 − u)

≥ mk(G
′
0) + amk−1(G

′
0 − u)

= mk(G
′
1).

Therefore, G1 ≽ G′
1. From the process above, equality holds only if

G1
∼= G′

1.

(iv) By Lemma 2.1,

mk(G
′
1) = mk(G

′
1 − vwt) +mk−1(G

′
1 − v − wt)

and

mk(G1
′′) = mk(G1

′′ − vw1) +mk−1(G1
′′ − v − w1).

By Lemma 2.9, we get G′
1−vwt ≽ G1

′′−vw1 and G′
1−v−wt ≽ G1

′′−
v − w1. Hence, G′

1 ≻ G1
′′ with equality if and only if G′

1
∼= G1

′′. �

Next, we shall compare the minimal graphs from B1
n,g and B2

n,g.

Theorem 3.3.

Sn(g, g) ≻ Sn−g(u)θ(1, g − 3, 1) (= G1
′′)

(see Figure 5).
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Proof. Let u0 be the common vertex of the two copies of Cg in
Sn(g, g), where G1

′′ = Sn−g(u)θ(1, g − 3, 1), and let u1u2 be an edge
with u1 adjacent to u0. Note that Sn(g, g)− u1u2 is the coalescence of
a vertex in Cg with the center of a star and an end vertex of a path,
i.e.,

Sn(g, g)− u1u2
∼= Pg−1(u0)Cg(u0)Sn+3−2g.

Similarly,

Sn(g, g)− u1 − u2
∼= Pg−2(u0)Cg(u0)Sn+2−2g,

and let u′
1u0 be an edge of Cg in Sn(g, g)− u1 − u2,

Sn(g, g)− u1 − u2 − u′
1u0

∼= Pg(u0)Sn+2−2g(u0)Pg−2.

It is obvious that Sn(g, g) − u1 − u2 ≻ Sn(g, g) − u1 − u2 − u′
1u0. In

the same way, we have

G1
′′ − vw1

∼= Cg(u)Sn−g+1 and G1
′′ − v − w1

∼= Pg−2(u)Sn−g+1.

By Lemma 2.1, we have

mk(G1
′′) = mk(G1

′′ − vw1) +mk−1(G1
′′ − v − w1)

= mk(Cg(u)Sn−g+1) +mk−1(Pg−2(u)Sn−g+1),

and

mk(Sn(g, g)) = mk(Sn(g, g)− u1u2) +mk−1(Sn(g, g)− u1 − u2)

= mk(Pg−1(u0)Cg(u0)Sn+3−2g)

+mk−1(Pg−2(u0)Cg(u0)Sn+2−2g).

By Lemma 2.9, we get

Pg−1(u0)Cg(u0)Sn+3−2g ≽ Cg(u)Sn−g+1.

Choosing an appropriate edge e, we have

Pg−2(u0)Cg(u0)Sn+2−2g − e ∼= Pg(u0)Sn+2−2g(u0)Pg−2,

and again, by Lemma 2.9,

Pg(u0)Sn+2−2g(u0)Pg−2 ≽ Pg−2(u)Sn−g+1.

Thus, Sn(g, g) ≻ G1
′′. �

From Theorems 3.1, 3.2 and 3.3, we obtain the following main result.
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Theorem 3.4. For any graph G ∈ Bn,g, we have

G ≽ Sn−g(u)θ(1, g − 3, 1),

and therefore,

ME(G) ≥ ME(Sn−g(u)θ(1, g − 3, 1)),

where equality holds if and only if G ∼= Sn−g(u)θ(1, g − 3, 1).
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