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COPY-PASTE TREES AND THEIR GROWTH RATES

JOSEPH PREVITE, MICHELLE PREVITE AND MARY VANDERSCHOOT

ABSTRACT. In this paper, we describe a copy-and-paste
method for constructing a class of infinite self-similar trees.
A copy-paste tree is constructed by repeatedly attaching
copies of a finite tree (called a generator) to certain des-
ignated attachment vertices. We show that each generator
has an associated nonnegative matrix which can be used to
determine a formula for the growth function of the copy-
paste tree. In our main theorem, we use results from Perron-
Frobenius theory to show that every copy-paste tree has
exponential growth, with growth rate equal to the spectral
radius of its associated matrix.

1. Introduction and motivation. This work was motivated by
the study of the growth rate of self-similar graphs that arise from a
repetitive construction process called a vertex replacement rule, where
certain vertices of a graph are systematically deleted and replaced by
copies of certain finite graphs, see [8]. The copy-paste construction
method described in this current paper is a special case of a vertex
replacement rule applied to trees. Vertex replacement rules themselves
were motivated by studying the horospheres of the geodesic flow of a
two-dimensional singular branching space having non-positive curva-
ture, see [1].

Many other recursive construction schemes of graphs have been
studied, see [3, 5, 10], and the references therein. These constructions,
when applied to trees, often yield trees having finitely many cones (i.e.,
there are finitely many automorphism classes of cones, where a cone
is obtained by taking a vertex and all its descendants). See [4]. The
copy-paste method described in this paper also produces trees that have
finitely many cones, but not all such trees can be obtained from the
copy-paste procedure. The reader should be aware that, unlike most
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constructions, we allow for edges of any integer length (not all edges
have length one). Lastly, it should be mentioned that the results of this
paper can be adjusted to compute the growth rates of trees that do not
have finitely many cones, as is demonstrated in the last example of the
last section.

The topic of this paper is a class of self-similar infinite rooted trees,
which we call copy-paste trees, that are constructed by an iterative
process of attaching copies of a given tree (called a generator) to
designated vertices (called attachment vertices). In our main result
(Theorem 2.6), we show that every copy-paste tree has exponential
growth with growth rate equal to the spectral radius of a matrix whose
entries are determined by the number of the generator’s attachment
vertices and their respective distances to the root.

2. Definitions and examples. A tree is a connected graph with
no circuits. The trees that we consider in this paper are equipped
with more structure than a combinatorial object. In particular, if one
considers a tree as a simplicial complex, we consider its realization. We
impose a metric on each tree by assuming each edge is isometric to an
open interval, making any tree a metric space by using the associated
intrinsic metric. In other words, the distance d(x, y) between any two
points x and y (not necessarily vertices) is realized by the minimal
length of a (simple) path connecting x to y. In particular, if x and y
are vertices, then d(x, y) is the sum of the lengths of the unique edges
which are part of a simple path from x to y. Furthermore, we assume
that every edge has an integer length and allow for different edges to
have different integer lengths.

Let T be a rooted tree (i.e., a tree with one distinguished vertex r
called the root). Denote the set of vertices as V (T ) and the set of edges
as E(T ). Given points x and y of T (not necessarily vertices), if x lies
on a simple path from y to the root, then x is an ancestor of y, and y
is a descendant of x. We define the height of T by

h(T ) = sup
v∈V (T )

d(v, r).

A rooted tree is called infinite if its height is unbounded. For integers
i ≥ 0, define the vertex count function of T by
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ci(T ) = |{v ∈ V (T ) | d(v, r) = i}|,

where | · | denotes cardinality.

Definition 2.1. Let T be an infinite rooted tree. The growth function
of T is given by

f(T, n) =
n∑

i=0

ci(T ).

Definition 2.2. An infinite rooted tree T has exponential growth if
there exists λ > 1 and positive constants α1 and α2 such that

α1λ
n ≤ f(T, n) ≤ α2λ

n,

for all n ∈ N. The constant λ is called the growth rate of T . Observe
that T has exponential growth with growth rate λ if, and only if,

lim
n→∞

ln f(T, n)

n
= lnλ.

The topic of this paper is a class of self-similar infinite rooted trees
called copy-paste trees that are constructed according to the rules
described below in Definition 2.3.

Define a generator to be a finite rooted tree H, having root r, with
a subset Vatt(H) of V (H) \ {r}, called the set of attachment vertices of
H, such that |Vatt(H)| > 1.

Definition 2.3. An infinite tree TH is a copy-paste tree if it is obtained
by the following inductive procedure:

Step 1. Start with a single generator H. (The root r of this first copy
of H will be the root of TH .)

Step 2. To each attachment vertex of H glue another copy of H by
identifying the root of the copy to the attachment vertex.

Step 3. To each attachment vertex of a copy of H that appeared in
Step 2, attach another copy of H by identifying the root of this
latest copy to this attachment vertex.

Step 4. Proceed inductively as follows: for each attachment vertex on a
copy of H that appeared at the previous stage, attach another
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copy of H by identifying the root of this latest copy to this
attachment vertex.

The limit of this procedure yields an infinite rooted tree TH . We
define the set of attachment vertices of TH , denoted Vatt(TH), to be the
set of all vertices of TH that were attachment vertices at any stage of
the construction of TH .

Example 2.4. Let H1 and H2 be the generators shown in Figures
1 and 2, respectively. Suppose Vatt(H1) = {v1, v2}, Vatt(H2) =
{w1, w2, w3, w4} and all edges have length 1. Figure 1 shows the first
three stages in the construction of TH1 . Note that TH1 = TH2 , the
infinite full binary tree, but Vatt(TH1) ̸= Vatt(TH2).

Stage 1

v2v1

H1 Stage 2 Stage 3

Figure 1. First stages in the construction of TH1 .

w3 w4

H2

w1 w2

Figure 2. H2 is another generator of the infinite full binary tree.

Example 2.5. Let H be the generator shown in Figure 3. Suppose
Vatt(H) = {v1, v2}. Suppose also that edge (r, w) has length 2, and all
other edges of H have length 1. Figure 3 also shows TH .
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r

v1

v2

TH

w

H

Figure 3. A generator H for the copy-paste tree TH .

Our main result about copy-paste trees is the following theorem:

Theorem 2.6. Let TH be a copy-paste tree with generator H and let

AH =

[
0N−1,1 IN−1,N−1

bN bN−1 · · · b2 b1

]
,

where bi(H) = |{v ∈ Vatt(H) : d(v, r) = i}| and IN−1,N−1 is the size
N − 1 identity matrix. Then TH has exponential growth with growth
rate ρ(AH), where ρ(AH) is the spectral radius of AH (i.e., ρ(AH) is
the maximum magnitude of the eigenvalues of AH).

Note that Theorem 2.6 requires generator H to have at least two
attachment vertices, i.e., |Vatt(H)| > 1. Applying the copy-and-paste
method to a rooted tree with only one attachment vertex results in
linear growth.

A key step in the proof of Theorem 2.6 is determining a formula for
a copy-paste tree’s growth function using powers of the nonnegative
matrix AH . We conclude this section with some notation, definitions,
and results on nonnegative matrices.

We denote the (i, j) entry of A by ai,j , and the (i, j) entry of An by
(An)i,j . A real matrix A is nonnegative (positive) if ai,j ≥ 0 (ai,j > 0)
for every (i, j). We write A ≥ 0 if A is nonnegative, and A > 0 if A
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is positive. A nonnegative square matrix A is called irreducible if for
any (i, j) there exists k such that (Ak)i,j > 0. A nonnegative square
matrix A is called primitive if Ak > 0 for some k.

The following theorems can be found in [2, 6, 9].

Theorem 2.7 (Perron-Frobenius). Let A be an irreducible matrix.

(a) A has a positive real eigenvalue r = ρ(A) such that r ≥ |λi| for
any eigenvalue λi of A. (The eigenvalue r is called the Perron
eigenvalue of A.)

(b) Furthermore, r has algebraic and geometric multiplicity 1 and has
a positive eigenvector x.

(c) Any nonnegative eigenvector of A is a multiple of x.
(d)

min
i

∑
j

ai,j ≤ r ≤ max
i

∑
j

ai,j .

(e) If A is primitive, then r > |λi| for any eigenvalue λi of A, λi ̸= r.

Theorem 2.8. Let A be a primitive matrix with Perron eigenvalue r.
Then there exists a matrix L with positive entries so that

lim
k→∞

(
A

r

)k

= L.

The associated directed graph of an n × n nonnegative matrix A,
denoted G(A), consists of n vertices v1, . . . , vn, where there exists a
directed edge from vi to vj , denoted (vi, vj), if, and only if, ai,j ̸= 0. A
graph is strongly connected if, for any two vertices vi and vj , there is
a directed path from vi to vj . The following theorem gives necessary
and sufficient conditions for a matrix to be irreducible or primitive.

Theorem 2.9. Let A be a nonnegative matrix.

(i) Then A is irreducible if, and only if, G(A) is strongly connected.
(ii) Suppose also that A is irreducible. Then A is primitive if, and

only if, G(A) has two cycles of relatively prime lengths.
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3. Computing the growth function of a copy-paste tree.
Throughout this section, let H be a generator of height N . Recall
from Theorem 2.6 that, for i = 1, . . . , N ,

bi(H) = |{v ∈ Vatt(H) : d(v, r) = i}|.

The following definitions will be used to construct a partition of the
vertices of TH that leads to a recursive formula for ci(TH). If only
one generator H and its corresponding copy-paste tree TH are under
consideration, we will often write T for TH , bi for bi(H), and ci for
ci(TH).

Definition 3.1. Define the closed ball of radius n about any point
(not necessarily a vertex) x ∈ T , denoted Bn(T, x), by

Bn(T, x) = {z ∈ T : d(z, x) ≤ n}.

Definition 3.2. For i ≥ 1, define the i-shell, denoted Si, by

Si = Bi(T, r) \ Bi−1(T, r).

For example, Figure 4 shows the shells S1, . . . , S6 for the copy-paste
tree of Example 2.5 (depicted in Figure 3). Note that in this example
not all points of distance i to the root are vertices in Si. Vertices are
denoted in Figure 4 with filled in dots. Also note that |V (Sn)| = cn(T ).

An immediate consequence of Definitions 2.3 and 3.2 is the following:

Observation 3.3. Let T be a copy-paste tree and let b ∈ Vatt(T ).
Consider D(T, b), which consists of b together with all of its descen-
dants. Then for all i ≥ 1, (Bi(T, b) \ Bi−1(T, b)) ∩D(T, b) is isometric
to Si.

The next lemma is technical but important.

Lemma 3.4. Let T be a copy-paste tree with a generator H of height N .
For all n > N , there exists a partition Pn of Sn such that each element
of Pn is isometric to one of the shells S1, . . . , SN .

For 1 ≤ i ≤ N and 1 ≤ n ≤ N , let ti(Sn) = δi,n, where δ is the
Kronecker delta. For 1 ≤ i ≤ N and n > N , let ti(Sn) be the number
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S6

S1

S3

S2

S4

S5

Figure 4. First shells of the copy-paste tree of Example 2.5.

of isometric copies of Si in the partition Pn of Sn. Then the following
formulas hold :

(a) cn(T ) = t1(Sn)c1(T ) + t2(Sn)c2(T ) + · · ·+ tN (Sn)cN (T ).
(b) ti(SN+1) = bN+1−i, for i = 1, . . . , N .
(c) For n > N ,

tj(Sn+1) =

{
tN (Sn)t1(SN+1) j = 1,

tj−1(Sn) + tN (Sn)tj(SN+1) 2 ≤ j ≤ N.

Proof. Let n > N . For each x ∈ Sn (not necessarily a vertex), let
a(x) ∈ T be the unique ancestor of x that is exactly N closer to the
root than x. Since h(H) = N , any path from x to a(x) must contain
at least one attachment vertex. If a(x) is itself an attachment vertex,
let k(x) = a(x). If a(x) is not an attachment vertex, then a(x) lies in
a unique copy of H that was used in the construction of T , which we
will denote H(a(x)). In this case, let k(x) be the unique attachment
vertex of H(a(x)) that is an ancestor of x. Consult Example 3.5 for an
illustration.

Define an equivalence relation on Sn by xRy if k(x) = k(y). (In
Figure 5, yRx.) Let Pn denote the partition of Sn formed by the
equivalence classes of R, and let Pn(x) denote the partition element of
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Pn containing x. Observe that

Pn(x) = (Bi(T, k(x)) \ Bi−1(T, k(x))) ∩D(T, k(x))

for some 1 ≤ i ≤ N which, by Observation 3.3, is isometric to Si for
some 1 ≤ i ≤ N . The formula in part (a) immediately follows.

We next use the partition to find formulas for counting the number
of isometric copies of S1, . . . , SN in the SN+1 shell. Let x ∈ SN+1.
Clearly, d(a(x), r) ≤ 1 so a(x) is in the initial copy of H (the one with
r). By part (a), Pn(x) is isometric to Si for some 1 ≤ i ≤ N. Therefore
k(x) is an attachment vertex of the original copy of H that is N +1− i
away from r. Finally, there is a one-to-one correspondence between the
number of partition elements in SN+1 and the attachment vertices of
H by the bijection Pn(x) ↔ k(x). Thus the formula in part (b) holds.

Now we establish the formula in part (c). Let n > N . Both Sn and
Sn+1 are partitioned into elements isometric to S1, . . . , SN by part (a).
For every partition element of Sn there are two cases.

Case 1. If a partition element P of Sn is isometric to Si for
1 ≤ i ≤ N − 1, then such an element will uniquely correspond to a
partition element Q of Sn+1 that is isometric to Si+1 for 1 ≤ i ≤ N−1.
This unique partition element of Sn+1 corresponds to descendants of
P .

Case 2. If a partition element P of Sn is isometric to SN , then
its descendants in Sn+1 will consist of an isometric copy of SN+1

which in turn can be partitioned into ti(SN+1) elements for each i
with 1 ≤ i ≤ N .

Note that those partition elements of Sn+1 that are isometric to S1

can only arise in the second case. So t1(Sn+1) = tN (Sn)t1(SN+1) since
there are tN (Sn) distinct isometric copies of SN in Sn. Those partition
elements of Sn+1 that are isometric to Sj for 2 ≤ j ≤ N can arise in
either case. Therefore, the total number of partition elements in Sn+1

isometric to Sj for 2 ≤ j ≤ N is

tj(Sn+1) = tj−1(Sn) + tN (Sn)tj(SN+1). �

Example 3.5. Figure 5 shows the copy-paste tree of Example 2.5
(depicted in Figure 3). Recall that Vatt(H) = {v1, v2} and N = 4. For
w, x and y as indicated in Figure 5, a(w), a(x) and a(y) are in the first
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copy of H used in the construction of TH . Since a(w) = k(w) = v1, w
is in an isometric copy of S4. Note that k(w) ̸= k(y). Hence w and y
are not related and are not in the same partition element of S5. Since
k(x) = k(y) = v2, x and y are related and are in the same isometric
copy of S1. The partition elements of S5, S6 and S7 are circled in
Figure 5.

S5

S6

S7

a(w) = k(w) = v1

w

a(x) = a(y)

k(x) = k(y) = v2

y

x

Figure 5. Partition elements of S5, S6 and S7.

Definition 3.6. Define the copy-paste matrix AH associated to a
generator H of height N to be the N ×N nonnegative matrix

(3.1) AH =


t1(S2) t2(S2) t3(S2) · · · tN (S2)
t1(S3) t2(S3) t3(S3) · · · tN (S3)

...
...

...
...

...
t1(SN+1) t2(SN+1) t3(SN+1) · · · tN (SN+1)

 .
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Recall that for 1 ≤ i ≤ N and 1 ≤ j ≤ N , ti(Sj) = δi,j , where δ is
the Kronecker delta. Using this fact together with Lemma 3.4 (b), the
copy-paste matrix in (3.1) can be simplified to the block matrix

(3.2) AH =

[
0N−1,1 IN−1,N−1

bN bN−1 · · · b2 b1

]
,

where IN−1,N−1 is the size N − 1 identity matrix.

Lemma 3.7 lists several properties of copy-paste matrices.

Lemma 3.7. Let A be a copy-paste matrix of the form (3.2) with
spectral radius ρ(A).

(a) If λ is an eigenvalue of A, then
[
1 λ · · ·λN−1

]t
is an eigenvector

of A corresponding to λ (where t denotes transpose).
(b) For all N ≥ 2, the determinant of A− I is given by

|A− I| = (−1)N
(
1−

N∑
i=1

bi

)
.

(c) 1 is not an eigenvalue of A.
(d) If bN ̸= 0, then A is irreducible.
(e) If bN ̸= 0, then ρ(A) > 1.
(f) If bN = bN−1 = · · · = bN−j = 0, bN−(j+1) ̸= 0 and

(3.3) A′ =

[
0N−(j+2),1 IN−(j+2),N−(j+2)

bN−(j+1) bN−(j+2) · · · b2 b1

]
,

then

|A− λI| = (−λ)j+1|A′ − λI| and ρ(A) = ρ(A′),

where I is the appropriate sized identity matrix.

Proof.

(a) Let v =
[
v1 v2 · · · vN

]t
be an eigenvector of A associated

to λ. Since Av = λv, we have that
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vi = λvi−1 for i = 2, . . . , N(3.4)

and

bNv1 + bN−1v2 + · · ·+ b1vN = λvN .(3.5)

Since v is an eigenvector of A, then v1 ̸= 0. For if v1 = 0, then
v2 = · · · = vN = 0 by equation (3.4). Without loss of generality,
v1 = 1. From equation (3.4) it follows that

(3.6) vi = λi−1, for i = 2, . . . , N.

Substituting equation (3.6) into equation (3.5) yields

(3.7) bN + bN−1λ+ bN−2λ
2 + · · ·+ b1λ

N−1 = λN .

Using equation (3.7), it is now straightforward to verify

A
[
1 λ λ2 · · · λN−1

]t
= λ

[
1 λ λ2 · · · λN−1

]t
.

(b) We will argue by induction on N . When N = 2, we have that

|A− I| =
∣∣∣∣−1 1
b2 b1 − 1

∣∣∣∣ = 1− b1 − b2.

So the base case holds. Next assume the determinant formula is valid
for any (k − 1) × (k − 1) matrix of the form given by equation (3.2),
where k ≥ 3. Let

A =

[
0N−1,1 IN−1,N−1

bk bk−1 · · · b2 b1

]
.
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Using a cofactor expansion along the first column of A−I we have that

|A− I| = −1

∣∣∣∣∣∣∣∣∣∣∣

−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
bk−1 bk−2 bk−3 · · · b1 − 1

∣∣∣∣∣∣∣∣∣∣∣
(3.8)

+ (−1)k+1bk

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

...
...

0 0 · · · −1 1

∣∣∣∣∣∣∣∣∣∣∣
.

By applying the induction hypothesis and properties of triangular
matrices, we see

|A− I| = (−1)(−1)k−1

(
1−

k−1∑
i=1

bi

)
+ (−1)k+1bk = (−1)k

(
1−

k∑
i=1

bi

)
,

which is the desired result.

(c) Since
N∑
i=1

bi ≥ 2,

it follows by part (b) that |A − I| is not zero and hence 1 is not an
eigenvalue of A.

(d) By Theorem 2.9, it suffices to show that G(A), the associated
directed graph of A, is strongly connected. Let x1, . . . , xN denote the
vertices of G(A). Observe that, for i = 1, . . . , N − 1, there is a directed
edge in G(A) from xi to xi+1. Since aN,1 = bN ̸= 0, there is also a
directed edge in G(A) from xN to x1. Therefore G(A) has a cycle of
length N , namely, xN , x1, x2, . . . , xN−1, xN , that includes every vertex
of G(A). Hence G(A) is strongly connected.

(e) Since A is irreducible, it follows from the Perron-Frobenius
theorem (Theorem 2.7) that ρ(A) ≥ 1. The result now follows by
part (c). (f) It is straightforward to check that |A−λI| = (−λ)j+1|A′−



1042 J. PREVITE, M. PREVITE AND M. VANDERSCHOOT

λI| by computing the determinant of (A − λI) by a sequence of first
column cofactor expansions. �

Theorem 3.8. Let T be a copy-paste tree with generator H of height N ,
and let A be the copy-paste matrix associated to H.

(a) Then (An)i,j = tj(Sn+i) for all n ≥ 1.

(b) Let u =
[
1 1 · · · 1

]
and c(n) =

[
cn+1 cn+2 · · · cn+N

]t
.

Then the growth function of T satisfies

f(T, kN) = 1 + u
[
I +AN + · · ·+A(k−1)N

]
c(0).

(c) If A is primitive, then T has exponential growth with growth rate
ρ(A).

Proof.

(a) We argue by induction on n. When n = 1, the result clearly
holds. Next we assume the result holds for n = k, where k ≥ 1. Note
that multiplication in the order below results in a matrix whose first
N − 1 rows are just the rows of Ak shifted up by one row.

Ak+1 = AAk = A



t1(Sk+1) t2(Sk+1) · · · tN (Sk+1)
t1(Sk+2) t2(Sk+2) · · · tN (Sk+2)
t1(Sk+3) t2(Sk+3) · · · tN (Sk+3)
t1(Sk+4) t2(Sk+4) · · · tN (Sk+4)

...
... · · ·

...
t1(Sk+N ) t2(Sk+N ) · · · tN (Sk+N )


.

Thus the entries in the first N − 1 rows of Ak+1 are the desired result.
To show the last row of Ak+1 is the desired result we write Ak+1 as the
product Ak+1 = AkA and use Lemma 3.4 (c).

(b) The following calculation uses Lemma 3.4 (a) to verify that
c(n) = Anc(0):

An

 c1
...
cN

 =

 t1(Sn+1) · · · tN (Sn+1)
...

...
...

t1(Sn+N ) · · · tN (Sn+N )


 c1

...
cN
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=

 c1t1(Sn+1) + · · ·+ cN tN (Sn+1)
...

c1t1(Sn+N ) + · · ·+ cN tN (Sn+N )


=

 cn+1

...
cN+n

 .

Observe that

uAnc(0) = uc(n) =

N∑
i=1

ci+n.

Therefore,
(3.9)

f(T, kN) =

kN∑
i=0

ci = 1 + u
[
I +AN +A2N + · · ·+A(k−1)N

]
c(0).

(c) Suppose A is primitive. Let r = ρ(A) and let L be the positive
matrix (as described in Theorem 2.8) given by

L = lim
k→∞

(
A

r

)k

.

It follows from Lemma 3.7 (c) and Theorem 2.7 (d) that r > 1.

For every n ≥ 0, there exists an integer kn ≥ 0 such that

(3.10) knN ≤ n ≤ (kn + 1)N.

Clearly,

(3.11) 0 < f(T, knN) ≤ f(T, n) ≤ f(T, (kn + 1)N).

So, for r > 1, we have

(3.12)
f(T, knN)

rknNrN
≤ f(T, n)

rn
≤ f(T, (kn + 1)N)

rknN
.

Since 1 is not an eigenvalue of A (Lemma 3.7), the matrix AN − I
is invertible. Therefore, equation (3.9) can be simplified as follows:

f(T, kN) = 1 + u
[
I +AN + · · ·+A(k−1)N

]
c(0)

= 1 + u
[
(AN − I)−1(AkN − I)

]
c(0)(3.13)
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= 1 + u
[
(AN − I)−1AkN

]
c(0)− u

[
(AN − I)−1

]
c(0).

From inequality (3.12), Definition 2.2 and from convergent sequence
results, it follows that T has exponential growth with growth rate r if
there exist real numbers ℓ1 and ℓ2, 0 < ℓ1 ≤ ℓ2, such that

lim
k→∞

f(T, kN)

rkNrN
= ℓ1 and lim

k→∞

f(T, (k + 1)N)

rkN
= ℓ2.

We will show that ℓ1 exists. By equation (3.13),
(3.14)

f(T, kN)

rkNrN
=

1

rkNrN
+

u
[
(AN−I)−1AkN

]
c(0)

rkNrN
−

u
[
(AN−I)−1

]
c(0)

rkNrN
.

Since r > 1, the first and last terms of the right-hand side of equa-
tion (3.14) vanish as k → ∞. Since

lim
k→∞

AkN

rkN
= L,

we have

ℓ1 = lim
k→∞

f(T, kN)

rkNrN
=

u
[
(AN − I)−1

]
Lc(0)

rN
.

Next, we show that ℓ1 > 0. From equation (3.9), we have that

(3.15)
f(T, kN)

rkNrN
=

1 + u
[
I +AN + · · ·+A(k−1)N

]
c(0)

rkNrN
.

Since A is primitive, r > 1, and the entries of u and c(0) are positive,
it immediately follows from equation (3.15) that

(3.16)
f(T, kN)

rkNrN
≥ uA(k−1)Nc(0)

rkNrN
.

Since

lim
k→∞

uA(k−1)Nc(0)

rkNrN
= lim

k→∞

uA(k−1)Nc(0)

r(k−1)Nr2N
=

uLc(0)

r2N
> 0,

it follows that ℓ1 > 0.

A similar argument establishes that ℓ2 also exists and, by equa-
tion (3.12), ℓ2 ≥ ℓ1. �
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4. Copy-paste trees with exponential growth. The purpose of
this section is to show, using a bootstrapping argument, that every
copy-paste tree has exponential growth. In particular, we consider the
case where the associated copy-paste matrix is reducible. We then
construct related copy-paste trees having the same growth rate whose
associated copy-paste matrices are primitive.

4.1. Reducing to the case of irreducible copy-paste trees. Let
H be a generator of height N for a copy-paste tree TH , and let M be
the maximum of the distances of all the attachment vertices in H to the
root. If N > M , then bN (H) = 0, and hence the associated copy-paste
matrix AH has a column of all zeros making it reducible.

We build two related copy-paste trees with generators H ′ and H̃ of
height M with associated M ×M matrices

(4.1)

[
0M−1,1 IM−1,M−1

bM bM−1 · · · b2 b1

]
.

This matrix satisfies the hypotheses of parts (d) and (e) of Lemma 3.7.

We will construct H ′ and H̃ in such a way so that

f(TH′ , n) ≤ f(TH , n) ≤ f(TH̃ , n).

We will use this to show that TH has the same growth rate as TH′ and
TH̃ .

To build H ′, start with a root r′ and, for each attachment vertex
v ∈ Vatt(H), create an attachment vertex v′ ∈ Vatt(H

′) with one edge
adjacent to both r′ and v′ having length d(r, v) (i.e., obtain H ′ from H
by keeping only the root and all attachment vertices and removing all
interior vertices). Note that H ′ will have exactly |Vatt(H)|+1 vertices,
with |Vatt(H)| leaves (i.e., vertices adjacent to exactly one edge) and
|Vatt(H)| edges all adjacent to r′.

To construct H̃, again start with a root r̃ and for each attachment

vertex v ∈ Vatt(H), create an attachment vertex ṽ ∈ Vatt(H̃) which
is a leaf. However, unlike H ′, create d(r, v) edges, each of length 1,
and d(r, v) − 1 vertices so that these new vertices and edges form a
path from r̃ to ṽ having length d(r, v). Additionally, for every vertex
w ∈ V (H), create a non-attachment leaf w̃ that is exactly M away from
the root together with M edges of length one and M − 1 vertices so
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that these new vertices and edges form a path from r̃ to w̃. Recall that
M is the maximum of the distances of all the attachment vertices in
H to the root. Note that all vertices except for the leaves and the root
are adjacent to exactly two edges. The following example illustrates

the construction of H ′ and H̃. Note that AH′ = AH̃ are given by (4.1).

Example 4.1. Let H be the generator shown below in Figure 6.
Suppose edges (x, y) and (z, w) have length 2, and all other edges have
length 1. Suppose also that Vatt(H) = {v1, v2, v3}. Note that H has
height N = d(s, r) = 6. Since the distances of the attachment vertices
to the root are d(v1, r) = d(v2, r) = 4 and d(v3, r) = 2, we have that
M = 4.

The tree H ′ has exactly four vertices: a root r′ and three attachment
vertices v′1, v

′
2 and v′3. Edges (r

′, v′1) and (r′, v′2) have length 4, and edge

(r′, v′3) has length 2. The tree H̃ has three attachment vertices: ṽ1, ṽ2
and ṽ3, and 15 non-attachment leaves. All edges of H̃ have length 1.
(See Figure 6.)

y

s

H

z

r

v3

v1 v2

r̃

w w̃2 ṽ1w̃1v′2

v′3

H′

x

r′

ṽ3

ṽ2w̃15

˜H

v′1

Figure 6. Trees H ′ and H̃ corresponding to H.

Since bM ̸= 0 we have that AH′ is irreducible. Furthermore, it is

clear that ci(H
′) ≤ ci(H) ≤ ci(H̃), from which it follows that

(4.2) f(TH′ , n) ≤ f(TH , n) ≤ f(TH̃ , n).
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If AH′ is primitive, then, by Theorem 3.8, the copy-paste trees TH′

and TH̃ have exponential growth with growth rate ρ(AH′). Hence, by
equation (4.2), it follows that TH has the same growth rate.

4.2. Reducing to the case of a primitive copy-paste tree.
Although the matrix AH′ is irreducible, it may not be primitive.
Consider for instance the copy-paste matrix

AH′ =


0 1 0 0
0 0 1 0
0 0 0 1
2 0 1 0


of Example 4.1. One can readily check that the directed graph of AH′

contains cycles of lengths 2 and 4, and hence, by Theorem 2.9, AH′ is
not primitive.

In this section, we find sufficient conditions for AH′ to be primitive
and then consider the case where AH′ is not primitive. In the case
where AH′ is not primitive, we construct related copy-paste trees with
matrices that are primitive which will be used to compute the growth
rate of TH′ (which in turn has the same growth rate as TH).

Definition 4.2. Let H be a generator and let m = gcd (d(v1, r), . . . ,
d(vn, r)), where each vi ∈ Vatt(H). We say that H is unscaleable if
m = 1, and that H is scaleable if m > 1.

Recall that H1 and H2 of Example 2.4 are both generators for the
infinite full binary tree. The generator H1 is unscaleable, whereas H2

is scaleable with m = 2.

Lemma 4.3. Let TH be a copy-paste tree with unscaleable generator
H of height N > 1. Then AH′ is primitive.

Proof. Let G(AH′) be the associated directed graph of AH′ , and let
x1, . . . , xM denote the vertices of G(AH′). Recall that in the proof of
Lemma 3.7 (d), it was shown that bM (H) ̸= 0 implies that G(AH′) has
a cycle of length M that contains every vertex, namely,

xM , x1, x2, . . . , xM−1, xM .
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Observe that, if bi(H) ̸= 0 for some 1 ≤ i ≤ M , then (xM , xM−i+1)
is a directed edge in G(AH′). Using the cycle described in the previous
paragraph, it follows that

xM , xM−i+1, xM−i+2, . . . , x(M−i)+(i−1), xM

is a cycle of length i in G(AH′).

Since H is unscaleable, there exist attachment vertices v and w of
H such that gcd (d(v, r), d(w, r)) = 1. Let j = d(v, r) and k = d(w, r).
Then bj(H) ̸= 0, bk(H) ̸= 0 and gcd (j, k) = 1. Thus G(AH′) has a
cycle of length j and a cycle of length k. Since j and k are relatively
prime, Theorem 2.9 implies AH′ is primitive. �

If H is scaleable, we will construct two additional trees H ′
sc and H̃sc.

Construct H ′
sc from H ′ by scaling each edge of H ′ by a factor of 1/m,

where m = gcd (d(v1, r), . . . , d(vn, r)) for each vi ∈ Vatt(H). (Note that
the distance between any two vertices in H ′

sc is still an integer.)

Construct H̃sc as follows. For each attachment (respectively, non-

attachment) leaf of H̃, construct an attachment (respectively, non-

attachment) leaf of H̃sc connecting it to the root s̃ via a path of M/m
edges, each of length 1, so that there are M/m − 1 interior vertices
associated with this path. The following example illustrates these
constructions.

Example 4.4. Let H be the generator of Example 4.1 (depicted in
Figure 6). As before, edges (x, y) and (z, w) have length 2, and all other
edges have length 1. Since the distances of the attachment vertices of
H to the root are d(v1, r) = d(v2, r) = 4 and d(v3, r) = 2, H is scaleable
with m = 2.

The treeH ′
sc has exactly four vertices: a root r′ and three attachment

vertices v′1, v
′
2 and v′3. Note that d(r

′, v′1) = d(r′, v′2) = 2 and d(r′, v′3) =

1. The tree H̃sc has three attachment vertices: ṽ1, ṽ2 and ṽ3, and 15

non-attachment leaves w̃1, . . . , w̃15. All edges of H̃sc have length 1,
d(r̃, ṽ1) = d(r̃, ṽ2) = 2, d(r̃, ṽ3) = 1 and d(r̃, w̃i) = 2 for all i =

1, . . . , 15. Figure 7 shows the corresponding scaled trees H ′
sc and H̃sc.
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Observation 4.5. For a scaleable H, the properties below follow
immediately from the construction of H ′

sc. Recall that ci is the number
of vertices in a tree that are distance i to the root.

(i) H ′
sc and H̃sc have height M/m and AH′

sc
= AH̃sc

.

(ii) bim(H ′) = bi(H
′
sc) and cim(H ′) = ci(H

′
sc). Hence, ci(TH′

sc
) =

cim(TH′) for i ≥ 0.

(iii) bim(H̃) = bi(H̃sc) and cim(H̃) = ci(H̃sc). Hence, ci(TH̃sc
) =

cim(TH̃) for i ≥ 0.

H

z

y

r

v3

v1 v2

s

w

r̃

w̃1 w̃2 ṽ1v′1 v′2
v′3

r′

ṽ3

ṽ2
x

w̃15

H ′
sc ˜Hsc

Figure 7. Scaled trees corresponding to H.

Lemma 4.6 describes the effects of scaling on the spectral radius of
the copy-paste matrix and on the growth rate of the copy-paste tree.

Lemma 4.6. Let H be a generator with associated generator H ′ of
height M > 1. Suppose H ′ is scaleable with m = gcd (d(v1, r), . . . ,
d(vn, r)) > 1, and let H ′

sc be the scaled generator described above.

(i) H ′
sc and H̃sc are unscaleable which implies that AH′

sc
= AH̃sc

is

primitive. Moreover, TH′
sc

and TH̃sc
have growth rate ρ(AH′

sc
).

(ii) If s is an eigenvalue of AH′ , then sm is an eigenvalue of AH′
sc
.

Conversely, if s is an eigenvalue of AH′
sc
, then m

√
s is an eigen-

value of AH′ . Moreover, ρ(AH′) = m
√

ρ(AH′
sc
).

(iii) The copy-paste trees TH′ and TH̃ have exponential growth rate
ρ(AH′).

(iv) TH has exponential growth with growth rate ρ(AH) = ρ(AH′).
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Proof.

(i) One can show that, if H ′
sc (respectively, H̃sc) is scaleable, then m

is not the greatest common divisor of {d(v1, r), . . . , d(vn, r)}. Therefore,
by Lemma 4.3 we have that AH′

sc
is primitive and, by Theorem 3.8, TH′

sc

and TH̃sc
have exponential growth rate ρ(AH′

sc
).

(ii) Let s be an eigenvalue of AH′ . By Lemma 3.7 (i), v =[
1 s s2 · · · sM−1

]T
is an eigenvector of AH′ associated with s.

Note that the last component in the vector equation AH′v = sv is

(4.3) bM + sbM−1 + s2bM−2 + · · ·+ sM−1b1 = sM ,

where bi denotes bi(H).

Since m | M , there exists k ∈ Z+ such that M = km. Since m > 1,
the only possible nonzero entries in the last row of AH′ have the form
bmi(H) for some i ∈ Z+. Thus equation (4.3) can be written as

(4.4) smk = bmk + smbm(k−1) + · · ·+ sm(k−1)bm.

Since bi(H
′
sc) = bmi(H

′) = bmi(H) and H ′
sc has height k, the copy-

paste matrix of H ′
sc is given by

(4.5) AH′
sc
=

[
0k−1,1 Ik−1,k−1

bmk bm(k−1) · · · b2m bm

]
.

Using equation (4.4), a simple calculation verifies that sm is an eigen-
value of AH′

sc
.

Similarly, if s is an eigenvalue of AH′
sc
, then

w =
[
1 s s2 · · · sk−1

]T
is an eigenvector associated to s where km = M . Since the only possible
nonzero entries in the last row of AH′ have the form bmi(H), that is,
bM−j(H) = bmk−j(H) = 0 for j ̸= im, we have

(4.6) bmk + bM−1s
1/m + bM−2s

2/m + · · ·+ bM−(m−1)s
1−1/m

+ bm(k−1)s+ bM−(m+1)s
1+1/m + · · ·+ bM−(2m−1)s

2−1/m

+ · · ·+ bmsk−1 + · · ·+ b1s
k−1/m = sk,

because the coefficients of all non-integer powers of s in the above
expression are zero.
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Another straightforward calculation verifies that[
1 s1/m s2/m · · · s · · · s2 · · · sk−1/m

]T
is an eigenvector of AH′ with corresponding eigenvalue s1/m, where
equation (4.6) gives the last entry in the matrix computation.

(iii) We will only prove the result for TH′
sc
. (The case of TH̃sc

is similar.) Because TH′
sc

has exponential growth with growth rate
λ = ρ(AH′

sc
), there exist positive constants α1 and α2 such that

α1λ
n ≤ f(TH′

sc
, n) ≤ α2λ

n.

Thus, using part (ii) of Observation 4.5,

f(TH′
sc
, n) =

n∑
i=0

ci(TH′
sc
) =

n∑
i=0

cim(TH′) ≤
nm∑
i=0

ci(TH′) = f(TH′ , nm).

By Observation 4.5 (ii), it also follows that

f(TH′ , nm) = c0(TH′)

+ (c1(TH′) + · · ·+ cm(TH′))

+ (cm+1(TH′) + · · ·+ c2m(TH′))

...(4.7)

+ (c(n−1)m+1(TH′) + · · ·+ cnm(TH′))

≤ m(c0(TH′) + cm(TH′) + c2m(TH′) + · · ·+ cnm(TH′))

= m(c0(TH′
sc
) + c1(TH′

sc
) + · · ·+ cn(TH′

sc
))

= mf(TH′
sc
, n).

Therefore,
f(TH′

sc
, n) ≤ f(TH′ , nm) ≤ mf(TH′

sc
, n).

Hence,
α1λ

n ≤ f(TH′ , nm) ≤ (mα2)λ
n,

and so
α1(λ

1/m)nm ≤ f(TH′ , nm) ≤ (mα2)(λ
1/m)nm.

It now follows that TH′ has exponential growth with growth rate m
√
λ

which equals ρ(AH′) by (ii). Again, from a similar argument, it follows
that TH̃ has the same growth rate ρ(AH′).
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(iv) Since TH′ and TH̃ have the same growth rate, namely, ρ(AH) =
ρ(AH′), it follows from equation (4.2) that TH has growth rate ρ(AH) =
ρ(AH′). �

To summarize, we have proved our main result:

Theorem 2.6. Let TH be a copy-paste tree with generator H and
copy-paste matrix

AH =

[
0N−1,1 IN−1,N−1

bN bN−1 · · · b2 b1

]
.

Then TH has exponential growth with growth rate ρ(AH).

5. Examples. Next, we calculate the growth rates of the copy-paste
trees considered throughout this paper.

Example 5.1. Let T be the infinite full binary tree (Example 2.4)
with generators H1 and H2 shown in Figure 2. Note that AH1 =

[
2
]

and

AH2
=

[
0 1
4 0

]
.

As expected, T has exponential growth with growth rate ρ(AH1) =
ρ(AH2) = 2.

Example 5.2. Let H be the generator of the copy-paste tree TH of
Example 2.5, see Figure 3. Note that

AH =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1

 .

By Theorem 2.6, TH has exponential growth with growth rate ρ(AH) ≈
1.3803.
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Example 5.3. Let H be the generator of the copy-paste tree TH of
Example 4.1 (depicted in Figure 6). Note that N = 6, M = 4 and

AH′ =


0 1 0 0
0 0 1 0
0 0 0 1
2 0 1 0

 .

(Since N > M , it is convenient to compute the growth rate by using
the smaller-sized matrix AH′ .) Then TH has exponential growth with

growth rate ρ(AH′) =
√
2.

Our next example illustrates a class of trees called shuffled copy-
paste trees, which are obtained by permuting components of the shells
of a given copy-paste tree. Such trees obviously have identical growth
functions to the original copy-paste tree.

T ′
HTH

Figure 8. The permuted tree T ′
H is not self-similar; it has the same growth

rate as TH .

Example 5.4. Consider the generator described in Example 2.5;
however, to simplify the construction, we include a vertex in H at
the midpoint of (r, w). To build T ′

H , realize that the components of the
shells of TH can be permuted to obtain a new tree. In particular, at
S2, permute the edge on the right with the wedge shape on the left to
obtain a new tree T ′

H that is not self-similar.
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Clearly, one could also create a shuffled copy-paste tree from TH in
Example 5.4, that does not have finitely many cones, by producing a
tree having non-branching paths of any integer length having the same
growth rate as TH .
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