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FIRST ORDER DEFORMATIONS OF PAIRS AND
NON-EXISTENCE OF RATIONAL CURVES

BIN WANG

ABSTRACT. Let X0 be a smooth hypersurface (assumed
not to be generic) in projective space Pn, n ≥ 4, over
complex numbers, and C0 a smooth rational curve on X0.
We are interested in deformations of the pair C0 and X0. In
this paper, we prove that, if the first order deformations of
the pair exist along each deformation of the hypersurface X0,
then deg(C0) cannot be in the range(

m
2 deg(X0) + 1

deg(X0) + 1
,

2 +m(n− 2)

2n− deg(X0)− 1

)
,

where m is any non negative integer less than

dim(H0(OPn (1))|C0 )− 1.

1. Introduction. Throughout the paper, varieties are over the com-
plex numbers. We are interested in conditions on the first order defor-
mations of a pair of a rational curve and a hypersurface. So let us
introduce the first order condition.

Let H0(OPn(h)) denote the vector space of homogeneous polynomi-
als of degree h in n+ 1 variables with n ≥ 4. Let f0 ∈ H0(OPn(h)) be
such that

X0 = div (f0)

is a smooth hypersurface. Let

[f0] ∈ P(H0(OPn(h)))

denote the corresponding point of f0 in the projectivization. Let

(1.1) c0 : P1 −→ X0 ⊂ Pn
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664 BIN WANG

be a smooth embedding of P1, whose image is C0. Let

H1(TX0 −→ NC0/X0
)

be the hypercohomology of the complex that is isomorphic to the
tangent space of the deformations of the pair C0 ⊂ X0 and H1(TX0),
the space that is isomorphic to the tangent space of the moduli space
of hypersurfaces at the point X0. There is a known exact sequence:

(1.2) H1(TX0 −→ NC0/X0
)

ϕ−→ H1(TX0) −→ H1(NC0/X0
).

Theorem 1.1. Let µ(C0) = dim(c∗0(H
0(OPn(1)))).

(i) If

(1.3) ϕ is surjective,

then deg(C0) cannot be in the range(
m
2h+ 1

h+ 1
,
2 +m(n− 2)

2n− h− 1

)
in the case

m
2h+ 1

h+ 1
<

2 +m(n− 2)

2n− h− 1
,

where m is any non negative integer less than µ(C0)−1. It follows
that, if assumption (1.3) holds, deg(C0) cannot be in the range(

1,
n

2n− h− 1

)
, for m = 1,

in the case n− h− 1 < 0.
In particular,

(ii) if
H1(NC0/X0

) = 0,

all results in part (i) hold ;
(iii) if X0 is a generic hypersurface and contains a rational curve C0,

all results in part (i) hold.

1.1. Remark. The result in this theorem is new but is related to many
previously known results by Clemens [1, 2, 3], Chiantini, Lopez and
Ran [4], Ein [5], Katz [6], Pacienza [8], Voisin [9, 10] and Xu [12],
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etc.1 They all studied pairs of rational curves (or higher dimensional
subvarieties) and generic hypersurfaces of a certain smooth projective
variety. The study of the exact sequence (1.2) appeared in many
previous papers above. But here we use it as the only assumption
for our result.

To explain in detail how we utilize assumption (1.3) at a non-
generic hypersurface f0, we let Md be the parameter space of smooth
embeddings P1 → Pn, whose image has degree d. So Md is an open
set of

P(⊕n+1OPn(d)).

The smooth embedding map c0 represents a point in Md which is still
denoted by c0. Let

(1.4)
Γ ⊂Md ×P(H0(OPn(h)))
Γ = {(c, [f ]) : c∗(f) = 0}.

Then the assumption in part (iii) that X0 is generic is equivalent to the
assumption that there is an irreducible component Γ0 of Γ dominating

P(H0(OPn(h))),

and (c0, [f0]) is generic in Γ0. Then it is well known that this implies
the surjectivity of ϕ at (c0, [f0]), which is our assumption (1.3) at this
point (see Lemma 2.2 below). The converse may not be true, i.e.,
the surjectivity of ϕ (at (c0, [f0])) may not imply the existence of Γ0

containing the fixed point (c0, [f0]).

1.2. Idea of the proof. The main idea of the proof is to use special
pencils of hypersurfaces constructed from general plane sections Li (the
pencil of L1 · · ·Lh and f0). If the rational curve C0 can deform to
all hypersurfaces in first order, i.e., assumption (1.3) holds, then the
collection V of the first order deformations of the rational curve along
the directions of all such pencils generates some rank-2 quotient bundle
c∗0(TPn)/E′ (see subsection 3.2). But, if the numerical condition on C0,

(1.5) m

(
2h+ 1

h+ 1

)
≤ deg(C0) ≤

2 +m(n− 2)

2n− h− 1
,

is satisfied, V fails to generate c∗0(TPn)/E′ because all the first order
deformations in V lie in a fixed, proper sub-bundle of c∗0(TPn)/E′.
The failure is forced by the numerical bounds (1.5) (through carefully
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designed first order deformations of the hypersurface constructed from
the pencils above). Thus, the numerical bounds (1.5) contradict the
first order deformation assumption (1.3).

In Section 2, we give another description of assumption (1.3) on
first order deformations of the pair. In Section 3, we give the prop-
erty on the global generation of the bundle NC0/Pn . This property,
Proposition 3.3, requires a long set-up. In Section 4, we show that the
numerical condition (1.5) forces the property on the global generation,
Proposition 3.3, to fail. This proves Theorem 1.1. In Section 5, we give
three examples for Theorem 1.1.

2. First order deformations of the pair. In this section, we give
another description of assumption (1.3). Let

S ⊂ P(H0(OPn(h)))

be an irreducible subvariety (quasi or projective) that contains [f0] and
is smooth at [f0] (so S could be a Zariski open set). Let

XS ⊂ Pn × S,(2.1)

and

XS = {(x, [f ]) : [f ] ∈ S, f(x) = 0},(2.2)

be the universal hypersurface for S ⊂ P(H0(OPn(h))).

Let

c0 : P1 −→ C0 × {[f0]} ⊂ XS
t −→ (c0(t), [f0])

be the smooth embedding determined by the above embedding c0. The
projection

PS : XS −→ S

has a differential map

T(q,[f0])XS −→ T[f0]S, q ∈ C0,

which can be extended to a bundle map

(PS)∗ : c∗0(TXS ) −→ T[f0]S ⊗OP1 .
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At last, we obtain a homomorphism on the vector spaces

(2.3) P sS : H0(c∗0(TXS
)) −→ T[f0]S,

where T[f0]S ≃ H0(T[f0]S ⊗OP1) is the space of global sections of the
trivial bundle, each of whose fibre is T[f0]S.

Now consider the diagram

H1(TX0 → NC0/X0
)

↓ϕ
T[f0]P(H0(OPn(h)))

ψ→ H1(TX0),

where the map ψ is the differential (surjective for n ≥ 4) at [f0] from
P(H0(OPn(h)) to the deformation space of complex structures of the
differential manifold X0.

Lemma 2.1.
ψ(T[f0]S) ⊂ image (ϕ)

if and only if P sS is surjective.

Proof. Let Md be the parameter space of smooth embedding P1 →
Pn, whose image has degree d. So Md is an open set of

P(⊕n+1OPn(d)).

The map c0 represents a point in Md which is still denoted by c0. Let
Xn be the universal hypersurface for S = P(H0(OPn(h))) (defined in
formula (2.2)). Let

Γ ⊂Md ×P(H0(OPn(h)))(2.4)

Γ = {(c, [f ]) : c∗(f) = 0}

be the incidence scheme containing the point (c0, [f0]). Let T(c0,[f0])Γ
be the Zariski tangent space of Γ. Let e be the evaluation map

e : Γ×P1 −→ Xn(2.5)

(c, [f ], t) −→ (c(t), [f ]).(2.6)

Its differential map induces a bundle map

e∗ : T(c0,[f0])Γ⊗OP1 → c∗0(TXn).
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It further induces a homomorphism on the cohomologies:

es : T(c0,[f0])Γ −→ H0(c∗0(TXn)),

where T(c0,[f0])Γ = H0(T(c0,[f0])Γ ⊗ OP1). Also, there is a surjective
map η:

T(C0,[f0])Γ � H1(TX0 → NC0/X0
),

such that the following diagram commutes
(2.7)

T(C0,[f0])Γ = T(C0,[f0])Γ
η
� H1(TX0 → NC0/X0

)
↓es ↓ ↓ϕ

H0(c∗0(TXn))
P s

n→ T[f0]P(H0(OPn(h)))
ψ
� H1(TX0),

where P sn is the corresponding map in formula (2.3) for

S = P(H0(OPn(h))).

Because
Tc0Md −→ H0(c∗0(TPn))

is surjective (it is an isomorphism), es has to be surjective. Then, the
lemma is true for S = P(H0(OPn(h))).

Now we consider the subvariety S ⊂ P(H0(OPn(h))) in the lemma.
If ψ(T[f0]S) ⊂ image (ϕ), for any α ∈ T[f0]S, we apply the diagram

to find a section σ ∈ H0(c∗0(TXn)) such that P sn(σ) = α. Because
P sn(σ) = α ∈ T[f0]S, σ must be in the subspace H0(c∗0(TXS

)) of

H0(c∗0(TXn)). Thus, P sS is surjective. Conversely, we suppose P sS is
surjective. For any α ∈ T[f0]S, using the commutative diagram, we
obtain

ψ(α) ∈ ϕ ◦ η ◦ (es)−1 ◦ (P sS)−1(α).

This completes the proof. �

Lemma 2.2. If there is an irreducible component Γ0 of the incidence
scheme

{(c, [f ]) ∈Md ×P(H0(OPn(h))) : c∗(f) = 0},

such that Γ0 dominates P(H0(OPn(h))) and (c0, [f0]) ∈ Γ0 is generic,
then ϕ is surjective.



FIRST ORDER DEFORMATIONS OF PAIRS 669

Proof. In this proof, we consider the entire space of hypersurfaces,
i.e.,

S = P(H0(OPn(h))).

As before, Xn denotes the universal hypersurface corresponding to
P(H0(OPn(h))).

Let c0 be as above, and let

c0 : P1 −→ X0 × {[f0]} ⊂ Xn

be the morphism that lifts the image C0 to Xn. The projection

P : Xn −→ S

induces a map on the sections of bundles over P1,

(2.8) P s : H0(c∗0(TXn)) −→ T[f0]S,

where T[f0]S ≃ H0(T[f0]S ⊗OP1) is the space of global sections of the
trivial bundle, each of whose fibre is T[f0]S. Observe the commutative
diagram

T(c0,[f0])Γ
(eΓ)∗−→ H0(c∗0(TXn))

↓(πΓ)∗ ↓P s
n

T[f0]S = T[f0]S

(see (2.7) for P sn) where (eΓ)∗ is induced from the differential of the
evaluation eΓ:

eΓ : Γ×P1 −→ Xn
(c, [f ], t) −→ c(t)× {[f ]}.

Since f0 is generic and πΓ is dominant (by the assumption of the
lemma), then (c0, [f0]) ∈ Γ is a generic point in Γ0. Then the dominance
of πΓ implies the surjectivity of (πΓ)∗. Thus, P sn is surjective. By
Lemma 2.1, we have proved Lemma 2.2. �

3. The quotient bundle c∗0(TPn)/E′. In this section, we prove the
quotient bundle c∗0(TPn)/E′ is generated by a special type V of global
sections. Also, these special sections come from a particular type of first
order deformation of hypersurfaces. Let us introduce a long setting that
defines this special type of section.
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3.1. A parameter space of hypersurfaces. Let S ≃ CN be an
affine open set of P(H0(OPn(h))). Let f0 ∈ S. Specifically, we can let

S =

{
f0 +

N∑
i=1

aifi

}
,

where {fi}, i = 0, . . . , N , is a basis for the linear space H0(OPn(h)),
and (a1, . . . , aN ) are coordinates of S = CN .

Let

(3.1) X ⊂ Pn × S

and

(3.2) X = {(x, [f ]) : f(x) = 0}.

Let

(3.3) F (a, x) = f0(x) +
N∑
i=1

aifi(x), a ∈ S, x ∈ Pn,

be the corresponding universal polynomial that defines Xn.

Definition 3.1. There is an identification of the tangent space at the
origin [f0] ∈ S such that, at any point [f ] in general,

(3.4) T[f0]S = S = T[f ]S.

More specifically, if [f ] ∈ S is a polynomial ̸= f0,
−→
f is defined to

be the corresponding vector field in T[f0]S via formula (3.4). So
−→
f

represents the direction of the line connecting [f0] and [f ].

3.2. A quotient vector bundle via decomposition. Now we in-
troduce a rational curve. Let c0 be the smooth embedding map from

c0 : P1 c0−→ Pn × {[f0]} ⊂ Pn × S
t −→ (c0(t), [f0])

induced from c0 in formula (1.1), and C0 = C0 × {[f0]}. From now
on, we assume that assumption (1.3) holds. By Lemma 2.1, P sn is
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surjective. Thus, we can choose sections

βi, i = 1, . . . , N,

in H0(c∗0(TX )) such that P sn(βi) = ∂/∂ai. The inverse βi is clearly
not unique, but we choose one for each i. Let G be the subbundle
generated by these N sections βi ∈ H0(c∗0(TX )). G is not unique. We
may choose G so it is invariant under the PGL (n+1) action (see [9]),
i.e., G contains all the vectors tangent to the orbit of PGL (n+1) action
on Pn×S. Because of ∂/∂ai, these sections βi form a direct pointwise
sum in the bundle c∗0(TX ). Hence, G is a trivial bundle of rank N .
This bundle G gives us the decompositions

c∗0(TPn×S) ≃ (⊕NO)⊕ c∗0(T(Pn×S)/S),(3.5)

c∗0(TX ) ≃ (⊕NO)⊕ c∗0(TX/S),(3.6)

where O is the trivial line bundle on P1, and ⊕NO ≃ G. Thus, we
have the isomorphisms I1 and I2:

(3.7)
I1 :

c∗0(TX )

G
≃ c∗0(TX/S),

I2 :
c∗0(TPn×S)

G
≃ c∗0(T(Pn×S)/S).

Then, we have the isomorphism I3:

(3.8)
c∗0(TX )/G

I∗1 (TC̄0
)

≃ NC0/X0
≃ OP1(k1)⊕ · · · ⊕ OP1(kn−2).

Let kn−2 be the smallest among all ki, i = 1, . . . , n−2. Let E ⊂ c∗0(TX )
be the inverse image of

(3.9) OP1(k1)⊕ · · · ⊕ OP1(kn−3)

under the bundle morphism

(3.10) c∗0(TX ) −→ NC0/X0
−→ OP1(k1)⊕ · · · ⊕ OP1(kn−2).

Also, let E′ be the inverse of

(3.11) OP1(k1)⊕ · · · ⊕ OP1(kn−3)

under the bundle morphism

(3.12) c∗0(TX0) −→ NC0/X0
−→ OP1(k1)⊕ · · · ⊕ OP1(kn−2).
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Then we have

(3.13)
c∗0(TPn×S)

E
≃ OP1(d1)⊕OP1(d2) ≃ c∗0(TPn)E′,

where

d1 + d2 = (n+ 1) d− 2−
n−3∑
i=1

ki, d1 ≤ d2.

Let D be the inverse image of the summand OP1(d2) under the map

(3.14) c̄∗0(TPn×S) −→ OP1(d1)⊕OP1(d2).

(D is most likely unique depending on whether inequalities for d2, kn−2

are strict. But the uniqueness of D will not affect the proof. So we fix
D.)

3.3. A property on the global generation of the quotient
bundle. Let θ = {p1, . . . , pm} be an element in the symmetric product
Sym(P1),

0 ≤ m < µ(C0)− 1,

where Sym is the symmetric product. Let H0
θ (OPn(1)) be the sublinear

system of H0(OPn(1)) with base points pi, i = 1, . . . ,m, i.e.,

H0
θ (OPn(1)) = H0(OPn(1)⊗ Ip1 ⊗ · · · ⊗ Ipm).

Let
V =

∪
θ∈Sym(P1)

Symh(H0
θ (OPn(1))),

where Symh is the hth symmetric algebra of a vector space.

Lemma 3.2.
span (V ) = H0(OPn(h)).

Proof. Consider the Veronese map vh

(3.15)
H0(OPn(1))

vh−→ H0(OPn(h))
f −→ fh.
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Since the Veronese variety is non-degenerated, the linear span of its
image is the entire space, i.e.,

span (vh(H
0(OPn(1)))) = H0(OPn(h)).

By the definition,

span (vh(H
0(OPn(1)))) ⊂ span (V ).

Thus,
span (V ) = H0(OPn(h)).

This completes the proof. �

Proposition 3.3. If assumption (1.3) holds, V, identified with the
subspace

{0} ⊕ V ⊂ c∗0(TPn×S),

via formula (3.4), generates the bundle

c∗0(TPn×S)

E
≃ c∗0(TPn)

E′ ,

after modulo E.

To prove this lemma, we need to prove the following.

Lemma 3.4. If assumption (1.3) holds, the global sections of subbundle

c∗0(T(Pn×S)/Pn) (modulo E)

generate the bundle c∗0(TPn×S)/E ≃ c∗0(TPn)/E′.

Proof. There is a PGL (n+ 1) action on Pn. This action induces a
PGL (n+ 1) action on

PN = P(OPn(h)).

Thus, there is a PGL (n+ 1) action on Pn ×PN ,

g(f, x) = (g(f), g(x)) = (f(g−1(x)), g(x)).

If z = (x, [f0]) ∈ C0, infinitesimally we have a linear map αz,

(3.16)
TId(PGL (n+ 1))

αz−→ Tz(P
N ×Pn)

g −→ (g(f0), g(x)).



674 BIN WANG

Because G is invariant under PGL (n+ 1) action, then

image (αz) ∈ G|z.

Let
W = {g(f0) : g ∈ TId(PGL (n+ 1))} ⊂ Tf0P

N .

It is clear that αz(TId(PGL (n+ 1))) is projected onto TxP
n. Hence,

{0} ⊕W ⊂ H0(c∗0(TPn×S/Pn)) (modulo E)

generates the bundle

c∗0(TPn×S)

E
= c∗0

(
TPn×S/S

C0

)
≃ c∗0(TPn)

E′ .

The proof is complete. �

Proof of Proposition 3.3. By Lemma 3.2, V linearly spansH0(OPn(h)).
Using the identification in (3.4), {0} ⊕ V spans

H0(c∗0(T(Pn×S)/Pn)).

Then Lemma 3.4 says the global sections of

c∗0(T(Pn×S)/Pn)) (modulo E)

generate c∗0(TPn×S)/E, then so does V . This completes the proof. �

4. The proof of Theorem 1.1.

Proof.

(i) We show the proof by a contradiction. So, suppose otherwise.
Such a rational curve c0 exists on the smooth X0. Then

(4.1) m

(
2h+ 1

h+ 1

)
< d <

2 +m(n− 2)

2n− h− 1
, 0 ≤ m < µ(C0)− 1,

where d = deg(C0). By Lemma 2.1, the map P s is surjective. Then
we can apply Proposition 3.3, which says that the set of sections in the
form

L1 · · ·Lh, Li ∈ H0
θ (OPn(1))

generates the bundle c∗0(TPn×S)/E. Since D is a proper subbundle
of c∗0(TPn×S), Proposition 3.3 implies that there exist generic sections
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L0, . . . , Lh ∈ H0
θ (OPn(1)), such that the c∗0(Li), c

∗
0(Lj) for i ̸= j do not

have common zeros except that p1, . . . , pm ∈ θ with multiplicity 1,

c∗0(
−−−−−−−→
L0 · · ·Lh−1)

is a non-zero section that does not lie in D, where
−−−−−−−→
L0 · · ·Lh−1 rep-

resents the direction of the line connecting f0 and L0 · · ·Lh−1 in S
(see Definition 3.1). We should note that, in particular, the section

c∗0(
−−−−−−−→
L0 · · ·Lh−1) does not lie in E.

Next, we show that the numerical condition (4.1) forces

c∗0(
−−−−−−−→
L0 · · ·Lh−1)

to lie in D.

Using the chosen sections L0, . . . , Lh, we construct vector fields

(4.2) ui = Lh
∂

∂ah
− Li

∂

∂ai
, i = 0, . . . , h− 1,

on S ×Cn+1, where

∂

∂ai
=

−−−−−−−−−−→
L0 · · · L̂i · · ·Lh,

as in Definition 3.1, are the tangent fields on S. The ui annihilate
universal polynomial F that defines the universal hypersurface X .
Hence, ui are sections of the bundle

TX ⊗OPn(1).

Let vi = c∗0(ui) be the pull-back of ui to P1. The non-zero nature of
sections vi is the key to the proof of Theorem 1.1. Notice that vi must
lie in c∗0(TX (1)). Using formula (3.8), vi is reduced to sections of

c∗0(TX )/G

I∗1 (TC0
)

⊗OP1(d) ≃ ((E/G)⊗OP1(d)))⊕OP1(kn−2 + d).

Next, we consider the bound for kn−2 + d. By the result of [11]2,
2n−h−1 ≥ 1. So, the condition d < 2+m(n−2)/(2n−h−1) implies
that

(4.3) (n+ 1)d− hd− 2 < −(n− 2)(d−m).
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The left hand side of formula (4.3) is

c1(NC0/X0
) = k1 + · · ·+ kn−2.

Since kn−2 is the smallest among k1, . . . , kn−3, kn−2,

(n− 2)kn−2 ≤ k1 + · · ·+ kn−2 = (n+1) d− hd− 2 < −(n− 2)(d−m).

Hence, kn−2 < −(d−m). Then,

(4.4) kn−2 + d < −(d−m) + d = m.

Since vi has m zeros at p1, . . . , pm, by the bound of kn−2 + d, vi must
be in E along P1. Then formula (4.2) says that c∗0(∂/∂ah) must lie
in E at the zeros of c∗0(Li), i = 0, . . . , h − 1, other than p1, . . . , pm,
because c∗0(Lh) does not vanish at any of the zeros of c∗0(Li) along P1

except at p1, . . . , pm. Thus, c∗0(∂/∂ah) does not lie in E (by the choice
of Li), but lies in E at least at h(d−m) points. At last, we see this is
impossible because

c∗0(TPn×S)/E ≃ OP1(d1)⊕OP1(d2),

where d1 + d2 = hd + kn−2 and d1 ≤ d2. Then, d1 has the following
bound (because of the inequality m(2h + 1/h + 1) < d and formula
(4.4)),

h(d−m) >
hd− (d−m)

2
≥ hd+ kn−2

2
≥ d1.

Because of this bound, c∗0(∂/∂ah) modulo E must lie entirely in the
summand OP1(d2). Recall that D is the sub-bundle in c∗0(TPn×S) such
that D/E = OP1(d2). Thus, c

∗
0(∂/∂ah) must lie in D. This contradicts

our choice of
∂

∂ah
=

−−−−−−−→
L0 · · ·Lh−1,

which says that c∗0(
−−−−−−−→
L0 · · ·Lh−1) does not lie in D. This completes the

proof for the first part.

(ii) This part follows from the first part because of the exact sequence
(1.2).

(iii) If X0 is a generic hypersurface containing a smooth rational
curve C0, then using Lemma 2.2, we obtain that assumption (1.3) holds.
Thus, all results in part (i) hold. �
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5. Examples. We give three examples that follow from Theo-
rem 1.1. The first two, to our knowledge, cannot be derived from
previously known results, but the last one can.

Example 5.1. There are no quadratic curves in a general hypersurface
of degree 14 in P9. This is a direct consequence of Theorem 1.1 for
n = 9, h = 14 and d = 2.

Example 5.2. There are no irreducible, rational quartic curves in a
general hypersurface of degree 54 in P30. This is a direct consequence
of Theorem 1.1 for n = 30, h = 54 and d = 4.

Example 5.3. The condition H1(NC0/X0
) = 0 is actually much

stronger than assumption (1.3). Therefore, the application of part (2)
of Theorem 1.1 may be limited. Let us observe one in the following.
Consider an irreducible quadratic curve C0 in a smooth sextic threefold
X0 (which is non generic). Then its normal bundle NC0/X0

cannot have
the most balanced splitting

OP1(−1)⊕OP1(−1),

because, otherwise, H1(NC0/X0
) = 0, and by Theorem 1.1, the degree

of C0 cannot be 2.

This result can be obtained by using other methods. For instance,
consider the combination of results of [7, 9, 10] in the following. If
H1(NC0/X0

) = 0, Kodaira’s theorem says that C0 can globally deform
to all sextics. Then, a generic sextic threefold contains a rational curve.
On the other hand, since, in this case, deg(X0) ≥ 2n−2, Voisin’s result
says that a generic sextic does not contain a rational curve. This is a
contradiction.

ENDNOTES

1. The references listed here are not complete. We apologize for this
incompleteness due to the quantity of papers in this area.

2. We cannot use Voisin’s result in [9] because X0 in Theorem 1.1
is not generic.
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