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ON THE GRAPH OF MODULES OVER
COMMUTATIVE RINGS

H. ANSARI-TOROGHY AND SH. HABIBI

ABSTRACT. Let M be a module over a commutative
ring and let Spec(M) be the collection of all prime sub-
modules of M . We topologize Spec(M) with quasi-Zariski
topology and, for a subset T of Spec(M), we introduce a
new graph G(τ∗T ), called the quasi-Zariski topology-graph. It
helps us to study algebraic (respectively, topological) proper-
ties of M (respectively, Spec(M)) by using graph theoretical
tools. Also, we study the annihilating-submodule graph and
investigate the relation between these two graphs.

1. Introduction. Throughout this paper, R is a commutative ring
with a non-zero identity and M is a unital R-module. By N ≤ M
(respectively N < M) we mean that N is a submodule (respectively
proper submodule) ofM and Λ(M) is the set of all non-zero submodules
of M . For any pair of submodules N ⊆ L of M and any element m of
M , we denote L/N and the residue class of m modulo N in M/N by
L and m, respectively.

For a submodule N of M , the colon ideal of M into N is defined
by (N : M) = {r ∈ R | rM ⊆ N} = Ann(M/N). Further if I is an
ideal of R, the submodule (N :M I) is defined by {m ∈ M : ℑ ⊆ N}.
Moreover, N, Z and Q denote the set of positive integers, the ring of
integers, and the field of rational numbers, respectively.

For a subset T of Spec(M), ℑ(T ) is the intersection of all members
of T .

A prime submodule ofM is a submodule P ̸=M such that, whenever
re ∈ P for some r ∈ R and e ∈M , we have r ∈ (P :M) or e ∈ P [13].
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The prime spectrum (or simply, the spectrum) of M is the set of all
prime submodules of M and denoted by Spec(M). Also, the set of all
maximal submodules of M is denoted by Max(M).

The prime radical
√
N is defined to be the intersection of all prime

submodules of M containing N , and in the case of N is not contained
in any prime submodule,

√
N is defined to be M . Note that the

intersection of all prime submodule M is denoted by rad(M).

The quasi-Zariski topology on X := Spec(M) is described as follows:
put V ∗(N) = {P ∈ X : P ⊇ N} and ξ∗(M) = {V ∗(N) : N is a
submodule of M}. Then there exists a topology τ∗ on X having ξ∗ as
the set of closed subsets of Spec(M) if and only if ξ∗ is closed under
the finite union. When this is the case, τ∗M is called the quasi-Zariski
topology on Spec(M) and M is called a top module [14].

If Spec(M) ̸= ∅, the mapping ψ : Spec(M) → Spec(R/Ann(M))

such that ψ(P ) = (P : M)/Ann(M) = (P :M) for every P ∈
Spec(M), is called the natural map of Spec(M) [6].

A topological space X is said to be connected if there does not
exist a pair U , V of disjoint non-empty open sets of X whose union
is X. A topological space X is irreducible if, for any decomposition
X = X1 ∪ X2 with closed subsets Xi of X with i = 1, 2, we have
X = X1 or X = X2. A subset X ′ of X is connected (respectively
irreducible) if it is connected (respectively irreducible) as a subspace
of X.

The zero-divisor graph of R, Γ(R), is a graph with the vertex set
Z(R) \ {0}, the set of nonzero zero-divisors of R, and two distinct
vertices x and y are adjacent if and only if xy = 0. The concept of
the zero-divisor graph was first introduced by Beck (see [7]). Since
many properties of a ring are closely tied to the behavior of its ideals,
it is valuable to replace the vertices of the zero-divisor graph by the
non-zero annihilator ideals. The idea of a graph, whose vertices are a
subset of ideals of a ring, was introduced recently in [10]. They defined
AG(R), the annihilating-ideal graph of R, to be a graph whose vertices
are ideals of R with non-zero annihilators and in which two vertices I
and J are adjacent if and only if IJ = 0.
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Let N and L be submodules of M . Then the product of N and
L is defined by (N : M)(L : M)M and denoted by NL, and clearly
Nk = (N :M)kM (see [3]).

In [4], the present authors generalized the above idea, introduced
the annihilating-submodule graph AG(M) and investigated some of
its related properties. The (undirected) graph AG(M) is a graph
with vertices V (AG(M)) = {N ≤ M : there exists a non-zero proper
submodule L of M with NL = 0}, where distinct vertices N,L are
adjacent if and only if NL = 0.

As we know, the closed subset V ∗(N), where N is a submodule of
M , plays an important role in the quasi-Zariski topology on Spec(M).
Our main purpose in this article is to employ these sets and define a
new graph G(τ∗T ), called the quasi-Zariski topology-graph. By using
this graph, we study algebraic (respectively, topological) properties of
M (respectively, Spec(M)). Further, we investigate the relationship
betweenG(τ∗T ) and AG(M/ℑ(T )), where T denotes a non-empty subset
of Spec(M) and ℑ(T ) is the intersection of all members of T .

G(τ∗T ) is an undirected graph with vertices V (G(τ∗T )) = {N <
M : there exists K < M such that V ∗(N) ∪ V ∗(K) = T and
V ∗(N), V ∗(K) ̸= T}, where T is a non-empty subset of Spec(M) and
distinct vertices N and L are adjacent if and only if V ∗(N)∪V ∗(L) = T
(see Definition 2.1).

Let M be a top module. In Section 2 of this article, among other
results, it is shown that the quasi-Zariski topology-graph G(τ∗T ) is
connected and diam(G(τ∗T )) ≤ 3. Further if G(τ∗T ) contains a cycle,
then gr(G(τ∗T )) ≤ 4 (see Theorem 2.6). Also, it is shown that G(τ∗T )
has a bipartite subgraph (see Theorem 2.14).

In Section 3, we explore more properties of AG(M). In Proposi-
tion 3.4, we show that if M is a non-simple semisimple R-module, then
every non-zero proper submodule ofM is a vertex. In Theorem 3.7, we
provide some useful characterizations for those modules M for which
AG(M) = Kα, where |Λ(M)| = α.

In Section 4, the relationship between G(τ∗T ) and AG(M/ℑ(T )) is
investigated. We show that, ifN and L are non-zero proper submodules
of M which are adjacent in G(τ∗T ), then

√
N/ℑ(T ) and

√
L/ℑ(T ) are

adjacent in AG(M/ℑ(T )) (see Proposition 4.5). Also we show that, if
M is a finitely generated module and G(τ∗T ) ̸= ∅, then AG(M/ℑ(T )) is
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isomorphic with a subgraph of G(τ∗T ). Further, we prove that, if M is
a fully semiprime module, then G(τ∗T ) is isomorphic with a subgraph
of AG(M/ℑ(T )) (see Theorem 4.6).

Let us introduce some graphical notation that is used in what follows.
A graph G is an ordered triple (V (G), E(G), ψG) consisting of a non-
empty set of vertices, V (G), a set E(G) of edges, and an incident
function ψG that associates an unordered pair of distinct vertices with
each edge. The edge e joins x and y if ψG(e) = {x, y}, and we say x
and y are adjacent. The degree dG(x) of a vertex x is the number
of edges incident with x. A path in graph G is a finite sequence
of vertices {x0, x1, . . . , xn}, where xi−1 and xi are adjacent for each
1 ≤ i ≤ n and we denote xi−1 − xi for an existing edge between xi−1

and xi. The number of edges crossed to get from x to y in a path
is called the length of the path. A graph G is connected if a path
exists between any two distinct vertices. For distinct vertices x and y
of G, let d(x, y) be the length of the shortest path from x to y and,
if there is no such path, then d(x, y) = ∞. The diameter of G is
diam(G) = sup{d(x, y) : x, y ∈ V (G)}. The girth of G, denoted by
gr(G), is the length of the shortest cycle in G and, if G contains no
cycles, then gr(G) = ∞ (see [1]).

A graph H is a subgraph of G if V (H) ⊆ V (G), E(H) ⊆ E(G) and
ψH is the restriction of ψG to E(H). We denote the complete graph on
n vertices by Kn. A bipartite graph is a graph whose vertices can be
divided into two disjoint sets U and V such that every edge connects
a vertex in U to one in V ; that is, U and V are each independent sets
and complete bipartite graphs on n and m vertices, denoted by Kn,m,
where V and U are of size n and m, respectively, and E(G) connects
every vertex in V with all vertices in U (see [16]).

In the rest of this article, M denotes a top module, T a non-empty

subset of Spec(M), ℑ(T ) is the intersection of all members of T , M̂
represents the R-module M/ℑ(T ), and for a submodule N of M ,

N̂ = N/ℑ(T ), where ℑ(T ) ⊆ N , is a submodule of M̂ .

2. The qausi-Zariski topology-graph.

Definition 2.1. We define a quasi-Zariski topology-graph G(τ∗T ) with
vertices V (G(τ∗T ))= {N < M : there exists K < M such that V ∗(N) ∪
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V ∗(K) = T and V ∗(N), V ∗(K) ̸= T}, where distinct vertices N and L
are adjacent if and only if V ∗(N) ∪ V ∗(L) = T .

Notation 2.2. By [14, Lemma 2.1], if M is a top module, then for
every pair of submodules N and L of M , we have V ∗(N) ∪ V ∗(L) =

V ∗(
√
N) ∪ V ∗(

√
L) = V ∗(

√
N ∩

√
L).

Proposition 2.3. The following statements hold.

(i) G(τ∗T ) ̸= ∅ if and only if T is closed and is not an irreducible
subset of Spec(M).

(ii) G(τ∗T ) ̸= ∅ if and only if T = V ∗(ℑ(T )) and T is not an irreducible
subset of Spec(M).

(iii) G(τ∗T ) ̸= ∅ if and only if T = V ∗(ℑ(T )) and ℑ(T ) is not a prime
submodule of M .

Proof.

(i) Straightforward.
(ii) Suppose that G(τ∗T ) ̸= ∅. By part (i), it is enough to show that

T = V ∗(ℑ(T )) which is a closed set. Clearly, T ⊆ V ∗(ℑ(T )).
Next, let V ∗(N) be any closed subset of Spec(M) containing T .
Then P ⊇ N for every P ∈ T so that ℑ(T ) ⊇ N . Hence, for every
Q ∈ V ∗(ℑ(T )) and Q ⊇ ℑ(T ) ⊇ N , namely, V ∗(ℑ(T )) ⊆ V ∗(N),
it follows that V ∗(ℑ(T )) is the smallest closed subset of Spec(M)
containing T . Hence, V ∗(ℑ(T )) = T .

(iii) It follows from part (ii) and [8, Theorem 3.4]. �

Example 2.4. Set R := Z and M := Z ⊕ Z(p∞), where p is a prime
integer of Z. Then, by [6, Examples 3.1], Max(M) = {piZ⊕Z(p∞) : i ∈
N}, Spec(M) = Max(M)∪ {(0)⊕Z(p∞)}, where pi is a prime number
for every i ∈ N, and M is a top module. We have V ∗((0)⊕ Z(p∞)) =
Spec(M). Hence Spec(M) is irreducible and G(τ∗Spec(M)) = ∅.

Example 2.5. Set R := Z and M := Q ⊕ (⊕i∈NZ/piZ). Then by [6,
Examples 3.1],

Max(M) = {Q⊕ (⊕i∈N,i̸=jZ/piZ)},
Spec(M) = Max(M) ∪ {(0)⊕ (⊕i∈NZ/piZ)},
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and M is a top module. Now, Q ⊕ (0) and {(0) ⊕ (⊕i∈NZ/piZ)} are
adjacent in G(τ∗Spec(M)) so that G(τ∗Spec(M)) ̸= ∅.

The following theorem illustrates some graphical parameters.

Theorem 2.6. The quasi-Zariski topology-graph G(τ∗T ) is connected
and diam(G(τ∗T )) ≤ 3. Moreover, if G(τ∗T ) contains a cycle, then
gr(G(τ∗T )) ≤ 4.

Proof. Suppose N,K ∈ V (G(τ∗T )) and they are not adjacent. Then

V ∗(N) ∪ V ∗(K) ̸= T , so there exist L, V ∈ V (G(τ∗T )) with V ∗(
√
N ∩√

L) = V ∗(
√
K ∩

√
V ) = T . If L = V , then N − L − K is a path

of length 2. Thus, we assume that L ̸= V . If V ∗(
√
L ∩

√
V ) = T ,

then N − L − V − K is a path of length 3. If V ∗(
√
L ∩

√
V ) ̸= T ,

then N −
√
L ∩

√
V −K is a path of length 2 (if N =

√
L ∩

√
V , then

V ∗(N) ∪ V ∗(K) = V ∗(L) ∪ V ∗(V ) ∪ V ∗(K) so that T = V ∗(
√
V ∩√

K) = V ∗(
√
L ∩

√
V ∩

√
K). Thus, V ∗(

√
N) ∩ V ∗(

√
K) = T , a

contradiction. Similarly, we have K ̸=
√
L ∩

√
V ). Now suppose that

gr(G(τ∗T )) > 4. We can assume that gr(G(τ∗T )) = k, where k > 4.
Then N1 − N2 − N3 − N4 − N5 − · · · − Nk−1 − Nk − N1 is a cycle of
length k. Clearly, V ∗(N2) ∪ V ∗(Nk−1) ̸= T . Now one can see that

N1−
√
N2∩

√
Nk−1−Nk−N1 is a 3-cycle, a contradiction. So we have

gr(G(τ∗T )) ≤ 4. Hence, the proof is complete. �

Proposition 2.7. Let M be an R-module, and let ψ : Spec(M) →
Spec(R/Ann(M)) be the natural map. Suppose Spec(M) is homeo-
morphic to Spec(R/Ann(M)) under ψ. Let (N :M)M and (L :M)M

be adjacent in G(τ∗T ), and let T ′ = {(P :M) : P ∈ T}. Then (N :M)

and (L :M) are adjacent in G(τ∗T ′). Conversely, if I and J are adjacent
in G(τ∗T ′), then IM and JM are adjacent in G(τ∗T ).

Proof. Since ψ is injective, ψ−1(T ′) = T . Also we have V ∗((N :
M)M) ∪ V ∗((L :M)M) = T . Hence,

ψ(V ∗((N :M)M)) ∪ ψ(V ∗((L :M)M)) = T ′.

This implies that V (N :M) ∪ V (L :M) = T ′ (note that V ∗((N :
M)M) = T ⇔ V (N :M) = T ′). Conversely, suppose V (I) ∪ V (J) =
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T ′. Then ψ−1(V (I))∪ψ−1(V (J)) = T so that V ∗(IM)∪V ∗(JM) = T
(note that V ∗(I) = T ′ ⇔ V ∗(IM) = T ). �

Lemma 2.8. Let G(τ∗T ) ̸= ∅ and let P ∈ T . Then P is a vertex if
either of the following statements holds.

(i) There exists a subset T ′ of T such that P ∈ T ′, V ∗(∩Q∈T ′Q) = T ,
and V ∗(∩Q∈T ′,Q̸=PQ) ̸= T .

(ii) For a submodule N of M , N ∈ V (G(τ∗T )) and
√
N ∩ P /∈

V (G(τ∗T )).

Proof. Straightforward. �

The following theorem shows the situations in which T contains some
vertices.

Theorem 2.9. Suppose T is a finite set and G(τ∗T ) ̸= ∅. Then

(i) T ∩ V (G(τ∗T )) ̸= ∅.
(ii) If T ⊆ Max(M), then every P ∈ T is a vertex.
(iii) If P ∈ T ∩Min(M), then P is a vertex.

Proof.

(i) Let P ∈ T . Then we have V ∗(P ) ∪ V ∗(∩Q∈T,Q ̸=PQ) = T . If
V ∗(∩Q∈T,Q ̸=PQ) ̸= T , then P is a vertex. Otherwise, we have
V ∗(∩Q∈T,Q ̸=PQ) = T . Since T is not irreducible, there exists a
non-empty subset T ′ of T and P ′ ∈ T ′ such that

V ∗(∩P∈T\T ′P ) ̸= T and V ∗(∩P∈(T\T ′)∪{P ′}P ) = T.

Thus, P ′ ∈ T ∩ V (G(τ∗T )).
(ii) Clearly, V ∗(P )∪V ∗(∩Q∈T,Q ̸=PQ) = T and V ∗(∩Q∈T,Q̸=PQ) ̸= T .
(iii) Clearly, V ∗(P )∪V ∗(∩Q∈T,Q ̸=PQ) = T and V ∗(∩Q∈T,Q̸=PQ) ̸= T .

�

Example 2.10. Consider Example 2.4. If |T | ≥ 2 and T ⊆ {p1Z ⊕
Z(p∞), . . . , pnZ⊕ Z(p∞)}, then every element of T is a vertex. More-
over, in Example 2.5, if |T | ≥ 2 and
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T ⊆ {Q⊕ (⊕i∈N,i̸=1Z/piZ), . . . ,Q⊕ (⊕i∈N,i̸=nZ/piZ)},

then every element of T is a vertex.

Definition 2.11. We define a subgraph Gd(τ
∗
T ) of G(τ

∗
T ) with vertices

V ((Gd(τ
∗
T ))) = {N < M : there exists L < M such that V ∗(N) ∪

V ∗(L) = T , V ∗(N), V ∗(L) ̸= T and V ∗(N) ∩ V ∗(L) = ∅}, where
distinct vertices N and L are adjacent if and only if V ∗(N)∪ V ∗(L) =
T and V ∗(N) ∩ V ∗(L) = ∅. It is clear that the degree of every
N ∈ V ((Gd(τ

∗
T ))) is the number of submodules K of M such that

V ∗(L) = V ∗(K), where L is adjacent to N .

We need the following remark.

Remark 2.12. We recall that the Zariski topology on Spec(M) is the
topology τM described by taking the set Z(M) = {V (N) : N ≤M} as
the set of closed sets of Spec(M), where V (N) = {P ∈ Spec(M) : (P :
M) ⊇ (N : M)} [12]. If M is a multiplication module, then τM = τ∗M
by [14, Theorem 3.5].

Proposition 2.13. The following statements hold.

(i) Gd(τ
∗
T ) ̸= ∅ if and only if T = V ∗(ℑ(T )) and T is disconnected.

(ii) Suppose M̂ is an Artinian module and T is closed. Then Gd(τ
∗
T ) =

∅ if and only if R/Ann(M̂) contains no idempotent other than 0
and 1.

Proof.

(i) Straightforward.

(ii) Since M̂ is an Artinian module, then M̂/ rad(M̂) is a Noetherian

module by [8, Corollary 2.30]. As M̂/ rad(M̂) is a finitely generated
top module, it is a multiplication module by [14, Theorem 3.5]. It
follows that τM̂/ rad(M̂) = τ∗

M̂/ rad(M̂)
by Remark 2.12. So τM̂ = τ∗

M̂

because M̂ and M̂/ rad(M̂) are homeomorphic by Lemma 4.1. Also,

the natural map of M̂/ rad(M̂) is surjective (for, M̂/ rad(M̂) is finitely
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generated). Hence, the natural map of M̂ is surjective by the above
arguments. Now the result follows from [12, Corollary 3.8]. �

Theorem 2.14. Gd(τ
∗
T ) is a bipartite graph.

Proof. At first we assume that Gd(τ
∗
T ) contains a cycle. We show

that gr(Gd(τ
∗
T )) ≤ 4. Now suppose that gr(Gd(τ

∗
T )) > 4. We can

assume that gr(Gd(τ
∗
T )) = k, where k > 4. Then N1 −N2 −N3 −N4 −

N5 − · · ·−Nk−1 −Nk −N1 is a cycle of length k. Clearly, V ∗(Nk−1) =
V ∗(N1). Hence, one can see that N1 −N2 −N3 − · · · −Nk−2 −N1 is
a cycle, a contradiction. So we have gr(Gd(τ

∗
T )) ≤ 4. Now, by [16,

Proposition 1.6.1], G is a bipartite graph if and only if it does not
contain an odd cycle. Hence, by Theorem 2.6, it is enough to show
that gr(Gd(τ

∗
T )) ̸= 3. Suppose N − L−K −N is a 3-cycle. Then

∅ = (V ∗(N) ∩ V ∗(L)) ∪ (V ∗(N) ∩ V ∗(K))

= V ∗(N) ∩ (V ∗(L) ∪ V ∗(K)) = V ∗(N) ∩ T = V ∗(N).

Hence, V (N) = ∅, a contradiction. �

Corollary 2.15. By Theorem 2.14, if Gd(τ
∗
T ) contains a cycle, then

gr(Gd(τ
∗
T )) = 4.

Example 2.16. Set R := Z and M := Z/12Z. So Spec(M) =
Max(M) = {2Z/12Z, 3Z/12Z}. Set T := Spec(M). Clearly, G(τ∗T ) =
Gd(τ

∗
T ) is a bipartite graph and Z/(∩P∈TP : M) ∼= Z/6Z contains

idempotents other than 0 and 1.

Example 2.17. Set R := Z and M := Z/30Z. So Spec(M) =
Max(M) = {2Z/30Z, 3Z/30Z, 5Z/30Z}. Set T := Spec(M). Clearly,
Gd(τ

∗
T ) is a bipartite graph and Z/(∩P∈TP : M) ∼= Z/30Z contains

idempotents other than 0 and 1.

The above example shows that Gd(τ
∗
T ) is not always connected.

Proposition 2.18. The following statements hold.
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(i) Gd(τ
∗
T ) with two parts U and V is a complete bipartite graph if and

only if for every N,L ∈ U (respectively in V ), V ∗(N) = V ∗(L).
(ii) Gd(τ

∗
T ) is connected if and only if it is a complete bipartite graph.

Proof. Use the fact that if N and L are two vertices, then d(N,L) =
2 if and only if V ∗(N) = V ∗(L). �

We end this section with the following question.

Question 2.19. Let G(τ∗T ) ̸= ∅, where T is an infinite subset of
Spec(M). Is T ∩ V (G(τ∗T )) ̸= ∅?

3. The annihilating-submodule graph. As we mentioned be-
fore, AG(M) is a graph with vertices V (AG(M)) = {N ≤M : NL = 0
for some 0 ̸= L < M}, where distinct vertices N and L are adjacent
if and only if NL = 0 (here we recall that the product of N and L is
defined by (N :M)(L :M)M).

The following results reflect some basic properties of the annihilating-
submodule graph of a module.

Proposition A ([4, Proposition 3.2]). Let N be a non-zero proper
submodule of M .

(i) N is a vertex in AG(M) if Ann(N) ̸= Ann(M) or (0 :M (N :
M)) ̸= 0.

(ii) N is a vertex in AG(M), where M is a multiplication module, if
and only if (0 :M (N :M)) ̸= 0.

Remark 3.1. In the annihilating-submodule graph AG(M), M itself
can be a vertex. In fact M is a vertex if and only if every non-zero
submodule is a vertex if and only if there exists a non-zero proper
submodule N of M such that (N : M) = Ann(M). For example, for
every submodule N of Q (as a Z-module), (N : Q) = 0. Hence, Q is a
vertex in AG(Q).

Theorem B ([4, Theorem 3.3]). Assume thatM is not a vertex. Then
the following hold.

(i) AG(M) is empty if and only if M is a prime module.
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(ii) A non-zero submodule N of M is a vertex if and only if (0 :M
(N :M)) ̸= 0.

Theorem C ([4, Theorem 3.4]). The annihilating-submodule graph
AG(M) is connected and diam(AG(M)) ≤ 3. Moreover, if AG(M)
contains a cycle, then gr(AG(M)) ≤ 4.

Lemma 3.2. Let M be an R-module and Ann(M) a prime ideal. Then
diam(AG(M)) ≤ 2.

Proof. Suppose N and L are adjacent in AG(M). Then (N :M) =
Ann(M) or (L :M) = Ann(M). Assume that (N :M) = Ann(M). So
every non-zero submodule M is a vertex and adjacent to N . Hence,
diam(AG(M)) ≤ 2. �

Proposition 3.3. The following statements hold.

(i) Let M = Rm be a cyclic R-module. Then M is not a vertex.
(ii) Let M =M1 ⊕M2, where M1, M2 are non-zero R-submodules of

M . Then every non-zero submodule of M1 is adjacent to every
non-zero submodule of M2.

(iii) Assume that AG(M) = ∅. Then module M is an indecomposable
module.

Proof.

(i) This follows from Remark 3.1 and the fact that every cyclic R-
module is multiplication.

(ii) Let 0 ̸= N ≤ M1 and 0 ̸= K ≤ M2. Clearly, (N ⊕ (0) : M) =
(N :M1) ∩ (0 :M2). Hence, (N ⊕ (0) :M) ⊆ (0 :M2). Similarly,
((0) ⊕ K : M) ⊆ (0 : M1). Therefore, (N ⊕ (0))((0) ⊕ K) = 0.
This in turn implies that N and K are adjacent in AG(M).

(iii) The proof follows from part (ii). �

We allow α to be infinite cardinal, where α = |Λ(M)|. (We recall
that Λ(M) is the set of all non-zero submodules of M .)

Proposition 3.4. The following statements hold.
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(i) Let M be a non-simple semisimple R-module. Then every non-
zero proper submodule of M is a vertex.

(ii) Let M be a non-simple homogeneous semisimple R-module. Then
AG(M) = Kα.

(iii) LetM be a prime module with a non-zero socle. Then AG(M) = ∅
or AG(M) = Kα.

(iv) Let M be a non-simple module with a non-zero socle. Then
AG(M) ̸= ∅. In particular, AG(M) ̸= ∅ when M is a non-simple
Artinian module.

Proof.

(i) Since M is a semisimple module, we have M = ⊕α∈ITα where,
for each α ∈ I, Tα is a simple submodule of M . Now let N be an
arbitrary non-zero submodule of M . Then, by [2, Proposition 9.4],
there exist a subset I ′ ⊆ I and a decomposition N ∼= ⊕α∈I′Tα. Set
K ∼= ⊕I\I′Tα. Then NK ⊆ N ∩K = 0. It follows that N is a vertex.

(ii) Since M is a homogeneous semisimple module, it is clear that
Ann(M) is a maximal ideal of R. Hence for every non-zero submodule
N of M , we have (N : M) = (0 : M). We conclude that if N and K
are two non-zero distinct submodules of M , then NK = 0, as desired.

(iii) This follows from part (ii) because every prime module with a
non-zero socle is homogeneous semisimple (see [9, Corollary 1.9]).

(iv) Suppose that M is not a simple module with Soc(M) ̸= 0.
Then there exists a minimal submodule Rm of M , where m is a non-
zero element of M . Now (0 : m) is a maximal ideal of R and we have
(Rm)((0 : m)M) = 0. This shows that AG(M) ̸= ∅. �

Example 3.5. Put R := Z andM := ⊕i∈NZ2. SinceM is a direct sum
of isomorphic simple modules, then M is a homogeneous semisimple
module. For every non-zero proper submodule N of M , we have
(N : M) = Ann(M). Hence every non-zero submodule N and K
are adjacent in AG(M).

Proposition 3.6. Let M be a non-simple prime module. Then
AG(M) = Kα, if and only if every non-zero proper submodule of M is
adjacent to M .
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Proof. The sufficiency is clear.

To see the converse, let N ∈ V (AG(M)). Then there exists
a non-zero proper submodule L of M such that NL = 0. Since
Ann(M) is a prime ideal of R, it follows that (N : M) = Ann(M)
or (L :M) = Ann(M). So every non-zero submodule M is a vertex by
Remark 3.1. Now, since AG(M) is a complete graph, every non-zero
proper submodule of M is adjacent to M . �

Theorem 3.7. Consider the following statements.

(i) Ann(M) is a prime ideal andM is a divisible R/Ann(M)-module.
(ii) Every non-zero proper submodule of M is adjacent to M .
(iii) For each ideal I of R, we have IM =M or IM = 0.
(iv) AG(M) = Kα.
(v) M is a non-simple homogeneous semisimple module.

Then (i) → (ii) → (iii) → (iv) → (i). Moreover, if M is a finitely
generated module then (v) ↔ (i).

Proof. (i) → (ii). Let N be a non-zero proper submodule of M . We
show that (N : M) = Ann(M). Suppose r ∈ (N : M) and rM ̸= 0.
Since M is divisible by R/Ann(M), we have rM = M . This implies
that N =M , a contradiction. Hence, N is adjacent to M , as desired.

(ii) → (i) and (ii) → (iii) are clear.

(iii) → (ii). Let N be a non-zero proper submodule of M and I an
ideal of R. Then (IM :M) = Ann(M) by hypothesis, where IM ̸=M .
Now we have (N : M) = ((N : M)M : M) = Ann(M). This shows
that N is adjacent to M , as required.

(ii) ↔ (iv). Straightforward.

(ii) → (v). Let M be a finitely generated R-module and let (N :
M) = Ann(M) for every proper submodule N of M . Then M is a
divisible R/Ann(M)-module. We show that R/Ann(M) is a field.
Suppose not. Then M has a maximal submodule, say N . So (N : M)
is a maximal ideal R. Hence there exists 0 ̸= r ∈ (N : M). But
rM =M is a contradiction. So Ann(M) is a maximal ideal and hence
M is a homogeneous semisimple module.

(v) → (ii). It is clear by Proposition 3.4 (ii). �



742 H. ANSARI-TOROGHY AND SH. HABIBI

Note that an R-module M is fully prime (respectively fully semi-
prime) if each proper submodule ofM is prime (respectively semiprime).
In [9, Corollary 1.9], it is shown that M is fully prime (respectively,
fully semiprime) if and only if is homogeneous semisimple (respectively,
co-semisimple module).

Corollary 3.8. Let R be an integral domain with dim(R) = 1, and let
M be an R-module. Then every non-zero proper submodule of M is
adjacent to M if and only if one of the following statements hold :

(i) M is a homogeneous semisimple module.
(ii) M is a divisible module.

Proof. Suppose that every non-zero proper submodule of M is ad-
jacent to M . Then Ann(M) is a prime ideal of R and M is a divisible
R/Ann(M)-module by Theorem 3.7. If Ann(M) = 0, then M is a di-
visible R-module. Otherwise, since dim(R) = 1, it follows that Ann(M)
is a maximal ideal of R so that (N : M) = Ann(M) for every proper
submodule N of M . Thus every proper submodule of M is prime by
[14, Corollary 1.2]. This means that M is a homogeneous semisim-
ple. Conversely, first we assume that M is a homogeneous semisimple
module. Then Ann(M) is a maximal ideal of R so that every non-zero
proper submoduleM is adjacent toM . In caseM is a divisible module,
the claim follows from Theorem 3.7. �

4. The relationship between G(τ∗T ) and AG(M). A proper sub-
module N of M is said to be semiprime in M if, for every ideal I of
R and every submodule K of M , I2K ⊆ N implies that IK ⊆ N .
Further, M is called a semiprime module if (0) ⊆ M is a semiprime
submodule. Every intersection of prime submodules is a semiprime
submodule. A proper ideal I of R is semiprime if, for every ideal J and
K of R, J2K ⊆ I implies that JK ⊆ I [17].

Lemma 4.1. Suppose T is a closed subset of Spec(M) equipped with

the natural topology induced from of Spec(M). Then T and Spec(M̂)
are homeomorphic.

Proof. Let ϕ : Spec(M̂) → T = V ∗(ℑ(T )) be defined by ϕ(Q̂) = Q,
where Q ∈ Spec(M). Clearly ϕ is a bijection map. We show that ϕ is a
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continuous map. Let U = T ∩V ∗(N) be a closed subset of T , where N

is a proper subset of M . Then we have ϕ−1(U) = V ∗( ̂N + ℑ(T )). We

show that ϕ is closed. Suppose U is a closed subset of Spec(M̂). Then

U = V ∗(N̂), where N ≤M . It is easy to see that ϕ(U) = V ∗(N). �

One may think that since T and Spec(M̂) are homeomorphic, study-
ing G(τ∗T ) can be reduced to studying G(τ∗Spec(L)), where L is a

semiprime module. But the following example shows that this is not
true.

Example 4.2. Set R := Z, M := Z/12Z, and T := Spec(M). Then
G(τ∗T ) = K1,2 but G(τ∗Spec(M/ rad(M))) = K2.

Remark 4.3. In fact G(τ∗T ) is a non-empty graph if and only if
|E(G(τ∗T ))| ≥ 1. The following lemma shows that the graph AG(M)
also has this property (i.e., |E(AG(M))| ≥ 1) if M is a semiprime
module such that it is not a vertex in AG(M).

Lemma 4.4. Assume that M is not a vertex in AG(M). Then M is
a semiprime module if and only if for every non-zero submodule N of
M and each positive integer k, Nk ̸= 0.

Proof. The necessity is clear.

To see the converse, let N be a submodule ofM and let I be an ideal
of R. Let I2N = 0 and IN ̸= 0. Then we have (IN)2 = (IN :M)2M ⊆
I2N = 0, a contradiction. Hence, M is a semiprime module. �

Proposition 4.5. The following statements hold.

(i) Suppose N and L are adjacent in G(τ∗T ). Then
√̂
N and

√̂
L are

adjacent in AG(M̂).

(ii) G(τ∗T ) is isomorphic with a subgraph of AG(M̂) or |E(G(τ∗T ))| ≥ 2.

Proof.

(i) Straightforward.

(ii) Assume that G(τ∗T ) is not isomorphic with a subgraph of AG(M̂).
Hence there exist N,L ∈ V (G(τ∗T )) such that N and L are
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adjacent and N ̸=
√
N . It follows that N − L−

√
N is a path of

length 2. �

Theorem 4.6. The following statements hold.

(i) Let M be a finitely generated module and G(τ∗T ) ̸= ∅. Then

AG(M̂) is isomorphic with a subgraph of G(τ∗T ).
(ii) Let M be a fully semiprime module. Then G(τ∗T ) is isomorphic

with a subgraph of AG(M̂).
(iii) Let M be a semisimple module and suppose M is not a vertex in

AG(M). Then G(τ∗T ) and AG(M̂) are isomorphic.

(iv) Let M be a homogeneous semisimple module. Then AG(M̂) =

Kα, where α = |Λ(M̂)| and G(τ∗T ) = ∅.

Proof.

(i) By [14, Theorem 3.5], every finitely generated top module is

multiplication. One can see that if N̂ and L̂ are adjacent in AG(M̂),
then N and L are adjacent in G(τ∗T ).

(ii) By [9, Theorem 2.3], M is a co-semisimple module. So

N =
∩

P∈V ∗(N)

P,

where N < M . Hence, by Proposition 4.5 (i), it is easy to see that

G(τ∗T ) is isomorphic with a subgraph of AG(M̂).

(iii) LetM be a semisimple module and supposeM is not a vertex in
AG(M). We show that M is a multiplication module. To see this, let
N be a proper submodule of M . Then there exists a family {Ti, i ∈ I}
of minimal submodules of M such that N = ⊕i∈ITi. Now for each
i ∈ I, we have (Ti : M)M = M (note that (Ti : M)M ̸= 0 because M
is not a vertex in AG(M)). Hence,

N =
⊕
i∈I

(Ti :M)M =

(⊕
i∈I

(Ti :M)

)
M.

Thus, M is a multiplication module. It follows that, if N̂ and L̂ are

adjacent in AG(M̂), then N and L are adjacent in G(τ∗T ). Since M
is a co-semisimple module, by using part (ii), we see that G(τ∗T ) is
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isomorphic with a subgraph of AG(M̂). Hence G(τ∗T ) and AG(M̂) are
isomorphic.

(iv) The first assertion follows from Proposition 3.4 (ii). To see the
second assertion, ℑ(T ) is a prime submodule of M (see [9, Corollary
1.9]), thus G(τ∗T ) = ∅ by Proposition 2.3 (iii). �

Example 4.7. Put R := Z and M := ⊕i∈NZ/piZ. Then, by [6,
Examples 3.1], Max(M) = Spec(M) = {pjM} = {⊕i∈N,i̸=jZ/piZ},
andM is a top module. G(τ∗Spec(M)) is an infinite graph, because every

element ⊕i∈N,i ̸=jZ/piZ of Spec(M) is adjacent to Z/pjZ. Hence, by
Theorem 4.6 (ii), AG(M) is an infinite graph.

Lemma 4.8. Assume that ∅ ≠ V (AG(M̂) ⊆ Max(M̂). Then |T | = 2,

AG(M̂) = K2, and it is isomorphic with a subgraph of G(τ∗T ).

Proof. Suppose that P̂ is a vertex in AG(M̂) such that P ∈ Max(M).

Then there exists a non-zero proper submodule Q̂ of M̂ such that it

is adjacent to P̂ , where, Q ∈ Max(M). One can see that (P : M) ⊆
(P ′ : M) or (Q : M) ⊆ (P ′ : M) for every P ′ ∈ T . Now since M̂
is a top module, by [14, Theorem 3.5] P = P ′ or Q = P ′. Hence,

V ∗(P )∪V ∗(Q) = T . It follows that |T | = 2, AG(M̂) has only one edge
and it is isomorphic with a subgraph of G(τ∗T ). �

Proposition 4.9. Assume that G(τ∗T ) ̸= ∅.

(i) If M̂ is a Noetherian R-module, then T = V ∗(P1∩· · ·∩Pn), where
for each i (1 ≤ i ≤ n), Pi is a vertex.

(ii) If M̂ is an Artinian R-module, then T = V ∗(P1∩· · ·∩Pn), where
for each (1 ≤ i ≤ n), Pi is a vertex. In particular, |T | = n.

Proof.

(i) Since M̂ is a Noetherian module, M̂ has a finite number of
minimal prime submodules by [15, Theorem 4.2]. Hence

Spec(M̂) = V ∗(P̂1) ∪ · · · ∪ V ∗(P̂n),



746 H. ANSARI-TOROGHY AND SH. HABIBI

where each i (1 ≤ i ≤ n), P̂i is a minimal prime submodule of M̂
and Pi is a prime submodule of M . So, by Lemma 4.1, we have
T = V ∗(P1)∪· · ·∪V ∗(Pn). Now the result follows from Lemma 2.8 (i).

(ii) As in the proof of Proposition 2.13 (ii), M̂/ rad(M̂) is a Noe-

therian module. So M̂/ rad(M̂) has a finite number of minimal prime

submodules. Hence, M̂ has a finite number of minimal prime sub-
modules. So we have T = V ∗(P1) ∪ · · · ∪ V ∗(Pn) by part (i). To

see the second assertion, we note that, since M̂/ rad(M̂) is a finitely
generated top module, it is a multiplication module by [14, Theorem

3.5]. It follows that M̂/ rad(M̂) is a cyclic Artinian module by [11,

Corollary 2.9], and hence, Spec(M̂/ rad(M̂)) = Max(M̂/ rad(M̂)). So

Spec(M̂) = Max(M̂). Hence, by the above arguments, we have |T | = n,
and the proof is completed. �
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