ON THE GRAPH OF MODULES OVER COMMUTATIVE RINGS

H. ANSARI-TOROGHY AND SH. HABIBI

Abstract

Let M be a module over a commutative ring and let $\operatorname{Spec}(M)$ be the collection of all prime submodules of M. We topologize $\operatorname{Spec}(M)$ with quasi-Zariski topology and, for a subset T of $\operatorname{Spec}(M)$, we introduce a new graph $G\left(\tau_{T}^{*}\right)$, called the quasi-Zariski topology-graph. It helps us to study algebraic (respectively, topological) properties of M (respectively, $\operatorname{Spec}(M))$ by using graph theoretical tools. Also, we study the annihilating-submodule graph and investigate the relation between these two graphs.

1. Introduction. Throughout this paper, R is a commutative ring with a non-zero identity and M is a unital R-module. By $N \leq M$ (respectively $N<M$) we mean that N is a submodule (respectively proper submodule) of M and $\Lambda(M)$ is the set of all non-zero submodules of M. For any pair of submodules $N \subseteq L$ of M and any element m of M, we denote L / N and the residue class of m modulo N in M / N by \bar{L} and \bar{m}, respectively.

For a submodule N of M, the colon ideal of M into N is defined by $(N: M)=\{r \in R \mid r M \subseteq N\}=\operatorname{Ann}(M / N)$. Further if I is an ideal of R, the submodule $\left(N:_{M} I\right)$ is defined by $\{m \in M: \Im \subseteq N\}$. Moreover, \mathbb{N}, \mathbb{Z} and \mathbb{Q} denote the set of positive integers, the ring of integers, and the field of rational numbers, respectively.

For a subset T of $\operatorname{Spec}(M), \Im(T)$ is the intersection of all members of T.

A prime submodule of M is a submodule $P \neq M$ such that, whenever $r e \in P$ for some $r \in R$ and $e \in M$, we have $r \in(P: M)$ or $e \in P[13]$.

[^0]The prime spectrum (or simply, the spectrum) of M is the set of all prime submodules of M and denoted by $\operatorname{Spec}(M)$. Also, the set of all maximal submodules of M is denoted by $\operatorname{Max}(M)$.

The prime radical \sqrt{N} is defined to be the intersection of all prime submodules of M containing N, and in the case of N is not contained in any prime submodule, \sqrt{N} is defined to be M. Note that the intersection of all prime submodule M is denoted by $\operatorname{rad}(M)$.

The quasi-Zariski topology on $X:=\operatorname{Spec}(M)$ is described as follows: put $V^{*}(N)=\{P \in X: P \supseteq N\}$ and $\xi^{*}(M)=\left\{V^{*}(N): N\right.$ is a submodule of $M\}$. Then there exists a topology τ^{*} on X having ξ^{*} as the set of closed subsets of $\operatorname{Spec}(M)$ if and only if ξ^{*} is closed under the finite union. When this is the case, τ_{M}^{*} is called the quasi-Zariski topology on $\operatorname{Spec}(M)$ and M is called a top module [14].

If $\operatorname{Spec}(M) \neq \emptyset$, the mapping $\psi: \operatorname{Spec}(M) \rightarrow \operatorname{Spec}(R / \operatorname{Ann}(M))$ such that $\psi(P)=(P: M) / \operatorname{Ann}(M)=\overline{(P: M)}$ for every $P \in$ $\operatorname{Spec}(M)$, is called the natural map of $\operatorname{Spec}(M)$ [6].

A topological space X is said to be connected if there does not exist a pair U, V of disjoint non-empty open sets of X whose union is X. A topological space X is irreducible if, for any decomposition $X=X_{1} \cup X_{2}$ with closed subsets X_{i} of X with $i=1,2$, we have $X=X_{1}$ or $X=X_{2}$. A subset X^{\prime} of X is connected (respectively irreducible) if it is connected (respectively irreducible) as a subspace of X.

The zero-divisor graph of $R, \Gamma(R)$, is a graph with the vertex set $Z(R) \backslash\{0\}$, the set of nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if $x y=0$. The concept of the zero-divisor graph was first introduced by Beck (see [7]). Since many properties of a ring are closely tied to the behavior of its ideals, it is valuable to replace the vertices of the zero-divisor graph by the non-zero annihilator ideals. The idea of a graph, whose vertices are a subset of ideals of a ring, was introduced recently in [10]. They defined $A G(R)$, the annihilating-ideal graph of R, to be a graph whose vertices are ideals of R with non-zero annihilators and in which two vertices I and J are adjacent if and only if $I J=0$.

Let N and L be submodules of M. Then the product of N and L is defined by $(N: M)(L: M) M$ and denoted by $N L$, and clearly $N^{k}=(N: M)^{k} M$ (see [3]).

In [4], the present authors generalized the above idea, introduced the annihilating-submodule graph $A G(M)$ and investigated some of its related properties. The (undirected) graph $A G(M)$ is a graph with vertices $V(A G(M))=\{N \leq M$: there exists a non-zero proper submodule L of M with $N L=0\}$, where distinct vertices N, L are adjacent if and only if $N L=0$.

As we know, the closed subset $V^{*}(N)$, where N is a submodule of M, plays an important role in the quasi-Zariski topology on $\operatorname{Spec}(M)$. Our main purpose in this article is to employ these sets and define a new graph $G\left(\tau_{T}^{*}\right)$, called the quasi-Zariski topology-graph. By using this graph, we study algebraic (respectively, topological) properties of M (respectively, $\operatorname{Spec}(M)$). Further, we investigate the relationship between $G\left(\tau_{T}^{*}\right)$ and $A G(M / \Im(T))$, where T denotes a non-empty subset of $\operatorname{Spec}(M)$ and $\Im(T)$ is the intersection of all members of T.
$G\left(\tau_{T}^{*}\right)$ is an undirected graph with vertices $V\left(G\left(\tau_{T}^{*}\right)\right)=\{N<$ M : there exists $K<M$ such that $V^{*}(N) \cup V^{*}(K)=T$ and $\left.V^{*}(N), V^{*}(K) \neq T\right\}$, where T is a non-empty $\operatorname{subset} \operatorname{of} \operatorname{Spec}(M)$ and distinct vertices N and L are adjacent if and only if $V^{*}(N) \cup V^{*}(L)=T$ (see Definition 2.1).

Let M be a top module. In Section 2 of this article, among other results, it is shown that the quasi-Zariski topology-graph $G\left(\tau_{T}^{*}\right)$ is connected and $\operatorname{diam}\left(G\left(\tau_{T}^{*}\right)\right) \leq 3$. Further if $G\left(\tau_{T}^{*}\right)$ contains a cycle, then $\operatorname{gr}\left(G\left(\tau_{T}^{*}\right)\right) \leq 4$ (see Theorem 2.6). Also, it is shown that $G\left(\tau_{T}^{*}\right)$ has a bipartite subgraph (see Theorem 2.14).

In Section 3, we explore more properties of $A G(M)$. In Proposition 3.4, we show that if M is a non-simple semisimple R-module, then every non-zero proper submodule of M is a vertex. In Theorem 3.7, we provide some useful characterizations for those modules M for which $A G(M)=K_{\alpha}$, where $|\Lambda(M)|=\alpha$.

In Section 4, the relationship between $G\left(\tau_{T}^{*}\right)$ and $A G(M / \Im(T))$ is investigated. We show that, if N and L are non-zero proper submodules of M which are adjacent in $G\left(\tau_{T}^{*}\right)$, then $\sqrt{N} / \Im(T)$ and $\sqrt{L} / \Im(T)$ are adjacent in $A G(M / \Im(T))$ (see Proposition 4.5). Also we show that, if M is a finitely generated module and $G\left(\tau_{T}^{*}\right) \neq \emptyset$, then $A G(M / \Im(T))$ is
isomorphic with a subgraph of $G\left(\tau_{T}^{*}\right)$. Further, we prove that, if M is a fully semiprime module, then $G\left(\tau_{T}^{*}\right)$ is isomorphic with a subgraph of $A G(M / \Im(T))$ (see Theorem 4.6).

Let us introduce some graphical notation that is used in what follows. A graph G is an ordered triple $\left(V(G), E(G), \psi_{G}\right)$ consisting of a nonempty set of vertices, $V(G)$, a set $E(G)$ of edges, and an incident function ψ_{G} that associates an unordered pair of distinct vertices with each edge. The edge e joins x and y if $\psi_{G}(e)=\{x, y\}$, and we say x and y are adjacent. The degree $d_{G}(x)$ of a vertex x is the number of edges incident with x. A path in graph G is a finite sequence of vertices $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$, where x_{i-1} and x_{i} are adjacent for each $1 \leq i \leq n$ and we denote $x_{i-1}-x_{i}$ for an existing edge between x_{i-1} and x_{i}. The number of edges crossed to get from x to y in a path is called the length of the path. A graph G is connected if a path exists between any two distinct vertices. For distinct vertices x and y of G, let $d(x, y)$ be the length of the shortest path from x to y and, if there is no such path, then $d(x, y)=\infty$. The diameter of G is $\operatorname{diam}(G)=\sup \{d(x, y): x, y \in V(G)\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is the length of the shortest cycle in G and, if G contains no cycles, then $\operatorname{gr}(G)=\infty$ (see [1]).

A graph H is a subgraph of G if $V(H) \subseteq V(G), E(H) \subseteq E(G)$ and ψ_{H} is the restriction of ψ_{G} to $E(H)$. We denote the complete graph on n vertices by K_{n}. A bipartite graph is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V; that is, U and V are each independent sets and complete bipartite graphs on n and m vertices, denoted by $K_{n, m}$, where V and U are of size n and m, respectively, and $E(G)$ connects every vertex in V with all vertices in U (see [16]).

In the rest of this article, M denotes a top module, T a non-empty subset of $\operatorname{Spec}(M), \Im(T)$ is the intersection of all members of T, \widehat{M} represents the R-module $M / \Im(T)$, and for a submodule N of M, $\widehat{N}=N / \Im(T)$, where $\Im(T) \subseteq N$, is a submodule of \widehat{M}.

2. The qausi-Zariski topology-graph.

Definition 2.1. We define a quasi-Zariski topology-graph $G\left(\tau_{T}^{*}\right)$ with vertices $V\left(G\left(\tau_{T}^{*}\right)\right)=\left\{N<M\right.$: there exists $K<M$ such that $V^{*}(N) \cup$
$V^{*}(K)=T$ and $\left.V^{*}(N), V^{*}(K) \neq T\right\}$, where distinct vertices N and L are adjacent if and only if $V^{*}(N) \cup V^{*}(L)=T$.

Notation 2.2. By [14, Lemma 2.1], if M is a top module, then for every pair of submodules N and L of M, we have $V^{*}(N) \cup V^{*}(L)=$ $V^{*}(\sqrt{N}) \cup V^{*}(\sqrt{L})=V^{*}(\sqrt{N} \cap \sqrt{L})$.

Proposition 2.3. The following statements hold.
(i) $G\left(\tau_{T}^{*}\right) \neq \emptyset$ if and only if T is closed and is not an irreducible subset of $\operatorname{Spec}(M)$.
(ii) $G\left(\tau_{T}^{*}\right) \neq \emptyset$ if and only if $T=V^{*}(\Im(T))$ and T is not an irreducible subset of $\operatorname{Spec}(M)$.
(iii) $G\left(\tau_{T}^{*}\right) \neq \emptyset$ if and only if $T=V^{*}(\Im(T))$ and $\Im(T)$ is not a prime submodule of M.

Proof.

(i) Straightforward.
(ii) Suppose that $G\left(\tau_{T}^{*}\right) \neq \emptyset$. By part (i), it is enough to show that $T=V^{*}(\Im(T))$ which is a closed set. Clearly, $T \subseteq V^{*}(\Im(T))$. Next, let $V^{*}(N)$ be any closed subset of $\operatorname{Spec}(M)$ containing T. Then $P \supseteq N$ for every $P \in T$ so that $\Im(T) \supseteq N$. Hence, for every $Q \in V^{*}(\Im(T))$ and $Q \supseteq \Im(T) \supseteq N$, namely, $V^{*}(\Im(T)) \subseteq V^{*}(N)$, it follows that $V^{*}(\Im(T))$ is the smallest closed subset of $\operatorname{Spec}(M)$ containing T. Hence, $V^{*}(\Im(T))=T$.
(iii) It follows from part (ii) and [8, Theorem 3.4].

Example 2.4. Set $R:=\mathbb{Z}$ and $M:=\mathbb{Z} \oplus \mathbb{Z}\left(p^{\infty}\right)$, where p is a prime integer of \mathbb{Z}. Then, by [6, Examples 3.1], $\operatorname{Max}(M)=\left\{p_{i} \mathbb{Z} \oplus \mathbb{Z}\left(p^{\infty}\right): i \in\right.$ $\mathbb{N}\}, \operatorname{Spec}(M)=\operatorname{Max}(M) \cup\left\{(\mathbf{0}) \oplus \mathbb{Z}\left(p^{\infty}\right)\right\}$, where p_{i} is a prime number for every $i \in \mathbb{N}$, and M is a top module. We have $V^{*}\left((\mathbf{0}) \oplus \mathbb{Z}\left(p^{\infty}\right)\right)=$ $\operatorname{Spec}(M)$. Hence $\operatorname{Spec}(M)$ is irreducible and $G\left(\tau_{\operatorname{Spec}(M)}^{*}\right)=\emptyset$.

Example 2.5. Set $R:=\mathbb{Z}$ and $M:=\mathbb{Q} \oplus\left(\oplus_{i \in \mathbb{N}} \mathbb{Z} / p_{i} \mathbb{Z}\right)$. Then by [6, Examples 3.1],

$$
\begin{aligned}
\operatorname{Max}(M) & =\left\{\mathbb{Q} \oplus\left(\oplus_{i \in \mathbb{N}, i \neq j} \mathbb{Z} / p_{i} \mathbb{Z}\right)\right\} \\
\operatorname{Spec}(M) & =\operatorname{Max}(M) \cup\left\{(\mathbf{0}) \oplus\left(\oplus_{i \in \mathbb{N}} \mathbb{Z} / p_{i} \mathbb{Z}\right)\right\}
\end{aligned}
$$

and M is a top module. Now, $\mathbb{Q} \oplus(\mathbf{0})$ and $\left\{(\mathbf{0}) \oplus\left(\oplus_{i \in \mathbb{N}} \mathbb{Z} / p_{i} \mathbb{Z}\right)\right\}$ are adjacent in $G\left(\tau_{\text {Spec }(M)}^{*}\right)$ so that $G\left(\tau_{\operatorname{Spec}(M)}^{*}\right) \neq \emptyset$.

The following theorem illustrates some graphical parameters.

Theorem 2.6. The quasi-Zariski topology-graph $G\left(\tau_{T}^{*}\right)$ is connected and $\operatorname{diam}\left(G\left(\tau_{T}^{*}\right)\right) \leq 3$. Moreover, if $G\left(\tau_{T}^{*}\right)$ contains a cycle, then $\operatorname{gr}\left(G\left(\tau_{T}^{*}\right)\right) \leq 4$.

Proof. Suppose $N, K \in V\left(G\left(\tau_{T}^{*}\right)\right)$ and they are not adjacent. Then $V^{*}(N) \cup V^{*}(K) \neq T$, so there exist $L, V \in V\left(G\left(\tau_{T}^{*}\right)\right)$ with $V^{*}(\sqrt{N} \cap$ $\sqrt{L})=V^{*}(\sqrt{K} \cap \sqrt{V})=T$. If $L=V$, then $N-L-K$ is a path of length 2 . Thus, we assume that $L \neq V$. If $V^{*}(\sqrt{L} \cap \sqrt{V})=T$, then $N-L-V-K$ is a path of length 3 . If $V^{*}(\sqrt{L} \cap \sqrt{V}) \neq T$, then $N-\sqrt{L} \cap \sqrt{V}-K$ is a path of length 2 (if $N=\sqrt{L} \cap \sqrt{V}$, then $V^{*}(N) \cup V^{*}(K)=V^{*}(L) \cup V^{*}(V) \cup V^{*}(K)$ so that $T=V^{*}(\sqrt{V} \cap$ $\sqrt{K})=V^{*}(\sqrt{L} \cap \sqrt{V} \cap \sqrt{K})$. Thus, $V^{*}(\sqrt{N}) \cap V^{*}(\sqrt{K})=T$, a contradiction. Similarly, we have $K \neq \sqrt{L} \cap \sqrt{V})$. Now suppose that $\operatorname{gr}\left(G\left(\tau_{T}^{*}\right)\right)>4$. We can assume that $\operatorname{gr}\left(G\left(\tau_{T}^{*}\right)\right)=k$, where $k>4$. Then $N_{1}-N_{2}-N_{3}-N_{4}-N_{5}-\cdots-N_{k-1}-N_{k}-N_{1}$ is a cycle of length k. Clearly, $V^{*}\left(N_{2}\right) \cup V^{*}\left(N_{k-1}\right) \neq T$. Now one can see that $N_{1}-\sqrt{N_{2}} \cap \sqrt{N_{k-1}}-N_{k}-N_{1}$ is a 3 -cycle, a contradiction. So we have $\operatorname{gr}\left(G\left(\tau_{T}^{*}\right)\right) \leq 4$. Hence, the proof is complete.

Proposition 2.7. Let M be an R-module, and let $\psi: \operatorname{Spec}(M) \rightarrow$ $\operatorname{Spec}(R / \operatorname{Ann}(M))$ be the natural map. Suppose $\operatorname{Spec}(M)$ is homeomorphic to $\operatorname{Spec}(R / \operatorname{Ann}(M))$ under ψ. Let $(N: M) M$ and $(L: M) M$ be adjacent in $G\left(\tau_{T}^{*}\right)$, and let $T^{\prime}=\{\overline{(P: M)}: P \in T\}$. Then $\overline{(N: M)}$ and $\overline{(L: M)}$ are adjacent in $G\left(\tau_{T^{\prime}}^{*}\right)$. Conversely, if \bar{I} and \bar{J} are adjacent in $G\left(\tau_{T^{\prime}}^{*}\right)$, then IM and $J M$ are adjacent in $G\left(\tau_{T}^{*}\right)$.

Proof. Since ψ is injective, $\psi^{-1}\left(T^{\prime}\right)=T$. Also we have $V^{*}((N$: $M) M) \cup V^{*}((L: M) M)=T$. Hence,

$$
\psi\left(V^{*}((N: M) M)\right) \cup \psi\left(V^{*}((L: M) M)\right)=T^{\prime}
$$

This implies that $V(\overline{N: M}) \cup V(\overline{L: M})=T^{\prime}$ (note that $V^{*}((N$: $\left.M) M)=T \Leftrightarrow V(\overline{N: M})=T^{\prime}\right)$. Conversely, suppose $V(\bar{I}) \cup V(\bar{J})=$
T^{\prime}. Then $\psi^{-1}(V(\bar{I})) \cup \psi^{-1}(V(\bar{J}))=T$ so that $V^{*}(I M) \cup V^{*}(J M)=T$ (note that $V^{*}(\bar{I})=T^{\prime} \Leftrightarrow V^{*}(I M)=T$).

Lemma 2.8. Let $G\left(\tau_{T}^{*}\right) \neq \emptyset$ and let $P \in T$. Then P is a vertex if either of the following statements holds.
(i) There exists a subset T^{\prime} of T such that $P \in T^{\prime}, V^{*}\left(\cap_{Q \in T^{\prime}} Q\right)=T$, and $V^{*}\left(\cap_{Q \in T^{\prime}, Q \neq P} Q\right) \neq T$.
(ii) For a submodule N of $M, N \in V\left(G\left(\tau_{T}^{*}\right)\right)$ and $\sqrt{N} \cap P \notin$ $V\left(G\left(\tau_{T}^{*}\right)\right)$.

Proof. Straightforward.

The following theorem shows the situations in which T contains some vertices.

Theorem 2.9. Suppose T is a finite set and $G\left(\tau_{T}^{*}\right) \neq \emptyset$. Then
(i) $T \cap V\left(G\left(\tau_{T}^{*}\right)\right) \neq \emptyset$.
(ii) If $T \subseteq \operatorname{Max}(M)$, then every $P \in T$ is a vertex.
(iii) If $P \in T \cap \operatorname{Min}(M)$, then P is a vertex.

Proof.
(i) Let $P \in T$. Then we have $V^{*}(P) \cup V^{*}\left(\cap_{Q \in T, Q \neq P} Q\right)=T$. If $V^{*}\left(\cap_{Q \in T, Q \neq P} Q\right) \neq T$, then P is a vertex. Otherwise, we have $V^{*}\left(\cap_{Q \in T, Q \neq P} Q\right)=T$. Since T is not irreducible, there exists a non-empty subset T^{\prime} of T and $P^{\prime} \in T^{\prime}$ such that

$$
V^{*}\left(\cap_{P \in T \backslash T^{\prime}} P\right) \neq T \quad \text { and } \quad V^{*}\left(\cap_{P \in\left(T \backslash T^{\prime}\right) \cup\left\{P^{\prime}\right\}} P\right)=T
$$

Thus, $P^{\prime} \in T \cap V\left(G\left(\tau_{T}^{*}\right)\right)$.
(ii) Clearly, $V^{*}(P) \cup V^{*}\left(\cap_{Q \in T, Q \neq P} Q\right)=T$ and $V^{*}\left(\cap_{Q \in T, Q \neq P} Q\right) \neq T$.
(iii) Clearly, $V^{*}(P) \cup V^{*}\left(\cap_{Q \in T, Q \neq P} Q\right)=T$ and $V^{*}\left(\cap_{Q \in T, Q \neq P} Q\right) \neq T$.

Example 2.10. Consider Example 2.4. If $|T| \geq 2$ and $T \subseteq\left\{p_{1} \mathbb{Z} \oplus\right.$ $\left.\mathbb{Z}\left(p^{\infty}\right), \ldots, p_{n} \mathbb{Z} \oplus \mathbb{Z}\left(p^{\infty}\right)\right\}$, then every element of T is a vertex. Moreover, in Example 2.5, if $|T| \geq 2$ and

$$
T \subseteq\left\{\mathbb{Q} \oplus\left(\oplus_{i \in \mathbb{N}, i \neq 1} \mathbb{Z} / p_{i} \mathbb{Z}\right), \ldots, \mathbb{Q} \oplus\left(\oplus_{i \in \mathbb{N}, i \neq n} \mathbb{Z} / p_{i} \mathbb{Z}\right)\right\}
$$

then every element of T is a vertex.

Definition 2.11. We define a subgraph $G_{d}\left(\tau_{T}^{*}\right)$ of $G\left(\tau_{T}^{*}\right)$ with vertices $V\left(\left(G_{d}\left(\tau_{T}^{*}\right)\right)\right)=\left\{N<M\right.$: there exists $L<M$ such that $V^{*}(N) \cup$ $V^{*}(L)=T, V^{*}(N), V^{*}(L) \neq T$ and $\left.V^{*}(N) \cap V^{*}(L)=\emptyset\right\}$, where distinct vertices N and L are adjacent if and only if $V^{*}(N) \cup V^{*}(L)=$ T and $V^{*}(N) \cap V^{*}(L)=\emptyset$. It is clear that the degree of every $N \in V\left(\left(G_{d}\left(\tau_{T}^{*}\right)\right)\right)$ is the number of submodules K of M such that $V^{*}(L)=V^{*}(K)$, where L is adjacent to N.

We need the following remark.

Remark 2.12. We recall that the Zariski topology on $\operatorname{Spec}(M)$ is the topology τ_{M} described by taking the set $Z(M)=\{V(N): N \leq M\}$ as the set of closed sets of $\operatorname{Spec}(M)$, where $V(N)=\{P \in \operatorname{Spec}(M):(P$: $M) \supseteq(N: M)\}[12]$. If M is a multiplication module, then $\tau_{M}=\tau_{M}^{*}$ by [14, Theorem 3.5].

Proposition 2.13. The following statements hold.
(i) $G_{d}\left(\tau_{T}^{*}\right) \neq \emptyset$ if and only if $T=V^{*}(\Im(T))$ and T is disconnected.
(ii) Suppose \widehat{M} is an Artinian module and T is closed. Then $G_{d}\left(\tau_{T}^{*}\right)=$ \emptyset if and only if $R / \operatorname{Ann}(\widehat{M})$ contains no idempotent other than $\overline{0}$ and $\overline{1}$.

Proof.

(i) Straightforward.
(ii) Since \widehat{M} is an Artinian module, then $\widehat{M} / \operatorname{rad}(\widehat{M})$ is a Noetherian module by [8, Corollary 2.30]. As $\widehat{M} / \operatorname{rad}(\widehat{M})$ is a finitely generated top module, it is a multiplication module by [14, Theorem 3.5]. It follows that $\tau_{\hat{M} / \operatorname{rad}(\hat{M})}=\tau_{\hat{M} / \operatorname{rad}(\hat{M})}^{*}$ by Remark 2.12. So $\tau_{\hat{M}}=\tau_{\hat{M}}^{*}$ because \widehat{M} and $\widehat{M} / \operatorname{rad}(\widehat{M})$ are homeomorphic by Lemma 4.1. Also, the natural map of $\widehat{M} / \operatorname{rad}(\widehat{M})$ is surjective (for, $\widehat{M} / \operatorname{rad}(\widehat{M})$ is finitely
generated). Hence, the natural map of \widehat{M} is surjective by the above arguments. Now the result follows from [12, Corollary 3.8].

Theorem 2.14. $G_{d}\left(\tau_{T}^{*}\right)$ is a bipartite graph.

Proof. At first we assume that $G_{d}\left(\tau_{T}^{*}\right)$ contains a cycle. We show that $\operatorname{gr}\left(G_{d}\left(\tau_{T}^{*}\right)\right) \leq 4$. Now suppose that $\operatorname{gr}\left(G_{d}\left(\tau_{T}^{*}\right)\right)>4$. We can assume that $\operatorname{gr}\left(G_{d}\left(\tau_{T}^{*}\right)\right)=k$, where $k>4$. Then $N_{1}-N_{2}-N_{3}-N_{4}-$ $N_{5}-\cdots-N_{k-1}-N_{k}-N_{1}$ is a cycle of length k. Clearly, $V^{*}\left(N_{k-1}\right)=$ $V^{*}\left(N_{1}\right)$. Hence, one can see that $N_{1}-N_{2}-N_{3}-\cdots-N_{k-2}-N_{1}$ is a cycle, a contradiction. So we have $\operatorname{gr}\left(G_{d}\left(\tau_{T}^{*}\right)\right) \leq 4$. Now, by [16, Proposition 1.6.1], G is a bipartite graph if and only if it does not contain an odd cycle. Hence, by Theorem 2.6, it is enough to show that $\operatorname{gr}\left(G_{d}\left(\tau_{T}^{*}\right)\right) \neq 3$. Suppose $N-L-K-N$ is a 3 -cycle. Then

$$
\begin{aligned}
\emptyset & =\left(V^{*}(N) \cap V^{*}(L)\right) \cup\left(V^{*}(N) \cap V^{*}(K)\right) \\
& =V^{*}(N) \cap\left(V^{*}(L) \cup V^{*}(K)\right)=V^{*}(N) \cap T=V^{*}(N) .
\end{aligned}
$$

Hence, $V(N)=\emptyset$, a contradiction.

Corollary 2.15. By Theorem 2.14, if $G_{d}\left(\tau_{T}^{*}\right)$ contains a cycle, then $\operatorname{gr}\left(G_{d}\left(\tau_{T}^{*}\right)\right)=4$.

Example 2.16. Set $R:=\mathbb{Z}$ and $M:=\mathbb{Z} / 12 \mathbb{Z}$. So $\operatorname{Spec}(M)=$ $\operatorname{Max}(M)=\{2 \mathbb{Z} / 12 \mathbb{Z}, 3 \mathbb{Z} / 12 \mathbb{Z}\}$. Set $T:=\operatorname{Spec}(M)$. Clearly, $G\left(\tau_{T}^{*}\right)=$ $G_{d}\left(\tau_{T}^{*}\right)$ is a bipartite graph and $\mathbb{Z} /\left(\cap_{P \in T} P: M\right) \cong \mathbb{Z} / 6 \mathbb{Z}$ contains idempotents other than $\overline{0}$ and $\overline{1}$.

Example 2.17. Set $R:=\mathbb{Z}$ and $M:=\mathbb{Z} / 30 \mathbb{Z}$. So $\operatorname{Spec}(M)=$ $\operatorname{Max}(M)=\{2 \mathbb{Z} / 30 \mathbb{Z}, 3 \mathbb{Z} / 30 \mathbb{Z}, 5 \mathbb{Z} / 30 \mathbb{Z}\}$. Set $T:=\operatorname{Spec}(M)$. Clearly, $G_{d}\left(\tau_{T}^{*}\right)$ is a bipartite graph and $\mathbb{Z} /\left(\cap_{P \in T} P: M\right) \cong \mathbb{Z} / 30 \mathbb{Z}$ contains idempotents other than $\overline{0}$ and $\overline{1}$.

The above example shows that $G_{d}\left(\tau_{T}^{*}\right)$ is not always connected.

Proposition 2.18. The following statements hold.
(i) $G_{d}\left(\tau_{T}^{*}\right)$ with two parts U and V is a complete bipartite graph if and only if for every $N, L \in U$ (respectively in V), $V^{*}(N)=V^{*}(L)$.
(ii) $G_{d}\left(\tau_{T}^{*}\right)$ is connected if and only if it is a complete bipartite graph.

Proof. Use the fact that if N and L are two vertices, then $d(N, L)=$ 2 if and only if $V^{*}(N)=V^{*}(L)$.

We end this section with the following question.
Question 2.19. Let $G\left(\tau_{T}^{*}\right) \neq \emptyset$, where T is an infinite subset of $\operatorname{Spec}(M)$. Is $T \cap V\left(G\left(\tau_{T}^{*}\right)\right) \neq \emptyset$?
3. The annihilating-submodule graph. As we mentioned before, $A G(M)$ is a graph with vertices $V(A G(M))=\{N \leq M: N L=0$ for some $0 \neq L<M\}$, where distinct vertices N and L are adjacent if and only if $N L=0$ (here we recall that the product of N and L is defined by $(N: M)(L: M) M)$.

The following results reflect some basic properties of the annihilatingsubmodule graph of a module.

Proposition A ([4, Proposition 3.2]). Let N be a non-zero proper submodule of M.
(i) N is a vertex in $A G(M)$ if $\operatorname{Ann}(N) \neq \operatorname{Ann}(M)$ or $\left(0:_{M}(N\right.$: $M)) \neq 0$.
(ii) N is a vertex in $A G(M)$, where M is a multiplication module, if and only if $\left(0:_{M}(N: M)\right) \neq 0$.

Remark 3.1. In the annihilating-submodule graph $A G(M), M$ itself can be a vertex. In fact M is a vertex if and only if every non-zero submodule is a vertex if and only if there exists a non-zero proper submodule N of M such that $(N: M)=\operatorname{Ann}(M)$. For example, for every submodule N of \mathbb{Q} (as a \mathbb{Z}-module), $(N: \mathbb{Q})=0$. Hence, \mathbb{Q} is a vertex in $A G(\mathbb{Q})$.

Theorem B ([4, Theorem 3.3]). Assume that M is not a vertex. Then the following hold.
(i) $A G(M)$ is empty if and only if M is a prime module.
(ii) A non-zero submodule N of M is a vertex if and only if $\left(0:_{M}\right.$ $(N: M)) \neq 0$.

Theorem C ([4, Theorem 3.4]). The annihilating-submodule graph $A G(M)$ is connected and $\operatorname{diam}(A G(M)) \leq 3$. Moreover, if $A G(M)$ contains a cycle, then $\operatorname{gr}(A G(M)) \leq 4$.

Lemma 3.2. Let M be an R-module and $\operatorname{Ann}(M)$ a prime ideal. Then $\operatorname{diam}(A G(M)) \leq 2$.

Proof. Suppose N and L are adjacent in $A G(M)$. Then $(N: M)=$ $\operatorname{Ann}(M)$ or $(L: M)=\operatorname{Ann}(M)$. Assume that $(N: M)=\operatorname{Ann}(M)$. So every non-zero submodule M is a vertex and adjacent to N. Hence, $\operatorname{diam}(A G(M)) \leq 2$.

Proposition 3.3. The following statements hold.
(i) Let $M=R m$ be a cyclic R-module. Then M is not a vertex.
(ii) Let $M=M_{1} \oplus M_{2}$, where M_{1}, M_{2} are non-zero R-submodules of M. Then every non-zero submodule of M_{1} is adjacent to every non-zero submodule of M_{2}.
(iii) Assume that $A G(M)=\emptyset$. Then module M is an indecomposable module.

Proof.

(i) This follows from Remark 3.1 and the fact that every cyclic R module is multiplication.
(ii) Let $0 \neq N \leq M_{1}$ and $0 \neq K \leq M_{2}$. Clearly, $(N \oplus(\mathbf{0}): M)=$ $\left(N: M_{1}\right) \cap\left(0: M_{2}\right)$. Hence, $(N \oplus(\mathbf{0}): M) \subseteq\left(0: M_{2}\right)$. Similarly, $((\mathbf{0}) \oplus K: M) \subseteq\left(0: M_{1}\right)$. Therefore, $(N \oplus(\mathbf{0}))((\mathbf{0}) \oplus K)=0$. This in turn implies that N and K are adjacent in $A G(M)$.
(iii) The proof follows from part (ii).

We allow α to be infinite cardinal, where $\alpha=|\Lambda(M)|$. (We recall that $\Lambda(M)$ is the set of all non-zero submodules of M.)

Proposition 3.4. The following statements hold.
(i) Let M be a non-simple semisimple R-module. Then every nonzero proper submodule of M is a vertex.
(ii) Let M be a non-simple homogeneous semisimple R-module. Then $A G(M)=K_{\alpha}$.
(iii) Let M be a prime module with a non-zero socle. Then $A G(M)=\emptyset$ or $A G(M)=K_{\alpha}$.
(iv) Let M be a non-simple module with a non-zero socle. Then $A G(M) \neq \emptyset$. In particular, $A G(M) \neq \emptyset$ when M is a non-simple Artinian module.

Proof.
(i) Since M is a semisimple module, we have $M=\oplus_{\alpha \in I} T_{\alpha}$ where, for each $\alpha \in I, T_{\alpha}$ is a simple submodule of M. Now let N be an arbitrary non-zero submodule of M. Then, by [2, Proposition 9.4], there exist a subset $I^{\prime} \subseteq I$ and a decomposition $N \cong \oplus_{\alpha \in I^{\prime}} T_{\alpha}$. Set $K \cong \oplus_{I \backslash I^{\prime}} T_{\alpha}$. Then $N K \subseteq N \cap K=0$. It follows that N is a vertex.
(ii) Since M is a homogeneous semisimple module, it is clear that $\operatorname{Ann}(M)$ is a maximal ideal of R. Hence for every non-zero submodule N of M, we have $(N: M)=(0: M)$. We conclude that if N and K are two non-zero distinct submodules of M, then $N K=0$, as desired.
(iii) This follows from part (ii) because every prime module with a non-zero socle is homogeneous semisimple (see [9, Corollary 1.9]).
(iv) Suppose that M is not a simple module with $\operatorname{Soc}(M) \neq 0$. Then there exists a minimal submodule $R m$ of M, where m is a nonzero element of M. Now $(0: m)$ is a maximal ideal of R and we have $(R m)((0: m) M)=0$. This shows that $A G(M) \neq \emptyset$.

Example 3.5. Put $R:=\mathbb{Z}$ and $M:=\oplus_{i \in \mathbb{N}} \mathbb{Z}_{2}$. Since M is a direct sum of isomorphic simple modules, then M is a homogeneous semisimple module. For every non-zero proper submodule N of M, we have $(N: M)=\operatorname{Ann}(M)$. Hence every non-zero submodule N and K are adjacent in $A G(M)$.

Proposition 3.6. Let M be a non-simple prime module. Then $A G(M)=K_{\alpha}$, if and only if every non-zero proper submodule of M is adjacent to M.

Proof. The sufficiency is clear.
To see the converse, let $N \in V(A G(M))$. Then there exists a non-zero proper submodule L of M such that $N L=0$. Since $\operatorname{Ann}(M)$ is a prime ideal of R, it follows that $(N: M)=\operatorname{Ann}(M)$ or $(L: M)=\operatorname{Ann}(M)$. So every non-zero submodule M is a vertex by Remark 3.1. Now, since $A G(M)$ is a complete graph, every non-zero proper submodule of M is adjacent to M.

Theorem 3.7. Consider the following statements.
(i) $\operatorname{Ann}(M)$ is a prime ideal and M is a divisible $R / \operatorname{Ann}(M)$-module.
(ii) Every non-zero proper submodule of M is adjacent to M.
(iii) For each ideal I of R, we have $I M=M$ or $I M=0$.
(iv) $A G(M)=K_{\alpha}$.
(v) M is a non-simple homogeneous semisimple module.

Then (i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv) \rightarrow (i). Moreover, if M is a finitely generated module then (v) \leftrightarrow (i).

Proof. (i) \rightarrow (ii). Let N be a non-zero proper submodule of M. We show that $(N: M)=\operatorname{Ann}(M)$. Suppose $r \in(N: M)$ and $r M \neq 0$. Since M is divisible by $R / \operatorname{Ann}(M)$, we have $r M=M$. This implies that $N=M$, a contradiction. Hence, N is adjacent to M, as desired.
(ii) \rightarrow (i) and (ii) \rightarrow (iii) are clear.
(iii) \rightarrow (ii). Let N be a non-zero proper submodule of M and I an ideal of R. Then $(I M: M)=\operatorname{Ann}(M)$ by hypothesis, where $I M \neq M$. Now we have $(N: M)=((N: M) M: M)=\operatorname{Ann}(M)$. This shows that N is adjacent to M, as required.
(ii) \leftrightarrow (iv). Straightforward.
(ii) $\rightarrow(\mathrm{v})$. Let M be a finitely generated R-module and let (N : $M)=\operatorname{Ann}(M)$ for every proper submodule N of M. Then M is a divisible $R / \operatorname{Ann}(M)$-module. We show that $R / \operatorname{Ann}(M)$ is a field. Suppose not. Then M has a maximal submodule, say N. So ($N: M$) is a maximal ideal R. Hence there exists $0 \neq r \in(N: M)$. But $r M=M$ is a contradiction. So $\operatorname{Ann}(M)$ is a maximal ideal and hence M is a homogeneous semisimple module.
(v) \rightarrow (ii). It is clear by Proposition 3.4 (ii).

Note that an R-module M is fully prime (respectively fully semiprime) if each proper submodule of M is prime (respectively semiprime). In [$\mathbf{9}$, Corollary 1.9], it is shown that M is fully prime (respectively, fully semiprime) if and only if is homogeneous semisimple (respectively, co-semisimple module).

Corollary 3.8. Let R be an integral domain with $\operatorname{dim}(R)=1$, and let M be an R-module. Then every non-zero proper submodule of M is adjacent to M if and only if one of the following statements hold:
(i) M is a homogeneous semisimple module.
(ii) M is a divisible module.

Proof. Suppose that every non-zero proper submodule of M is adjacent to M. Then $\operatorname{Ann}(M)$ is a prime ideal of R and M is a divisible $R / \operatorname{Ann}(M)$-module by Theorem 3.7. If $\operatorname{Ann}(M)=0$, then M is a divisible R-module. Otherwise, since $\operatorname{dim}(R)=1$, it follows that $\operatorname{Ann}(M)$ is a maximal ideal of R so that $(N: M)=\operatorname{Ann}(M)$ for every proper submodule N of M. Thus every proper submodule of M is prime by [14, Corollary 1.2]. This means that M is a homogeneous semisimple. Conversely, first we assume that M is a homogeneous semisimple module. Then $\operatorname{Ann}(M)$ is a maximal ideal of R so that every non-zero proper submodule M is adjacent to M. In case M is a divisible module, the claim follows from Theorem 3.7.
4. The relationship between $G\left(\tau_{T}^{*}\right)$ and $A G(M)$. A proper submodule N of M is said to be semiprime in M if, for every ideal I of R and every submodule K of $M, I^{2} K \subseteq N$ implies that $I K \subseteq N$. Further, M is called a semiprime module if $(0) \subseteq M$ is a semiprime submodule. Every intersection of prime submodules is a semiprime submodule. A proper ideal I of R is semiprime if, for every ideal J and K of $R, J^{2} K \subseteq I$ implies that $J K \subseteq I$ [17].

Lemma 4.1. Suppose T is a closed subset of $\operatorname{Spec}(M)$ equipped with the natural topology induced from of $\operatorname{Spec}(M)$. Then T and $\operatorname{Spec}(\widehat{M})$ are homeomorphic.

Proof. Let $\phi: \operatorname{Spec}(\widehat{M}) \rightarrow T=V^{*}(\Im(T))$ be defined by $\phi(\widehat{Q})=Q$, where $Q \in \operatorname{Spec}(M)$. Clearly ϕ is a bijection map. We show that ϕ is a
continuous map. Let $U=T \cap V^{*}(N)$ be a closed subset of T, where N is a proper subset of M. Then we have $\phi^{-1}(U)=V^{*}(N \widehat{+\Im(T)})$. We show that ϕ is closed. Suppose U is a closed subset of $\operatorname{Spec}(\widehat{M})$. Then $U=V^{*}(\widehat{N})$, where $N \leq M$. It is easy to see that $\phi(U)=V^{*}(N)$.

One may think that since T and $\operatorname{Spec}(\widehat{M})$ are homeomorphic, studying $G\left(\tau_{T}^{*}\right)$ can be reduced to studying $G\left(\tau_{\operatorname{Spec}(L)}^{*}\right)$, where L is a semiprime module. But the following example shows that this is not true.

Example 4.2. Set $R:=\mathbb{Z}, M:=\mathbb{Z} / 12 \mathbb{Z}$, and $T:=\operatorname{Spec}(M)$. Then $G\left(\tau_{T}^{*}\right)=K_{1,2}$ but $G\left(\tau_{\operatorname{Spec}(M / \operatorname{rad}(M))}^{*}\right)=K_{2}$.

Remark 4.3. In fact $G\left(\tau_{T}^{*}\right)$ is a non-empty graph if and only if $\left|E\left(G\left(\tau_{T}^{*}\right)\right)\right| \geq 1$. The following lemma shows that the graph $A G(M)$ also has this property (i.e., $|E(A G(M))| \geq 1$) if M is a semiprime module such that it is not a vertex in $A G(M)$.

Lemma 4.4. Assume that M is not a vertex in $A G(M)$. Then M is a semiprime module if and only if for every non-zero submodule N of M and each positive integer $k, N^{k} \neq 0$.

Proof. The necessity is clear.
To see the converse, let N be a submodule of M and let I be an ideal of R. Let $I^{2} N=0$ and $I N \neq 0$. Then we have $(I N)^{2}=(I N: M)^{2} M \subseteq$ $I^{2} N=0$, a contradiction. Hence, M is a semiprime module.

Proposition 4.5. The following statements hold.
(i) Suppose N and L are adjacent in $G\left(\tau_{T}^{*}\right)$. Then $\widehat{\sqrt{N}}$ and $\widehat{\sqrt{L}}$ are adjacent in $A G(\widehat{M})$.
(ii) $G\left(\tau_{T}^{*}\right)$ is isomorphic with a subgraph of $A G(\widehat{M})$ or $\left|E\left(G\left(\tau_{T}^{*}\right)\right)\right| \geq 2$.

Proof.
(i) Straightforward.
(ii) Assume that $G\left(\tau_{T}^{*}\right)$ is not isomorphic with a subgraph of $A G(\widehat{M})$. Hence there exist $N, L \in V\left(G\left(\tau_{T}^{*}\right)\right)$ such that N and L are
adjacent and $N \neq \sqrt{N}$. It follows that $N-L-\sqrt{N}$ is a path of length 2.

Theorem 4.6. The following statements hold.
(i) Let M be a finitely generated module and $G\left(\tau_{T}^{*}\right) \neq \emptyset$. Then $A G(\widehat{M})$ is isomorphic with a subgraph of $G\left(\tau_{T}^{*}\right)$.
(ii) Let M be a fully semiprime module. Then $G\left(\tau_{T}^{*}\right)$ is isomorphic with a subgraph of $A G(\widehat{M})$.
(iii) Let M be a semisimple module and suppose M is not a vertex in $A G(M)$. Then $G\left(\tau_{T}^{*}\right)$ and $A G(\widehat{M})$ are isomorphic.
(iv) Let M be a homogeneous semisimple module. Then $A G(\widehat{M})=$ K_{α}, where $\alpha=|\Lambda(\widehat{M})|$ and $G\left(\tau_{T}^{*}\right)=\emptyset$.

Proof.
(i) By [14, Theorem 3.5], every finitely generated top module is multiplication. One can see that if \widehat{N} and \widehat{L} are adjacent in $A G(\widehat{M})$, then N and L are adjacent in $G\left(\tau_{T}^{*}\right)$.
(ii) By [9, Theorem 2.3], M is a co-semisimple module. So

$$
N=\bigcap_{P \in V^{*}(N)} P
$$

where $N<M$. Hence, by Proposition 4.5 (i), it is easy to see that $G\left(\tau_{T}^{*}\right)$ is isomorphic with a subgraph of $A G(\widehat{M})$.
(iii) Let M be a semisimple module and suppose M is not a vertex in $A G(M)$. We show that M is a multiplication module. To see this, let N be a proper submodule of M. Then there exists a family $\left\{T_{i}, i \in I\right\}$ of minimal submodules of M such that $N=\oplus_{i \in I} T_{i}$. Now for each $i \in I$, we have $\left(T_{i}: M\right) M=M$ (note that $\left(T_{i}: M\right) M \neq 0$ because M is not a vertex in $A G(M))$. Hence,

$$
N=\bigoplus_{i \in I}\left(T_{i}: M\right) M=\left(\bigoplus_{i \in I}\left(T_{i}: M\right)\right) M
$$

Thus, M is a multiplication module. It follows that, if \widehat{N} and \widehat{L} are adjacent in $A G(\widehat{M})$, then N and L are adjacent in $G\left(\tau_{T}^{*}\right)$. Since M is a co-semisimple module, by using part (ii), we see that $G\left(\tau_{T}^{*}\right)$ is
isomorphic with a subgraph of $A G(\widehat{M})$. Hence $G\left(\tau_{T}^{*}\right)$ and $A G(\widehat{M})$ are isomorphic.
(iv) The first assertion follows from Proposition 3.4 (ii). To see the second assertion, $\Im(T)$ is a prime submodule of M (see [9, Corollary $1.9]$), thus $G\left(\tau_{T}^{*}\right)=\emptyset$ by Proposition 2.3 (iii).

Example 4.7. Put $R:=\mathbb{Z}$ and $M:=\oplus_{i \in \mathbb{N}} \mathbb{Z} / p_{i} \mathbb{Z}$. Then, by [6, Examples 3.1], $\operatorname{Max}(M)=\operatorname{Spec}(M)=\left\{p_{j} M\right\}=\left\{\oplus_{i \in \mathbb{N}, i \neq j} \mathbb{Z} / p_{i} \mathbb{Z}\right\}$, and M is a top module. $G\left(\tau_{\operatorname{Spec}(M)}^{*}\right)$ is an infinite graph, because every element $\oplus_{i \in \mathbb{N}, i \neq j} \mathbb{Z} / p_{i} \mathbb{Z}$ of $\operatorname{Spec}(M)$ is adjacent to $\mathbb{Z} / p_{j} \mathbb{Z}$. Hence, by Theorem 4.6 (ii), $A G(M)$ is an infinite graph.

Lemma 4.8. Assume that $\emptyset \neq V(A G(\widehat{M}) \subseteq \operatorname{Max}(\widehat{M})$. Then $|T|=2$, $A G(\widehat{M})=K_{2}$, and it is isomorphic with a subgraph of $G\left(\tau_{T}^{*}\right)$.

Proof. Suppose that \widehat{P} is a vertex in $A G(\widehat{M})$ such that $P \in \operatorname{Max}(M)$. Then there exists a non-zero proper submodule \widehat{Q} of \widehat{M} such that it is adjacent to \widehat{P}, where, $Q \in \operatorname{Max}(M)$. One can see that $(P: M) \subseteq$ $\left(P^{\prime}: M\right)$ or $(Q: M) \subseteq\left(P^{\prime}: M\right)$ for every $P^{\prime} \in T$. Now since \widehat{M} is a top module, by [14, Theorem 3.5] $P=P^{\prime}$ or $Q=P^{\prime}$. Hence, $V^{*}(P) \cup V^{*}(Q)=T$. It follows that $|T|=2, A G(\widehat{M})$ has only one edge and it is isomorphic with a subgraph of $G\left(\tau_{T}^{*}\right)$.

Proposition 4.9. Assume that $G\left(\tau_{T}^{*}\right) \neq \emptyset$.
(i) If \widehat{M} is a Noetherian R-module, then $T=V^{*}\left(P_{1} \cap \cdots \cap P_{n}\right)$, where for each $i(1 \leq i \leq n), P_{i}$ is a vertex.
(ii) If \widehat{M} is an Artinian R-module, then $T=V^{*}\left(P_{1} \cap \cdots \cap P_{n}\right)$, where for each $(1 \leq i \leq n), P_{i}$ is a vertex. In particular, $|T|=n$.

Proof.
(i) Since \widehat{M} is a Noetherian module, \widehat{M} has a finite number of minimal prime submodules by [15, Theorem 4.2]. Hence

$$
\operatorname{Spec}(\widehat{M})=V^{*}\left(\widehat{P_{1}}\right) \cup \cdots \cup V^{*}\left(\widehat{P_{n}}\right),
$$

where each $i(1 \leq i \leq n), \widehat{P}_{i}$ is a minimal prime submodule of \widehat{M} and P_{i} is a prime submodule of M. So, by Lemma 4.1, we have $T=V^{*}\left(P_{1}\right) \cup \cdots \cup V^{*}\left(P_{n}\right)$. Now the result follows from Lemma 2.8 (i).
(ii) As in the proof of Proposition 2.13 (ii), $\widehat{M} / \operatorname{rad}(\widehat{M})$ is a Noetherian module. So $\widehat{M} / \operatorname{rad}(\hat{M})$ has a finite number of minimal prime submodules. Hence, \widehat{M} has a finite number of minimal prime submodules. So we have $T=V^{*}\left(P_{1}\right) \cup \cdots \cup V^{*}\left(P_{n}\right)$ by part (i). To see the second assertion, we note that, since $\widehat{M} / \operatorname{rad}(\widehat{M})$ is a finitely generated top module, it is a multiplication module by $[\mathbf{1 4}$, Theorem 3.5]. It follows that $\widehat{M} / \operatorname{rad}(\widehat{M})$ is a cyclic Artinian module by [11, Corollary 2.9], and hence, $\operatorname{Spec}(\widehat{M} / \operatorname{rad}(\widehat{M}))=\operatorname{Max}(\widehat{M} / \operatorname{rad}(\widehat{M}))$. So $\operatorname{Spec}(\widehat{M})=\operatorname{Max}(\widehat{M})$. Hence, by the above arguments, we have $|T|=n$, and the proof is completed.

Acknowledgments. We would like to thank the referee for valuable comments and a careful reading of our manuscript.

REFERENCES

1. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
2. W. Anderson and K.R. Fuller, Rings and categories of modules, SpringerVerlag, New York, 1974.
3. H. Ansari-Toroghy and F. Farshadifar, Product and dual product of submodules, Far East J. Math. Sci 25 (2007), 447-455.
4. H. Ansari-Toroghy and Sh. Habibi, The Zariski topology-graph of modules over commutative rings, Comm. Algebra. 42 (2014), 3283-3296.
5. H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of X-injective modules, Comm. Algebra 38 (2010), 2606-2621.
6. \qquad , On the prime spectrum of a module and Zariski topologies, Comm. Algebra 38 (2010), 4461-4475.
7. I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
8. M. Behboodi and M.R. Haddadi, Classical Zariski topology of modules and spectral spaces I, Int. Electr. J. Algebra, 4 (2008), 104-130.
9. M. Behboodi, O.A.S. Karamzadeh and H. Koohy, Modules whose certain ideals are prime, Vietnamese J. Math. 32 (2004), 303-317.
10. M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Alg. Appl. 10 (2011), 727-739.
11. Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Alg. 16 (1988), 755-779.
12. Chin-Pi Lu, The Zariski topology on the prime spectrum of a module, Houston J. Math. 25 (1999), 417-432.
13. R.L. McCasland and M.E. Moore, Prime submodules, Comm. Alg. 20 (1992), 1803-1817.
14. R.L. McCasland, M.E. Moore and P.F. Smith, On the spectrum of a module over a commutative ring, Comm. Alg. 25 (1997), 79-103.
15. R.L. McCasland and P.F. Smith, Prime submodules Noetherian modules, Rocky Mountain J. Math. 23 (1993), 1041-1062.
16. D. Reinard, Graph theory, Grad. Texts Math., Springer, New York, 2005.
17. H.A. Tavallaee and R. Varmazyar, Semi-radicals of submodules in modules, IUST Inter. J. Eng. Sci. 19 (2008), 21-27.

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 41335-19141 Rasht, Iran
Email address: ansari@guilan.ac.ir
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, P.O. Box 41335-19141 Rasht, Iran
Email address: sh.habibi@phd.guilan.ac.ir

[^0]: 2010 AMS Mathematics subject classification. Primary 13C13, 13C99.
 Keywords and phrases. Prime submodule, top module, quasi-Zariski topology, graph, vertices, annihilating-submodule.

 Received by the editors on August 4, 2013, and in revised form on July 11, 2014.

