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INERTIA GROUPS OF A TORIC DELIGNE-MUMFORD
STACK, FAKE WEIGHTED PROJECTIVE STACKS,

AND LABELED SHEARED SIMPLICES

REBECCA GOLDIN, MEGUMI HARADA,
DAVID JOHANNSEN AND DEREK KREPSKI

ABSTRACT. This paper determines the inertia groups
(isotropy groups) of the points of a toric Deligne-Mumford
stack [Z/G] (considered over the category of smooth mani-
folds) that is realized from a quotient construction using a
stacky fan or stacky polytope. The computation provides an
explicit correspondence between certain geometric and com-
binatorial data. In particular, we obtain a computation of
the connected component of the identity element G0 ⊂ G
and the component group G/G0 in terms of the underlying
stacky fan, enabling us to characterize the toric DM stacks
which are global quotients. As another application, we ob-
tain a characterization of those stacky polytopes that yield
stacks equivalent to weighted projective stacks and, more
generally, to ‘fake’ weighted projective stacks. Finally, we il-
lustrate our results in detail in the special case of labeled
sheared simplices, where explicit computations can be made
in terms of the facet labels.

Introduction. Toric varieties have been studied for over 35 years.
They provide an elementary but illustrative class of examples in alge-
braic geometry, while also offering insight into related fields such as
integrable systems and combinatorics, where the corresponding com-
binatorial object is a fan. In their foundational paper [5], Borisov,
Chen and Smith introduce the notion of a stacky fan, the combina-
torial data from which one constructs toric Deligne-Mumford (DM)
stacks, which are the stack-theoretic analogues of classical toric vari-
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eties. When the corresponding fan is polytopal, classical toric varieties
have been studied from the perspectives of both algebraic and sym-
plectic geometry. Similarly, when the underlying fan of a stacky fan
is polytopal, a toric DM stack admits a description in the language
of symplectic geometry via the combinatorial data of a stacky polytope
introduced by Sakai [26]. (In the symplectic-geometric context–and
particularly in this manuscript–stacks are considered over the category
Diff of smooth manifolds.) This subfamily of toric DM stacks can be
viewed as a generalization of Lerman and Tolman’s toric orbifolds as-
sociated to labeled polytopes [20] (cf., subsection 1.2 for details), which
are in turn a generalization of the Delzant polytopes that classify sym-
plectic toric manifolds. Thus, toric DM stacks are a generalization of
smooth toric varieties to not necessarily effective orbifold toric varieties
(including weighted projective spaces), and provide a fertile ground for
exploration of stacks via this large class of examples.

The exposition in this article is intended to be accessible to a wide
audience, including researchers who are not experts in this area. The
tools we develop allow one to concretely compute the isotropy groups of
toric DM stacks without reference to much stack-theoretic machinery.
Moreover, we include many detailed examples illustrating our results.

The mathematical contributions of this manuscript are as follows.
We first describe in Theorem 2.2, Proposition 2.4 and Proposition 2.15
an explicit computation of the isotropy groups of toric DM stacks,
realized as quotient stacks [Z/G] for appropriate space Z and abelian
Lie group G, in terms of the combinatorial data (i.e., stacky fan)
determining the toric DM stack.

Second, as an application of our description of isotropy groups of
toric DM stacks, we give a computation of the connected component
of the identity element G0 ⊂ G and the component group G/G0 in
terms of the underlying stacky fan (Proposition 2.11, Lemma 2.8,
Proposition 2.17). To place this computation into context, recall that
a stack is called a global quotient if it is equivalent to a quotient stack
[M/Λ] where Λ is a finite group acting on a manifold M . Stack
invariants of global quotients are simpler to compute than general
stacks. Thus, given a stack X , it is an interesting problem to determine
whether or not it is a global quotient. The case of toric DM stacks is
discussed in [14], where it is shown that a toric DM stack is a global
quotient if and only if the restriction of the G-action on Z to the
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connected component of the identity G0 ⊂ G is a free action. Moreover,
in this case, one may choose the finite group to be Λ = G/G0, acting on
the quotient M = Z/G0, which is indeed a manifold, provided G0 acts
freely on Z (so [Z/G0] is the universal cover, in the sense of stacks, of
[Z/G]). In this manuscript, our computation of isotropy groups leads to
a characterization of those toric DM stacks that are (stacks equivalent
to) global quotients of a finite group action and to a description of its
universal cover (cf., subsection 2.2).

Our third set of results concern weighted projective stacks (re-
spectively, fake weighted projective stacks), which are natural stack-
theoretic analogues of the classical weighted projective spaces (respec-
tively, fake weighted projective spaces as considered in [6, 17]). These
form a rich class of examples that have been studied extensively both as
stacks and as orbifolds (e.g., see [4, 16, 21], among others). As another
application of our computation of isotropy groups, in Proposition 3.2
(respectively, Proposition 3.4) we obtain an exact characterization of
those stacky polytopes which yield (stacks equivalent to) weighted pro-
jective stacks (respectively, fake weighted projective stacks).

Finally, in Section 4, we introduce a class of labeled polytopes, which
we call labeled sheared simplices. These are labeled simplices with all
facets but one lying on coordinate hyperplanes. In this special case,
we concretely illustrate the aforementioned results in terms of the facet
labels.

1. Preliminaries. In this section, we recall some background re-
garding stacky fans and polytopes and their associated toric Deligne-
Mumford stacks. We assume some familiarity with stacks, in particular
their use in modeling group actions on manifolds and orbifolds. We
refer the reader to, e.g., [7, 8] and the references therein for basic def-
initions and ideas in the theory of stacks. Within the field of algebraic
geometry there is now an extensive literature on (algebraic) stacks (see,
e.g., the informal guide [1]), but in other categories (e.g., Diff or Top)
the literature continues to develop. The present authors learned a great
deal from the unpublished (in-progress) notes [3] as well as [18, 22].

The stacks appearing in this paper are quotient stacks over Diff asso-
ciated to smooth, proper, locally-free Lie group actions on manifolds.
Such quotient stacks are Deligne-Mumford (i.e., stacks that admit a
presentation by a proper étale Lie groupoid, cf., [19, Theorem 2.4])
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and therefore model smooth orbifolds. Often in the algebraic literature,
the term orbifold is used for DM stacks with trivial generic stabilizer
(e.g., as in [9]), what we shall refer to as an effective orbifold.

The class of DM stacks we work with are toric DM stacks, arising
from the combinatorial data of a stacky fan [5]. Our original motivation
was to work instead with stacky polytopes, the symplectic counterparts
of stacky fans, which give rise to symplectic toric DM stacks [26]. These
offer a modern perspective on the symplectic toric orbifolds of Lerman
and Tolman [20] constructed from labeled polytopes (see subsection 1.2
below). However, since our results do not depend on (or make use of)
the symplectic structure that results from this perspective, we choose
to mainly work with stacky fans.

1.1. Stacky fans and polytopes. Mainly to establish notation, we
briefly recall some basic definitions of the combinatorial data appearing
in the above discussion. We use (−)⋆ to denote the functor HomZ(−,Z)
or HomR(−,R); it should be clear from the context which one is meant.
Let T denote the group of units C×, and µk ⊂ T the cyclic group of
kth roots of unity. Let {e1, . . . , en} be the standard basis vectors in
Zn ⊂ Rn.

Definition 1.1 ([5]). A stacky fan is a triple (N,Σ, β) consisting of
a rank d finitely generated Abelian group N , a rational simplicial fan
Σ in N ⊗ R with rays ρ1, . . . , ρn and a homomorphism β : Zn → N
satisfying:

(i) the rays ρ1, . . . , ρn span N ⊗ R, and
(ii) for 1 ≤ j ≤ n, β(ej)⊗ 1 is on the ray ρj .

Given a polytope ∆ ⊆ Rd, recall that the corresponding fan Σ =
Σ(∆) is obtained by setting the one-dimensional cones Σ(1) to be the
positive rays spanned by the inward-pointing normals to the facets
of ∆; a subset σ of these rays is a cone in Σ precisely when the
corresponding facets intersect nontrivially in ∆. Observe that, under
this correspondence, facets intersecting in a vertex of ∆ yield maximal
cones (with respect to inclusion) in Σ(∆).

Definition 1.2 ([26]). A stacky polytope is a triple (N,∆, β) consisting
of a rank d finitely generated Abelian group N , a simple polytope ∆ in
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(N ⊗ R)⋆ with n facets F1, . . . , Fn and a homomorphism β : Zn → N
satisfying:

(i) the cokernel of β is finite, and
(ii) for 1 ≤ j ≤ n, β(ej) ⊗ 1 in N ⊗ R is an inward pointing normal

to the facet Fj .

Condition (ii) above implies that the polytope ∆ in Definition 1.2
is a rational polytope. Also, from the preceding discussion it follows
immediately that the data of a stacky polytope (N,∆, β) specifies the
data of a stacky fan by the correspondence (N,∆, β) 7→ (N,Σ(∆), β).
Indeed, ∆ is simple if and only if Σ(∆) is simplicial. Moreover, the
fan Σ(∆) is rational by condition 1.2 (ii). Finally, (N,∆, β) satisfies
conditions (i) and (ii) of Definition 1.2 if and only if (N,Σ(∆), β)
satisfies conditions (i) and (ii) of Definition 1.1.

The extra information encoded in a stacky polytope (N,∆, β) (com-
pared with the stacky fan (N,Σ(∆), β)) results in a symplectic structure
on the associated toric DM stack. Given a presentation of a rational
polytope ∆ as the intersection of half-spaces

∆ =

n∩
i=1

{x ∈ (N ⊗ R)⋆ | x(β(ei)⊗ 1) ≥ −ci}(1.1)

for some ci ∈ R and where each β(ei) ⊗ 1 ∈ N ⊗ R is the inward
pointing normal to the facet Fi, the fan Σ(∆) only retains the data of
the positive ray spanned by the normals, and not the parameters ci,
which encode the symplectic structure on the resulting DM stack (see,
[26] for details).

Recall (as in [5]) that, given a stacky fan (N,Σ, β), the correspond-
ing DM stack may be constructed as a quotient stack [ZΣ/G] as follows.
As with classical toric varieties, the fan Σ determines an ideal

J(Σ) =

⟨ ∏
ρi ̸⊂σ

zi : σ ∈ Σ

⟩
⊂ C[z1, . . . , zn].

Let ZΣ denote the complement CnrV (J(Σ)) of the vanishing locus of
J(Σ). Next, we recall a certain group action on ZΣ.
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Choose a free resolution

0−→Zℓ Q−→ Zd+ℓ−→N−→0

of the Z-module N , and let B : Zn → Zd+ℓ be a lift of β. With
these choices, define the dual group DG(β) = (Zn+ℓ)⋆/ im[BQ]⋆

where [BQ] : Zn+ℓ = Zn ⊕ Zℓ → Zd+ℓ denotes the map whose re-
strictions to the first and second summands are B and Q, respec-
tively. Let β∨ : (Zn)⋆ → DG(β) be the composition of the inclusion
(Zn)⋆ → (Zn+ℓ)⋆ (into the first n coordinates) and the quotient map
(Zn+ℓ)⋆ → DG(β). Applying the functor HomZ(−,T) to β∨ yields a
homomorphism G := HomZ(DG(β),T)→ Tn, which defines a G-action
on Cn that leaves ZΣ ⊂ Cn invariant. Define X (N,Σ, β) = [ZΣ/G].
By [5, Proposition 3.2], X (N,Σ, β) is a DM stack. At times, we shall
simply use the notation [ZΣ/G] to denote X (N,Σ, β).

The above construction was adapted to stacky polytopes by Sakai
in [26]. As the reader may verify, the DM stack X (N,∆, β) obtained
from a stacky polytope is a quotient stack obtained by symplectic
reduction [µ−1(τ)/K] where µ−1(τ) ⊂ ZΣ(∆) ⊂ Cn is a certain level
set of a moment map µ : Cn → k⋆ for a Hamiltonian action of
K := HomZ(DG(β), S1) on Cn. By [26, Theorem 24], the quotient
stacks [ZΣ/G] and [µ−1(τ)/K] are equivalent.

Example 1.3. Consider the stacky polytope (N,∆, β), with N = Z2,
∆ the simplex in R2 ∼= (N ⊗ R)∗ given by the convex hull of (0, 0),
(0, 1) and (1, 0), and β : Z3 → N given by the matrix

β =

[
−2 3 0
−2 0 5

]
.

The corresponding stacky fan (N,Σ, β) is then given by the same N
and β, and Σ = Σ(∆) the fan dual to ∆ (see Figure 1). A convenient
way to represent the homomorphism β is to use ray or facet labels (see
subsection 1.2), as in Figure 1.

To compute the corresponding DM stack [ZΣ/G], note that ZΣ =
C3 r {0}. We find DG(β) = (Z3)⋆/ imβ⋆ ∼= Z, where the isomorphism
may be chosen as f([a, b, c]) = 15a + 10b + 6c. Therefore, G =
Hom(DG(β),T) ∼= T. Since the map β∨ is simply the projection
f : (Z3)⋆ → DG(β) ∼= Z, where f(a, b, c) = 15a + 10b + 6c, the
homomorphism G → T3 induced by β∨ is then t 7→ (t15, t10, t6).
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Figure 1. A polytope ∆ and its dual fan Σ = Σ(∆). The labels on the
facets of ∆ (respectively, ray generators of Σ) encode the homomorphism
β : Z3 → N .

It follows that the corresponding stack is equivalent to a weighted
projective stack, P(15, 10, 6).

We modify the above example to illustrate the construction for a
Z-module N with torsion.

Example 1.4. Let N = Z2 ⊕ Z/2Z, and let Σ be the fan in Figure 1.
Set β : Z3 → N to be

β(x, y, z) = (−2x+ 3y,−2x+ 5z, x+ y + z mod 2).

As in Example 1.3, ZΣ = C3 r {0}. To compute G, we choose the

resolution 0→ Z Q→ Z3 → N → 0 with Q =
[
0 0 2

]T
, and choose B

so that

[BQ] =

−2 3 0 0
−2 0 5 0
−1 1 1 2

 .
Therefore, DG(β) = (Z4)⋆/ im[BQ]⋆ ∼= Z, where the isomorphism can
be chosen as f([a, b, c, d]) = 30a + 20b + 12c − d. Therefore, G ∼= T,
and β∨ : (Z3)⋆ → DG(β) ∼= Z is given by f(a, b, c) = 30a + 20b + 12c.
Hence, the homomorphism G → T3 describing the G-action on ZΣ is
t 7→ (t30, t20, t12). It follows that the corresponding stack is equivalent
to a weighted projective stack P(30, 20, 12), which has global stabilizer
µ2.
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1.2. Relation with Delzant’s construction and labeled poly-
topes. The construction of the quotient stack [µ−1(τ)/K] from a
stacky polytope may be viewed as a generalization of Lerman-Tolman’s
generalization [20] of the Delzant construction, which we review next.

In its original form [20], a labeled polytope is a pair (∆, {mi}ni=1)
consisting of a convex simple polytope ∆ in V ⋆, where V is a real
vector space, with n facets, F1, . . . , Fn, whose relative interiors are
labeled with positive integers m1, . . . ,mn. The polytope is assumed
to be rational with respect to a chosen lattice N ⊂ V . Identifying
V ∼= N ⊗ R, we may denote the primitive inward pointing normals
by ν1 ⊗ 1, . . . , νn ⊗ 1. Then defining β : Zn → N by the formula
β(ei) = miνi gives (N,∆, β) as a stacky polytope. Furthermore, any
stacky polytope with N free can be realized as a labeled polytope.
Thus, labeled polytopes are precisely those stacky polytopes for which
the Z-module N is a free module.

Given a labeled polytope (∆, {mi}ni=1) in (N ⊗ R)⋆ ∼= (Rd)⋆, we
may proceed with the Delzant construction to obtain a quotient stack
[µ−1(τ)/KD] as a symplectic reduction, where the group KD ⊂ (S1)n

acts via the standard linear (S1)n-action on Cn. As we shall see below,
KD is isomorphic to the group K = Hom(DG(β), S1) arising from
Sakai’s construction. Furthermore, it is straightforward to verify that
the isomorphism is compatible with the respective group actions of KD

andK on Cn, and thus the symplectic quotient stacks [µ−1(τ)/KD] and
[µ−1(τ)/K] are equivalent.

The group KD in the Delzant construction is defined as follows. Let
β : Zn → N be given by β(ei) = miνi, where miνi are the weighted
normals to the facets of ∆, and consider the resulting homomorphism
β : (S1)n → (S1)d induced by βR = β ⊗ R (where we have chosen
identifications N ∼= Zd and S1 ∼= R/Z). Define KD = kerβ.

To compare the groups KD and K, we note that since N is free, it
is easy to verify that DG(β) = cokerβ⋆, and hence, we have the short
exact sequence

0 −→ N⋆ −→ (Zn)⋆ −→ DG(β) −→ 0,

which yields the short exact sequence,

1 −→ K −→ Hom((Zn)⋆, S1) −→ Hom(N⋆, S1) −→ 1.
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Using the natural isomorphism Hom(M⋆, S1) ∼= M ⊗ S1 (for a free
Z-module M) and identifications

Zn ⊗ S1 ∼= (S1)n and N ⊗ S1 ∼= (S1)d

resulting from the chosen identificationN ∼= Zd, we may readily identify
K ∼= KD.

Example 1.5. Let N = Z. Consider the labeled polytope ∆ in
R ∼= (N ⊗ R)⋆ consisting of a line segment with labels r and s at
each endpoint (see Figure 2).

r sr r
Figure 2. A labeled polytope ∆ in R.

The homomorphism β : Z2 → N in the corresponding stacky
polytope (and stacky fan) is given by the matrix β =

[
−s r

]
. Let

g = gcd(r, s). Then DG(β) = (Z2)⋆/ imβ⋆ ∼= Z⊕ Z/gZ, which may be
realized by the isomorphism

f([a, b]) =

(
r

g
a+

s

g
b, −ya+ xb mod g

)
where x and y are integers satisfying g = xr + ys. It follows that
G ∼= T × µg, where µg ⊂ T is the cyclic group of gth roots of unity.
Note that G is connected if and only if gcd(r, s) = 1.

Under the above identification, the homomorphism β∨ : (Z2)⋆ →
DG(β) ∼= Z⊕ Z/gZ is simply the projection

f(a, b) =

(
r

g
a+

s

g
b, −ya+ xb mod gZ

)
.

Therefore, the homomorphism T × µg
∼= G → T2 that determines the

action on ZΣ = C2 r {0} is then given by (t, ξkg ) 7→ (tr/gξ−ky
g , ts/gξkxg )

where ξg ∈ C denotes a primitive gth root of unity.

2. Isotropy and stacky fans. Our goal in this section is to com-
pute the local isotropy group of each point of a toric DM stack,
X (N,Σ, β) = [ZΣ/G], by computing the subgroup Stab(z) ⊂ G that
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fixes a given point z ∈ ZΣ. The main result, Theorem 2.2 in subsec-
tion 2.1, describes all possible isotropy groups that arise. A discussion
of the connected component of G and its role in detecting global quo-
tient stacks appears in subsection 2.2, along with further details in
subsection 2.3 for the case of labeled polytopes.

2.1. Isotropy and stacky fans. Recall that ZΣ is defined as the
complement in Cn of the zero-set of the ideal J(Σ), which is described
in more detail next.

For σ ∈ Σ, let Iσ = {i : ρi ⊂ σ}, and Jσ its complement. Then,

V (J(Σ)) =
∩
σ∈Σ

{
(z1, . . . , zn) |

∏
ρi ̸⊂σ

zi = 0
}

implying

ZΣ = Cn r V (J(Σ)) =
∪
σ∈Σ

{(z1, . . . , zn) | zi ̸= 0 whenever i ∈ Jσ}

=
∪
σ∈Σ

{(z1, . . . , zn) | Iz ⊂ Iσ},

where Iz = {i | zi = 0}.
There is a natural decomposition of ZΣ since an inclusion of cones

σ′ ⊂ σ yields an inclusion Zσ ⊂ Zσ′ , where Zσ := {(z1, . . . , zn) : Iz ⊂
Iσ}. Furthermore, for any z = (z1, . . . , zn) ∈ Zσ, there is a cone σz ⊂ σ
given by the span of the minimal generators of the rays ρi with i ∈ Iz.
This follows from our assumption that Σ is simplicial. Since the number
of rays ρi with i ∈ Iσ equals the dimension of σ, any subset of these
rays spans a face of σ and is thus in the fan Σ. It follows then that, for
every point z ∈ ZΣ, we may write z ∈ Zσz where the cone σz satisfies
{i : zi = 0} = Iσz . Moreover, σz is minimal in the sense that σz ⊂ σ
for any σ such that z ∈ Zσ.

For a point z ∈ Cn, the subgroup in Tn fixing z is {(t1, . . . , tn) : ti =
1 if zi ̸= 0}, which motivates the following definition. For any subset
I ⊂ {1, . . . , n} and its complement J , let

TI = {(t1, . . . , tn) : i ∈ J implies ti = 1} ⊆ Tn.

Note that TI is the kernel of the map Tn → T|J| given by projection
onto the coordinates indicated by J with cardinality |J |.

Since G acts on ZΣ via the homomorphism G→ Tn induced by β∨,
then the isotropy Stab(z) associated to a point z ∈ ZΣ is given by the
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kernel of the map

(2.1) G −→ Tn π−→ T|Jz|,

where Jz is the complement of Iz. At times, it is useful to view the
subset Iz as Iσ for the cone σ = σz in Σ described above, in which case
we denote Stab(z) by Γσ.

Remark 2.1. Notice that an inclusion of cones σ′ ⊂ σ in Σ induces
an inclusion Jσ ⊂ Jσ′ and hence we obtain the following commutative
diagram,

Tn

""E
EE

EE
EE

E
// T|Jσ′ |

��
T|Jσ|

where the vertical map is the natural projection. Therefore, there
is a natural inclusion of isotropy groups Γσ′ ⊂ Γσ. It follows each
such isotropy group is contained in Γσ for some maximal cone σ. In
particular, all isotropy groups are trivial if and only if Γσ is trivial for
maximal cones σ in Σ.

Theorem 2.2. Let (N,Σ, β) be a stacky fan and [ZΣ/G] its corre-
sponding toric DM stack. For a point z = (z1, . . . , zn) in ZΣ ⊂ Cn,
let Nz ⊂ N denote the submodule generated by {β(ei) | zi = 0}. The
isotropy group Stab(z) is isomorphic to Hom(Ext1Z(N/Nz,Z),T); there-
fore, Stab(z) is (non-canonically) isomorphic to the torsion submodule
Tor(N/Nz).

Proof. Let σ be a cone in Σ with Iz = Iσ. We noted above that
the stabilizer of z is given by Γσ, the kernel of the composition (2.1).
This composition is realized by applying the functor Hom(−,T) to the
composition f = β∨ ◦ π⋆,

(Z|Jσ|)⋆
π⋆

−→ (Zn)⋆
β∨

−→ DG(β),

where π⋆ is inclusive of the relevant factors. Moreover, since T is
injective as a Z-module, the kernel of equation (2.1) is Hom(coker f,T).
As we shall see next, coker f ∼= Ext1Z(N/Nσ,Z), where Nσ = Nz ⊂ N
denotes the subgroup generated by {β(ei) | i ∈ Iσ}.
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Let βσ : ZIσ → Nσ denote the restriction of β to ZIσ together with
its codomain. We claim that βσ : ZIσ → Nσ is an isomorphism, and
hence Nσ is free. That Σ is simplicial means that the {β(ei) ⊗ 1}i∈Iσ

are linearly independent in N ⊗ R. Therefore, rankNσ = |Iσ|. Since
βσ is a surjective homomorphism of modules of the same rank, βσ ⊗R
is an isomorphism of vector spaces. But, since the domain ZIσ of βσ is
free, βσ must be injective as well. This verifies the claim.

In particular, this implies that DG(βσ) is trivial. Any lift Bσ of βσ
is an isomorphism and Nσ has no torsion, so DG(βσ) = coker[Bσ]

⋆ =
cokerβ⋆

σ.

Consider the following diagram, whose rows are exact.

0 // Z|Iσ| //

βσ

��

Zn //

β

��

Z|Jσ| //

βJ

��

0

0 // Nσ
// N // N/Nσ

// 0.

By [5, Lemma 2.3], we get the following commutative diagram with
exact rows, noting that DG(βσ) is trivial.

0 // (Z|Jσ|)⋆
π⋆

//

��

(Zn)⋆ //

β∨

��

(Z|Iσ|)⋆ //

��

0

0 // DG(βJ)
∼= // DG(β) // 0.

We identify f = β∨ ◦ π⋆ with the left vertical arrow.

Applying the exact sequence from [5, (2.0.3)] to βJ : Z|Jσ| → N/Nσ,
we get

(N/Nσ)
⋆ −→ (Z|Jσ|)⋆ −→ DG(βJ ) −→ Ext1Z(N/Nσ,Z) −→ 0,

whence coker(f) ∼= Ext1Z(N/Nσ,Z), as required. Since Ext1Z(N/Nσ,Z)
is (non-canonically) isomorphic to (the finite abelian group) Tor(N/Nσ),
it follows that Hom(Ext1Z(N/Nσ,Z),T) is isomorphic to Tor(N/Nσ).

�

Example 2.3. Consider the toric DM stack from Example 1.3. We
compute the isotropy for the points z = (0, a, 0) and w = (0, a, b) of
the form in ZΣ with a, b ̸= 0. Since Iz = {1, 3}, then Nz ⊂ N is
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the subgroup generated by (0, 5) and (−2,−2). Therefore, N/Nz
∼=

Z/5Z⊕ Z/2Z and Stab(z) ∼= Tor(N/Nz) ∼= µ10.

Since Iw = {1}, then Nw is the subgroup generated by (−2,−2),
and N/Nw

∼= Z⊕Z/2Z. Therefore, Stab(w) ∼= Tor(N/Nw) ∼= µ2. Note
that the isotropy for w can simply be read off from the corresponding
facet label (see Figure 1) in this case. For higher-dimensional cones, a
more detailed analysis is required, e.g., see subsection 4.3.

The proof of Theorem 2.2 does not explicitly show how Tor(N/Nz)
may be viewed as a subgroup of G. Our next goal is Proposi-
tion 2.4 which gives an explicit identification of the stabilizer group and
Tor(N/Nz). To accomplish this, we first construct a map Tor(N/Nz)→
G (2.2). (See Proposition 2.15 for a more direct approach in the case
that N is free.) For any cone σ in Σ, let Nσ be the subgroup generated
by {β(ei) | i ∈ Iσ}. We define a map

(2.2) γσ : Tor(N/Nσ) −→ Hom(DG(β),T)

that depends on a choice of resolution

(2.3) 0 −→ Zℓ R−→ Zd−I+ℓ q−→ N/Nσ −→ 0,

and a lift q̃ : Zd−I+ℓ → N (cf., [27, Lemma 2.2.8]), where I = |Iσ|.
Given x ∈ Tor(N/Nσ), choose a representative a in Zd−I+ℓ. We
shall define a homomorphism ϕa(Zn+ℓ)∗ → C that descends to a
homomorphism ϕa : DG(β)→ C/Z ∼= T and set γσ(x) = ϕa.

Set J = n−I, and write elements of (Zn+ℓ)⋆ ∼= (ZI)⋆⊕(ZJ)⋆⊕(Zℓ)⋆

as triples (uI , uJ , v). Define ϕa(uI , uJ , v) = uI(b)+ v(c), where b is the
unique element in ZI⊗C satisfying (βσ)C(b) = q̃C(a) and c is the unique
element in Zℓ ⊗ C satisfying RC(c) = a.

To verify that ϕa descends to a homomorphism in Hom(DG(β),T),
we choose the resolution

0 −→ Zℓ Q−→ Zd+ℓ −→ N −→ 0,

with Qv = (−β−1
σ q̃Rv,Rv), and a lift B : Zn → ZI ⊕ Zd−I+ℓ satisfying

B(b, 0) = a − Q(c), where (b, 0) ∈ Zn ∼= ZI ⊕ ZJ . (Such a lift
B can be obtained by first choosing a lift BJ : ZJ → Zd−I+ℓ and
setting B(zI , zJ) = (zI + β−1

σ (β(0, zJ ) − q̃BJzJ ), BJzJ ).) To see
that ϕa ◦ [BQ]⋆ has image in Z ⊂ C, note that, for

[
uI w v

]
in
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(Zd+ℓ)⋆ ∼= (ZI)⋆ ⊕ (Zd−I)⋆ ⊕ (Zℓ)⋆,

ϕa[BQ]⋆
[
uI w v

]
=

[
uI w v

]
[BQ]

b0
c


=

[
uI w v

]
(B(b, 0) +Q(c))

= v(a) ∈ Z.

Notice that a different choice of representative a′ = a + Rw, w ∈ Zℓ,
for x leads to a homomorphism ϕa′ that differs from ϕa by an integer-
valued function ϕRw; therefore, γσ in equation (2.2) is well defined.

Proposition 2.4. The homomorphism γσ in equation (2.2) induces an
isomorphism Tor(N/Nσ) ∼= Γσ.

Proof. We verify that γσ induces an isomorphism Tor(N/Nσ) ∼= Γσ

by checking that γσ is injective and that the composition

Tor(N/Nσ)
γσ−→ G −→ Tn −→ TJ

is trivial. If γσ(x) = 0, then ϕa is integer-valued, whence the corre-
sponding element c ∈ Cℓ must actually lie in Zℓ and thus x = q(a) = 0.
Therefore, γσ is injective. Finally, the last two maps in the above com-
position are obtained by pulling back a homomorphism DG(β) → T
along the quotient map (ZI+J+ℓ)⋆ → DG(β) and the composite
(ZJ)⋆ → (ZI+J)⋆ → (ZI+J+ℓ)⋆ of inclusions. By definition of γσ,
this pullback is trivial, since ϕa is trivial on elements of the form[
0 uJ 0

]
. �

Remark 2.5. In practice, the isotropy groups in Theorem 2.2 may be
computed using the Smith normal form of a matrix, as we outline
next. As in the proof of the theorem, the isotropy group Γσ is
isomorphic to the torsion subgroup of the cokernel of the composition

Z|Iσ| → Zn β→ N . As in the discussion following Definition 1.1, choose
a free resolution

0 −→ Zℓ Q−→ Zd+ℓ −→ N

and a lift B : Zn → Zd+ℓ of β, and let Bσ denote the restriction of B
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to Z|Iσ|. Then, the commutative diagram

0 // Zℓ // Z|Iσ|+ℓ //

[Bσ Q]
��

Z|Iσ|

βσ

��

// 0

0 // Zℓ Q // Zd+ℓ // N // 0

of short exact sequences shows that coker[Bσ Q] and cokerβσ are iso-
morphic. Thus, it suffices to compute the torsion submodule of the cok-
ernel of the matrix [Bσ Q]. The Smith normal form of

[
Bσ Q

]
will be a

(d+ℓ)×(|Iσ|+ℓ) matrix with non-zero entries a1, a2, . . . , amin(d+ℓ,|Iσ|+ℓ)

appearing on the diagonal, satisfying the divisibility relations aj | aj+1.
The entries aj ̸= 1 give the orders of the cyclic subgroups appearing in
the invariant factor decomposition of Γσ.

Example 2.6. To illustrate Remark 2.5, we consider the following
example. Let N = Z2 ⊕ Z/2Z, and let Σ be the fan in Figure 3, with
ray generators (1, 0), (0, 1), (0,−1) and (−1,−2). Set β : Z4 → N to
be

β(x, y, z, w) = (−2x+ 3z,−4x+ 6y − 2w, x+ y + z + wmod2).

Fix the resolution 0 → Z Q→ Z3 → N → 0 with Q =
[
0 0 2

]T
, and

choose B : Z4 → Z3 so that

[
B Q

]
=

−2 0 3 0 0
−4 6 0 −2 0
1 1 1 1 2

 .
Let σ be the cone in Σ generated by ρ1 and ρ2. Then since

[
Bσ Q

]
=

−2 0 0
−4 6 0
1 1 2

 has Smith normal form

1 0 0
0 2 0
0 0 12

 ,
we see that the isotropy group Γσ

∼= µ2 × µ12.

Notice that, if σ is maximal, then Nσ has the same rank as N . The
following corollary is immediate. (Compare with [5, Proposition 4.3].)
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Figure 3. A polytope ∆ in R2 ∼= (N ⊗ R)⋆ and its dual fan Σ = Σ(∆),
from Example 2.6.

Corollary 2.7. Let (N,Σ, β) be a stacky fan, and [ZΣ/G] its corre-
sponding toric DM stack. If z = (z1, . . . , zn) ∈ ZΣ has d = rankN
vanishing coordinates, then σ = σz is maximal and Stab(z) ∼= N/Nz.

2.2. Global quotients among toric DM stacks. It is of interest
to determine when a given stack X is a global quotient in the sense
of stacks. The goal of this subsection is to characterize the global
quotients among toric DM stacks in terms of the combinatorics of the
stacky fan and to give an explicit description of the quotient stack
[ZΣ/G0], which [14] shows is the universal cover (in the sense of stacks)
of a toric DM stack [ZΣ/G]. Similar results are also obtained in [14,
Proposition 5.5, Corollary 5.7].

Let G0 ⊂ G denote the connected component of the identity ele-
ment. By construction, the short exact sequence 0 → Tor(DG(β)) →
DG(β) → DG(β)/Tor(DG(β)) → 0 dualizes to give the short exact
sequence 1 → G0 → G → G/G0 → 1. Below, we identify G0 and the
quotient G/G0 in terms of stacky fan data.

Lemma 2.8. Let (Σ, N, β) be a stacky fan, and G = Hom(DG(β),T).
If G0 ⊂ G denotes the connected component of the identity element,
then G/G0

∼= cokerβ. In particular, G is connected if and only if β is
surjective.
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Proof. As G = Hom(DG(β),T), the group of connected compo-
nents G/G0 is Hom(Tor(DG(β)),T), where Tor(DG(β)) denotes the
torsion submodule of DG(β). This torsion submodule may be identi-
fied by computing Ext1Z(DG(β),Z), which we show next is isomorphic
to cokerβ.

Note that cokerβ ∼= coker
[
B Q

]
, where

[
B Q

]
: Zn+ℓ → Zd+ℓ

is the homomorphism described in section 1. This can be seen by
verifying that the surjective composition Zd+ℓ → N → cokerβ has
kernel im

[
B Q

]
. Therefore, it suffices to show that Ext1Z(DG(β),Z) ∼=

coker
[
B Q

]
.

To this end, consider the free resolution that defines DG(β):

0 // (Zd+ℓ)⋆
[BQ]⋆ // (Zn+ℓ)⋆ // DG(β) // 0 .

(Note that since coker
[
B Q

] ∼= cokerβ is assumed to be finite, then[
B Q

]⋆
is injective.) Applying Hom(−,Z) and taking homology shows

that Ext1Z(DG(β),Z) ∼= coker
[
B Q

]
, as required. �

Remark 2.9. By [14, Corollary 3.5], Lemma 2.8 shows that the
(stacky) fundamental group of X (N,Σ, β) is therefore isomorphic to
cokerβ, cf., [10, Section 3.2].

Remark 2.10. As in the proof of Lemma 2.8, cokerβ ∼= coker
[
B Q

]
and thus the invariant factor decomposition of G/G0 may be deter-
mined immediately from the Smith normal form of the matrix

[
B Q

]
.

For example, the reader may verify that G/G0
∼= Z/2Z in Example 2.6.

Given a stacky fan (N,Σ, β), we may model the quotient stack
[ZΣ/G0] as a toric DM stack of a related stacky fan (N0,Σ0, β0),
defined as follows. Consider the submodule N0 = im(β) ⊂ N , and
let β0 : Zn → N0 be given by β with its restricted codomain. Finally,
we let Σ0 be the fan in N0⊗R corresponding to Σ defined by the natural
isomorphism N0⊗R ∼= N ⊗R induced by the inclusion N0 ⊂ N (where
we have used the fact that β has finite cokernel).

Proposition 2.11. Let (N,Σ, β) be a stacky fan and X (N,Σ, β) =
[ZΣ/G] its corresponding toric DM stack. The triple (N0,Σ0, β0)
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defined as above is a stacky fan whose corresponding toric DM stack is
X (N0,Σ0, β0) = [ZΣ/G0].

Proof. It is straightforward to verify that (N0,Σ0, β0) defines a
stacky fan. Since Σ0 and Σ contain the same combinatorial information,
J(Σ) = J(Σ0), and thus ZΣ0 = ZΣ.

It remains to verify that the group action on ZΣ determined by the
stacky fan (N0,Σ0, β0) is the same as that obtained by the restriction
of the action of G to the connected component of the identity G0 on
ZΣ.

To see this, we apply [5, Lemma 2.3] to the following diagram of
short exact sequences.

0 // Zn

β0 ��

Zn //

β��

0 //

��

0

0 // N0
// N // cokerβ // 0.

Since DG({0} → coker(β)) can be naturally identified with coker(β),
we obtain the diagram below with exact rows.

0 // 0 //

��

(Zn)⋆

β∨
��

(Zn)⋆ //

(β0)
∨

��

0

0 // cokerβ // DG(β) // DG(β0) // 0.

This shows that DG(β0) and DG(β) have the same rank and thus
Hom(DG(β0),T) and G have the same dimension. To show that
Hom(DG(β0),T) is connected, it suffices to verify that DG(β0) is
torsion free, which follows from Lemma 2.8.

Thus, Hom(DG(β0),T) = G0, the connected component of the
identity in G. Lastly, note that the G0 action on ZΣ is induced by

the composition (Zn)⋆
β∨

→ DG(β) → DG(β0) so that G0 acts via its
inclusion into G, as desired. �

The above discussion yields a combinatorial condition characterizing
global quotients among toric DM stacks.

Corollary 2.12. Let (N,Σ, β) be a stacky fan, and let N0 = im(β).
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(i) Nσ = N0 for all maximal cones σ ∈ Σ if and only if G0 acts freely
on ZΣ.

(ii) Nσ = N for all maximal cones σ ∈ Σ if and only if G is connected
and acts freely on ZΣ.

As mentioned above, Corollary 2.12 (i) gives a criterion for detecting
global quotients among toric DM stacks. In particular, it shows that
if Nσ = N0 for all maximal cones, the toric DM stack X (N0,Σ0, β0) =
[ZΣ/G0] is in fact a smooth manifold. As shown in [14], this exhibits
the toric DM stack X (N,Σ, β) as a global quotient in this case–more
precisely, when Nσ = N0 for all maximal cones σ ∈ Σ, there is a natural
equivalence of stacks X (N,Σ, β) ∼= [(ZΣ/G0)/Λ] where Λ = G/G0.

Example 2.13. Consider the toric DM stack [ZΣ/G] from Exam-
ple 1.5, the labeled line segment with labels r and s. Since N0 = gZ
where g = gcd(r, s), [ZΣ/G] is a global quotient if and only if r = g = s.
In that case, the G ∼= T × µr-action on ZΣ is induced by the homo-
morphism G → T2, (t, ξkr ) 7→ (t, tξkr ). Therefore, ZΣ/G0 = P1 and
the residual Λ = G/G0

∼= µr-action may be written in homogeneous
coordinates as ξkr · [z0 : z1] = [z0 : ξkr z1] and [ZΣ/G] ∼= [P1/µr].

Remark 2.14. Analogous to the map constructed in Proposition 2.4
modeling the inclusion of the isotropy groups, we may also model the
quotient map G → G/G0, cf., Lemma 2.8, more concretely as in the
discussion that follows. See Proposition 2.17 for a more direct approach
in the case that N is free.

Recall that the quotient G → G/G0 is the map Hom(DG(β),T) →
Hom(Tor(DG(β)),T), induced by the inclusion of the torsion submod-
ule Tor(DG(β)) ↩→ DG(β). We shall describe an explicit isomorphism

Hom(Tor(DG(β)),T)
∼=−→ coker[BQ].

Consider the diagram of short exact sequences,

0 // (Zd+ℓ)⋆ // P //� _

��

Tor(DG(β)) //
� _

��

0

0 // (Zd+ℓ)⋆
[BQ]⋆ // (Zn+ℓ)⋆ // DG(β) // 0,
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obtained by restriction (pullback) to Tor(DG(β)). Given a homo-
morphism φ : Tor(DG(β)) → T = C/Z, choose a homomorphism
φ̂ : P → C covering φ. The restriction φ̂|(Zd+ℓ)⋆ is integer-valued, and

hence defines a vector vφ̂ ∈ Zd+ℓ by duality (i.e., φ̂|(Zd+ℓ)⋆(u) = uvφ̂
for all row vectors u ∈ (Zd+ℓ)⋆).

Any two covers φ̂1, φ̂2 of φ differ by a homomorphism α :
P → Z, which by restriction to (Zd+ℓ)⋆ defines a vector vα ∈
Zd+ℓ that is the difference between vφ̂1 and vφ̂2 . We check that
vα is in the image of

[
B Q

]
: Zn+ℓ → Zd+ℓ, and hence the

correspondence φ 7→ vφ̂ descends to a well-defined homomorphism
Hom(Tor(DG(β)),T) → coker

[
B Q

]
. Applying the Snake lemma

to the diagram of short exact sequences above shows that the quotient
(Zn+ℓ)⋆/P ∼= DG(β)/Tor(DG(β)) is free; therefore, α : P → Z may
be extended to a homomorphism α̃ : (Zn+ℓ)⋆ → Z, which by duality
defines a vector wα̃ in Zn+ℓ. Then for any row vector u ∈ (Zd+ℓ)⋆, we
have

uvα = α|(Zd+ℓ)⋆(u) = α̃(u
[
B Q

]
) = u

[
B Q

]
wα̃,

and hence, vα = [BQ]wα̃, as required.

A similar argument shows that Hom(Tor(DG(β)),T)→ coker
[
B Q

]
is injective, which implies it is also surjective since these groups are
known to be abstractly isomorphic finite groups.

2.3. Isotropy and labeled polytopes. Let N be a free Z-module
of rank d. Viewing stacky polytopes as labeled polytopes, as in subsec-
tion 1.2, we now give a more direct description of the maps modeling
the inclusion of isotropy groups Stab(z) ↩→ G (see, Theorem 2.2 and
Proposition 2.4), and the quotient map G → G/G0 (see Lemma 2.8
and the discussion following Remark 2.14).

Let (∆, {mi}ni=1) in (N ⊗ R)⋆ ∼= (Rd)⋆ be a labeled polytope. Let
β : Zn → N be given by β(ei) = miνi, where miνi are the weighted
normals to the facets of ∆, and consider the resulting homomorphism
β : (S1)n → (S1)d with kernel KD = kerβ. Let exp : Zn ⊗ R → (S1)n

denote the exponential map.

We begin with an explicit description of the stabilizers of Theo-
rem 2.2.
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Proposition 2.15. Let (∆, {mi}ni=1) be a labeled polytope in (N ⊗R)⋆
with primitive inward pointing facet normals ν1 ⊗ 1, . . . , νn ⊗ 1 and
[µ−1(τ)/KD] its corresponding toric DM stack. For z = (z1, . . . , zn)
in µ−1(τ) ⊂ Cn, let Nz ⊂ N denote the submodule generated by
{miνi | zi = 0}. Then the canonical map

Tor(N/Nz) −→ KD, x+Nz 7−→ exp

(
y ⊗ 1

m

)
,

is an isomorphism onto its image Stab(z), where y is the unique
element in span{ei | zi = 0} ⊂ Zn satisfying β(y) = mx for some
smallest positive integer m.

Proof. Let σ be a cone in the normal fan Σ(∆) with Iσ = Iz.
Analogous to subsection 2.1, we see that Stab(z) is given by the kernel
Γσ of the composition (cf., (2.1))

KD −→ (S1)n −→ (S1)|Jσ|.

We exhibit an isomorphism ψ : Tor(N/Nσ) → Γσ, for any cone σ of
the normal fan Σ(∆).

Define ψ : Tor(N/Nσ) → Γσ as follows. Given x + Nσ of order m,
we may find a unique (see the claim in Theorem 2.2) y ∈ ZIσ ⊂ Zn

with β(y) = mx. Consider y⊗1/m ∈ Zn⊗R. Since β(exp(y⊗1/m)) =
exp(x⊗1) = 1, exp(y⊗1/m) ∈ KD. And it is straightforward to see that
qσ(exp(y ⊗ 1/m)) = 1, where qσ : (S1)n → (S1)|Jσ| is the projection
onto the “non-trivial” components; therefore, exp(y ⊗ 1/m) ∈ Γσ and
we may set ψ(x+Nσ) = exp(y ⊗ 1/m).

The map ψ is well defined. Indeed, suppose we choose a different
representative x′ +Nσ for x+Nσ and let y′ denote the corresponding
element in ZIσ with β(y′) = mx′. Then there exists a (unique) η ∈ Z|Iσ|

satisfying β(η) = x− x′ and hence, βσ(y − y′) = βσ(mη), which shows
y − y′ = mη. Therefore, exp((y − y′)⊗ 1/m) = exp(η ⊗ 1) = 1.

We check that ψ is an isomorphism. To check injectivity, suppose
ψ(x + Nσ) = exp(y ⊗ 1/m) = 1, where y and m are as above. Then
y⊗1/m lies in the image of Z|Iσ| → Z|Iσ|⊗R, which implies that m = 1
so that x ∈ Nσ. To check surjectivity, suppose γ ∈ Γσ ⊂ (S1)|Iσ|.
Choose an element v ∈ Z|Iσ| ⊗ R with exp(v) = γ and consider
(βσ)R(v) ∈ NR. Since exp((βσ)R(v)) = 1, there is an element x ∈ N
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such that x⊗ 1 = βR(v). We now check that ψ(x+Nσ) = γ. Let m be
the order of γ. Then exp(mv) = 1 and hence mv = ξ ⊗ 1 for some ξ in
Z|Iσ|, and βσ(ξ)⊗ 1 = βR(mv) = mx⊗ 1. Therefore, βσ(ξ) = mx, and
exp(ξ ⊗ 1/m) = exp(v) = γ, as required. �

Remark 2.16. The isomorphism given in Proposition 2.15 is com-
patible with the one given in Proposition 2.4 for general Z-modules N .
Indeed, if N is assumed to be free, then we may choose an isomorphism
q̃ : Zd → N and take R = q̃−1 ◦ βσ : ZI → Zd in equation (2.3). With
this choice, it can be shown that the following diagram commutes.

KD
� � //

��

(S1)n ∼= Zn ⊗ S1

��

y ⊗ ζ_

��

Tor(N/Nσ)

55lllllll

γσ ((RR
RRR

RRR

K � � // Hom((Zn)⋆, S1) ν 7→ ζν(y).

Next, we give an explicit description of the component group
KD/(KD)0, which models Lemma 2.8 and shows that cokerβ ∼=
KD/(KD)0.

Define a homomorphism φ : N → KD/(KD)0 as follows. For x ∈ N ,
choose y ∈ Zn ⊗ R with βR(y) = x ⊗ 1 and consider exp(y) ∈ (S1)n.
Then β(exp(y)) = 1 and thus exp(y) ∈ KD. Set φ(x) = exp(y)(KD)0.
The map φ is well defined since kerβR is the Lie algebra of KD, which
exponentiates onto (KD)0.

The homomorphism φ has kernel im(β). Indeed, if φ(x) = exp(y) ∈
(KD)0, then there is an element ζ ∈ kerβR with exp(y − ζ) = 1, and
thus an integer vector a ∈ Zn with y − ζ = a ⊗ 1. Since N → N ⊗ R
is injective (N is free), x ⊗ 1 = βR(y) = βR(a ⊗ 1) = β(a) ⊗ 1 implies
β(a) = x and hence kerφ ⊂ im(β). Finally, if x = β(a) for some
a ∈ Zn, then we may choose y = a⊗1 to compute φ(x) = exp(y)(KD)0
to see that exp(y) = 1, showing imβ ⊂ kerφ. Hence, we obtain the
following:

Proposition 2.17. Suppose N is torsion free. The map φ : N →
KD/(KD)0 defined above descends to an isomorphism φ : cokerβ

∼=→
KD/(KD)0.
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Remark 2.18. The above arguments are essentially applications of the
Snake lemma (and parts of its proof). For example, Proposition 2.17
above follows part of the proof of the Snake lemma for the diagram of
short exact sequences,

0 // kerβR //

��

Zn ⊗ R
βR //

��

N ⊗ R //

��

0

1 // KD
// (S1)n // (S1)d // 1,

and the map φ is the connecting homomorphism.

3. Weighted and fake weighted projective stacks. In this sec-
tion, we interpret the results in Section 2 for an important class of toric
DM stacks known as weighted projective stacks. In subsection 3.1 we
identify those toric DM stacks that are equivalent to weighted projec-
tive stacks in terms of their stacky fan data. Then in subsection 3.2 we
generalize our considerations to fake weighted projective stacks.

3.1. Weighted projective stacks. As mentioned previously, weighted
projective stacks are an important class of examples and have been
studied extensively both as stacks and as orbifolds. In this section, we
characterize those stacky polytopes corresponding to weighted projec-
tive stacks.

Definition 3.1. For positive integers b0, . . . , bd, let T act on Cd+1 r
{0} by t · (z0, . . . , zd) = (tb0z0, . . . , t

bdzd). The resulting quotient
stack [(Cd+1 r {0})/T] is called a weighted projective stack, denoted
P(b0, . . . , bd).

In particular, a weighted projective stack is a quotient by a connected
one-dimensional Abelian Lie group action but the action need not be
effective.

Recall that to each P(b0, . . . , bd) there is an associated stacky poly-
tope (N,∆, β) with DG(β) ∼= Z (see, [26, Example 21]) whose as-
sociated toric DM stack is equivalent to P(b0, . . . , bd). Proposition 3.2
below shows that the toric DM stack corresponding to any stacky poly-
tope satisfying DG(β) ∼= Z results in a weighted projective stack.
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Proposition 3.2. Let (N,∆, β) be a stacky polytope, and let Σ(∆) be
the dual fan to ∆. The associated toric DM stack X (N,Σ(∆), β) is a
weighted projective stack P(b0, . . . , bd) if and only if DG(β) ∼= Z. In
this case, the polytope ∆ is a simplex, and the weights are determined
by the condition that (b0, . . . , bd) generates kerβ ⊂ Zd+1.

Remark 3.3. Let (N,∆, β) be a stacky polytope satisfying the con-
dition DG(β) ∼= Z. By Lemma 2.8, it follows that β must be surjec-
tive. Additionally, the torsion submodule Tor(N) of N must be cyclic,
and the proof of Proposition 3.2 shows that the order of Tor(N) is
g = gcd(b0, . . . , bd).

Proof of Proposition 3.2. Since DG(β) ∼= Z, the homomorphism β of
the stacky polytope (N,∆, β) must have domain Zd+1 where (as usual)
rankN = d. That is the polytope ∆ has d+ 1 facets, and is therefore
a simplex. Hence, V (J(Σ(∆))) = {0} and ZΣ(∆) = Cd+1 r {0}.

We determine the G-action on Cd+1 r {0}. Recall that the action is
determined by applying Hom(−,T) to the map β∨ : (Zd+1)⋆ → DG(β),
obtaining a homomorphism G→ Td+1. We set out to determine β∨.

We first show that DG(β) ∼= (kerβ)⋆. Let 0→ Zℓ Q→ Zd+ℓ → N → 0
be a free resolution of N , and let B : Zd+1 → Zd+ℓ denote a lift of β.
Then DG(β) = coker

[
B Q

]∗
. Similar to the proof of [5, Proposition

2.2], an application of the Snake lemma to the diagram

0 // Zℓ // Zd+1+ℓ

[BQ]

��

// Zd+1

β

��

// 0

0 // Zℓ Q // Zd+ℓ // N // 0,

shows that
[
B Q

]
and β have isomorphic cokernels, which are triv-

ial by assumption, as well as isomorphic kernels. It follows that
coker

[
B Q

]⋆ ∼= (kerβ)⋆.

Since β : Zd+1 → N has a finite cokernel, it follows that there is an
exact sequence
(3.1)

0 // (N⋆)
β⋆

// (Zd+1)⋆
β∨

// (kerβ)⋆ // Ext1Z(N,Z) // 0,
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obtained by the identification DG(β) ∼= (kerβ)⋆, where exactness at
Ext1Z(N,Z) follows from the fact that Ext1Z(N,Z) is the first right
derived functor of Hom(−,Z) (and N is finitely generated).

Since ∆ is a simplex, we can find positive integers b0, . . . , bd such
that

d∑
j=0

bjβ(ej)⊗ 1 = 0,

where {e0, . . . ed} is the standard basis for Zd+1. Without loss of
generality, assume that b = (b0, . . . , bd) generates kerβ, which we
now identify with Z according to b ↔ 1. The resulting identification
(kerβ)⋆ ∼= Z⋆ in equation (3.1) gives β∨ the matrix representation
[b0 · · · bd]. It follows that β∨ induces the homomorphism T → Td+1,
t 7→ (tb0 , . . . , tbd), which completes the proof. �

3.2. Fake weighted projective stacks. Analogous to the fake
weighted projective spaces, in this section we consider a fake weighted
projective stack, a stack quotientW/Λ where Λ is a finite Abelian group
acting (in the sense of group actions on stacks [19, 25]) on a weighted
projective stack W = P(b0, . . . , bd). Specifically, we characterize fake
weighted projective stacks in terms of their associated combinatorial
data.

By Proposition 3.2, the toric DM stack associated to a stacky fan
(N,Σ, β) satisfying DG(β) ∼= Z is a weighted projective stack. If we
require only that rankDG(β) = 1 (i.e., allowing DG(β) with torsion),
the next proposition shows that the resulting toric DM stack is a fake
weighted projective stack (compare with [2, Lemma 2.11]). Note that
the proof of the implication (i) ⇒ (ii) of the proposition relies more
heavily on the language of stacks, which in the interest of brevity
will not be reviewed. The reader may wish to consult the indicated
references.

Proposition 3.4. Let (N,∆, β) be a stacky polytope, and let Σ(∆) be
the dual fan to ∆. The following statements are equivalent :

(i) the associated toric DM stack X (N,Σ(∆), β) is equivalent to a
fake weighted projective stack ;

(ii) rankDG(β) = 1, i.e., dimG = 1;
(iii) ∆ is a simplex.
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Under any of the above conditions, X (N,Σ(∆), β) ∼= P(b0, . . . , bd)/Λ,
where the weights are determined by the condition that (b0, . . . , bd)
generates kerβ ⊂ Zd+1.

Proof. The equivalence of (ii) and (iii) is immediate. Suppose
(N,∆, β) is a stacky polytope with rankDG(β) = 1. By [19],
X (N,Σ(∆), β) = [ZΣ/G] ∼= [ZΣ/G0]/Λ, where Λ = G/G0 and G0

denotes the connected component of the identity element in G. By
Proposition 2.11, [ZΣ/G0] is the toric DM stack associated to the stacky
fan (N0,Σ(∆), β0), which satisfies DG(β0) ∼= Z and is thus a weighted
projective stack, by Proposition 3.2.

Conversely, suppose X (N,Σ(∆), β) is equivalent to a fake weighted
projective stack W/Λ with W = P(b0, . . . , bd). We shall verify below
that the quotient map of stacks W → W/Λ is a covering projection,
i.e., a representable map of stacks such that every representative is
a covering projection (see, [23]). Since W has a trivial (stacky)
fundamental group, W is then the universal cover, which by [14],
coincides with X (N0,Σ0, β0). Therefore, rankDG(β) = rankDG(β0) =
1 by Proposition 3.2. The statement about the weights is also a direct
consequence of Proposition 3.2.

To see that p : W → W/Λ is a covering projection, it is enough to
show that the base extension of p along a presentation (also called
chart or atlas) is a covering projection of topological spaces (since
coverings are invariant under base change and local on the target, see,
[23, Example 4.6]). Choose a Λ-atlas X1 ⇒ X0 for W with Λ acting
freely on X1 and X0 (see, [19]). Then X1/Λ ⇒ X0/Λ is an atlas for the
quotientW/Λ. It is straightforward to check that X0/Λ×W/ΛW ∼= X0

(e.g., see the discussion of 2-fiber products in [23, Section 9]), and
hence the base extension of p is X0 → X0/Λ, which is a covering
projection. �

4. Labeled sheared simplices. We now introduce labeled sheared
simplices, a natural family of stacky polytopes that includes many (but
not all) stacky polytopes associated with weighted and fake weighted
projective stacks. We begin with a definition.

Definition 4.1. Let a = (a1, . . . , ad) ∈ Zd be a primitive vector in
the positive orthant and {ϵi} the standard basis of Rd. The sheared
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simplex ∆(a) is the convex hull of the origin together with the points
lcm(a)/ajϵj , j = 1, . . . , d, in Rd. Given positive integers m0, . . . ,md,
we define a labeled sheared simplex as the stacky polytope (Zd,∆(a), β),
where the homomorphism β : Zd+1 → Zd is given by β(e0) = −m0a
and β(ej) = mjϵj (j = 1, . . . , d), where e0, . . . , ed denote the standard
basis vectors for Zd+1.

We first note that Proposition 3.4 immediately implies that, for a
labeled sheared simplex (Zd,∆(a), β), the associated toric DM stack
[ZΣ(∆)/G] is indeed a fake weighted projective stack. The concrete
combinatorial description of these simplices provide an interesting
explicit class of examples of fake projective stacks to study.

Since all labeled sheared simplices give rise to fake weighted projec-
tive stacks, we first identify, in subsection 4.1, precisely which labeled
sheared simplices correspond to weighted projective stacks. We analyze
the fake weighted projective stacks arising from labeled sheared sim-
plices more generally in subsection 4.2, and finally, we give a detailed
analysis of two-dimensional labeled sheared simplices in subsection 4.3.

4.1. Labeled sheared simplices corresponding to weighted
projective stacks. The main result of this section is Proposition 4.4,
in which we identify those labeled sheared simplices that give rise to a
weighted projective stack. By Proposition 3.2, this involves translat-
ing the condition DG(β) ∼= Z in terms of the labels {m0, . . . ,md} and
the vector a. Since rankDG(β) = 1, DG(β) ∼= Z if and only if G is
connected; therefore, we begin with the following lemma.

Lemma 4.2. Let (Zd,∆(a), β) be a labeled sheared simplex with labels
{m0, . . . ,md}, and let [ZΣ/G] be its associated toric DM stack. If
G0 ⊂ G denotes the connected component of the identity element, then

G/G0
∼=

[ d⊕
i=0

Z/miZ
]/
⟨(1 mod m0, a1 mod m1, . . . , ad mod md)⟩.

Example 4.3. Consider the toric DM stack from Example 1.5, the
labeled line segment with labels r and s, where it was seen directly
that G ∼= T × µg, where g = gcd(r, s) and µg ⊂ T is the cyclic group
of gth roots of unity. Hence, G/G0

∼= µg. This can be seen from
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Lemma 4.2 as well, since G/G0
∼= (Z/rZ ⊕ Z/sZ)/H where H is the

subgroup generated by (1, 1).

Proof of Lemma 4.2. By Lemma 2.8, G/G0
∼= cokerβ, which we now

compute. Consider the commutative diagram of short exact sequences:

0 // Zd+1
×(m0,...,md)//

β

��

Zd+1 //

β′

��

⊕d
i=0Z/miZ //

��

0

0 // Zd Zd // 0 // 0,

where β′ may be written as the matrix−a1 1 0
...

. . .

−ad 0 1

 .
Applying the Snake lemma gives the exact sequence

0 −→ kerβ −→ kerβ′ −→
d⊕

i=0

Z/miZ −→ cokerβ −→ 0.

Since kerβ′ ∼= Z is generated by (1, a1, . . . , ad) ∈ Zd+1, the second
map in the sequence above sends the generator to (1 mod m0, a1 mod
m1, . . . , ad mod md). The result follows. �

Proposition 4.4. Let (Zd,∆(a), β) be a labeled sheared simplex with
labels {m0, . . . ,md} and a = (a1, . . . , ad). Let M = m0m1 · · ·md. The
following conditions are equivalent :

(i) DG(β) ∼= Z;
(ii) X (Zd,∆(a), β) is equivalent to a weighted projective stack ;

(iii) gcd
(

M
m0
, Ma1

m1
, . . . , Mad

md

)
= 1;

(iv) gcd(mi,mj) = 1 for all i ̸= j in {0, . . . , d}, and gcd(ai,mi) = 1,
for all i in {1, . . . , d}.

In addition, if one of the above holds, then

X (Zd,∆(a), β) = P
(
M

m0
,
Ma1
m1

, . . . ,
Mad
md

)
.
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Proof. The equivalence of conditions (i) and (ii) is part of Proposi-
tion 3.2, which also gives the identification of the weights.

Let (Zd,∆(a), β) be a labeled sheared simplex, with labels {m0, . . . ,
md} and a = (a1, . . . , ad). Since the rank of DG(β) is 1, by Lemma 2.8,
condition (i) is equivalent to cokerβ = 0. By Lemma 4.2, cokerβ = 0
if and only if

H = ⟨(1 mod m0, a1 mod m1, . . . , ad mod md)⟩

is equal to ⊕iZ/miZ, or equivalently if H is cyclic of order M =
m0m1 · · ·md. If (iv) holds, this is immediate.

Conversely, suppose H is cyclic of order M , and hence equals
⊕iZ/miZ. Therefore, gcd(mi,mj) = 1 for i ̸= j. Consider the
isomorphism ⊕iZ/miZ → Z/MZ defined by sending fi 7→ M/mi,
where fi denotes the element whose only non-zero component is 1 mod
mi in the ith component. Under this isomorphism, the generator ofH is
sent to b = (M/m0+Ma1/m1+· · ·+Mad/md) modM , which has order
M/ gcd(M, b) = M since H has order M . Therefore, gcd(M, b) = 1,
and hence gcd(mj , aj) = 1, which shows (iv).

The equivalence of conditions (iii) and (iv) is straightforward to
verify. �

Proposition 4.5 below describes the isotropy groups for weighted
projective stacks that correspond to labeled sheared simplices. For a
weighted projective stack P(b0, . . . , bd), the resulting isotropy groups
are straightforward to compute directly from the defining action of T.
Namely, the isotropy of a point z ∈ Cd+1 r {0} is easily seen to be
cyclic of order gcd(bj : zj ̸= 0). For those weighted projective stacks
arising from labeled sheared simplices, we may use Proposition 4.4 to
express this in terms of the labels {m0, . . . ,md} and a.

Proposition 4.5. Suppose that (Zd,∆(a), β) is a labeled sheared sim-
plex with labels {m0,m1, . . . ,md} that corresponds to a weighted pro-
jective stack. Let z = (z0, . . . , zd) ∈ Cd+1 r {0}, and set dz = gcd(aj :
zj ̸= 0), where a0 is set to 1. If z0 ̸= 0, then Stab(z) ∼=

⊕
i∈Iz

Z/miZ.
If z0 = 0, then

Stab(z) ∼= Z/(mzdz)Z, where mz =
∏
i∈Iz

mi.



510 GOLDIN, HARADA, JOHANNSEN AND KREPSKI

The stacky polytope (Z2,∆, β) introduced in Example 1.3 is a la-
beled sheared simplex ∆(1, 1) with labels {2, 3, 5}. By Proposition 4.5,
the associated toric DM stack is a weighted projective stack; therefore,
we may use Proposition 4.5 to reproduce the calculation in Example 2.3.

Remark 4.6. The results in this section depend only on the dual fan
Σ(∆), which consists of all cones σ generated by any subset of the ray
generators {a, ϵ1, . . . , ϵd}.

4.2. On fake weighted projective stacks arising from labeled
sheared simplices. In this section, we study labeled sheared simplices
more generally. Specifically, we analyze the isotropy groups of the
corresponding fake weighted projective stacks in Proposition 4.7, and
we characterize the labeled sheared simplices giving rise to global
quotient stacks in Proposition 4.8.

We begin with a result on isotropy groups.

Proposition 4.7. Let (Zd,∆(a), β) be a labeled sheared simplex with
labels {m0, . . . ,md}, and set a0 = 1. Let z = (z0, . . . , zd) ∈ Cd r {0},
and set dz = gcd(aj : zj ̸= 0). The isotropy group Stab(z) is an
extension as follows:

0 −→
⊕
i∈Iz

Z/miZ −→ Stab(z) −→ Z/dzZ −→ 0.

Proof. Recall that by Theorem 2.2, the isotropy group Stab(z) is
isomorphic to the torsion submodule of N/Nz. Form the matrix Bz

by deleting the ith column of β whenever zi ̸= 0 Viewing Bz as a
homomorphism Z|Iz| → Zd realizes N/Nz = cokerBz. We compute the
torsion submodule of cokerBz next.

If z0 ̸= 0, then one may readily see that Tor(N/Nz) ∼=
⊕

i∈Iz
Z/miZ.

It remains to consider the case where z0 = 0, i.e., with corresponding
matrix Bz containing the first column of β.

To begin, observe that

β : Zd+1 −→ N = Zd
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factors as the composition

Zd+1 L−→ Zd+1 β′

−→ Zd,

where

L =

m0 0
. . .

0 md

 and β′ =

−a1 1 0
...

. . .

−ad 0 1

 .
Accordingly, we may factor Bz as a composition Z|Iz| Lz→ Z|Iz| B′

z→ Zd,
where B′

z is a matrix whose first column is the first column of β′ and
whose other columns are standard basis vectors ei ∈ Zd for i ̸= 0 in Iz.
This factorization yields the following diagram of short exact sequences:

0 // Z|Iz| Lz //

Bz

��

Z|Iz| //

B′
z

��

⊕
i∈Iz

Z/miZ //

��

0

0 // Zd Zd // 0 // 0.

Applying the Snake lemma (and observing that B′
z is injective) yields

the exact sequence,

(4.1) 0 // ⊕
i∈Iz

Z/miZ // cokerBz
// cokerB′

z
// 0.

Let dz = gcd{ai : i /∈ Iz}. Then B′
z is row equivalent to the

matrix C ′
z obtained from B′

z by replacing all ai with i /∈ Iz with 0’s
except for one which is replaced with dz. It follows that cokerB′

z
∼=

Zd−|Iz| ⊕ Z/dzZ. Moreover, we may describe the generators of the
free summand as follows. Let Ez : Zd → Zd denote the invertible
homomorphism defined by C ′

z = EzB
′
z. Then the free summand is

generated by the images of the E−1(ei), i /∈ Iz, in Zd/ imB′
z. It follows

that the E−1(ei), i /∈ Iz, must generate a free submodule in cokerBz,
which maps isomorphically onto the free summand of cokerB′

z. Thus,
we may pass to torsion submodules in equation (4.1):

0 −→
⊕
i∈Iz

Z/miZ −→ Tor(cokerBz) −→ Z/dzZ −→ 0. �

As we will see in subsection 4.3, the group extension in Proposi-
tion 4.7 can be non-trivial. For example, consider the labeled sheared
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simplex ∆(1, 2) with labels m0 = 2, m1 = 4, m2 = 1. By Proposi-
tion 4.10 in subsection 4.3 (or by direct calculation), the isotropy for
points of the form (0, 0, z) ∈ ZΣ(∆), z ̸= 0, is Z/2Z⊕Z/8Z, a non-trivial
extension of Z/2Z by Z/2Z⊕ Z/4Z.

Using Corollary 2.12, we may also characterize those labeled sheared
simplices yielding global quotient stacks. Note that since the toric DM
stack constructed from a labeled sheared simplex is a fake weighted
projective stack, it is immediate that a global quotient in this case
must then be a quotient of smooth projective stack Pd.

Proposition 4.8. Let (Zd,∆(a), β) be a labeled sheared simplex with
labels {m0, . . . ,md}. The toric DM stack X (Zd,∆(a), β) is equivalent
to a global quotient if and only if mi = m0ai for all i = 1 . . . , d.

Proof. We apply Corollary 2.12 and [14, Theorem 4.4]. Let σj be
the maximal cone generated by the rays {ρ0, . . . , ρ̂j , . . . , ρd}, where ̂
signifies omission from the list. Then

N ′
σ0

= span{m1e1, . . . ,mded},

and

N ′
σj

= span
{
m0

d∑
i=1

aiei,m1e1, . . . , m̂jej , . . . ,mded

}
.

Observe that if m0ai = mi for all i, then it is clear that N ′ = N ′
σj

for all j = 0 . . . , d.

To prove the converse, suppose N ′ = N ′
σj

for all j = 0, . . . d. For
j = 0, this implies that there exist α1, . . . , αd ∈ Z such that

d∑
i=1

(m0ai − αimi)ei = 0,

and thus mi | m0ai for i = 1, . . . , d. Similarly, for j = 1, . . . , d, we see
that there exist γ0, . . . , γ̂j , . . . , γd ∈ Z such that

mjej = γ0m0

d∑
i=1

aiei +
∑
i ̸=j

γimiei,
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or, equivalently,∑
i ̸=j

(γ0m0ai + γimi)ei + (γ0m0aj −mj)ej = 0.

Therefore, m0aj | mj for j = 1, . . . , d, whence m0ai = mi for all i. �

4.3. Two-dimensional labeled sheared simplices. In this final
section, we illustrate the results in previous sections by considering the
class of toric DM stacks arising from two-dimensional labeled sheared
simplices. As a consequence of Theorem 2.2, we can now determine
the isotropy groups corresponding to a labeled sheared simplex in the
plane (see also Remark 2.5).

Let a = (a1, a2) be a primitive vector in the positive quadrant,
and suppose (Z2,∆(a), β) is a labeled sheared simplex with labels
{m0,m1,m2}. Explicitly, ∆(a) is the convex hull of the origin together
with (a2, 0) and (0, a1), with assigned labels m1 to the edge along the
y-axis, m2 to the edge along the x-axis, and m0 to the remaining edge
(see Figure 4).

r

r

rQ
Q

Q
Q

Q
Q

Q
Q

Q
QQ

m1

m2

m0

(0, a1)

(a2, 0)(0, 0)

Figure 4. A labeled sheared simplex in the plane.

The isotropy for points (z0, 0, 0) ∈ ZΣ = C3 r {0} with z0 ̸= 0 is
easily seen to be Z/m1Z⊕ Z/m2Z (by Proposition 4.7). For points of
the form z = (0, 0, z2) with z2 ̸= 0, i.e., for points corresponding to
the vertex (0, a1), we shall describe the isotropy Stab(z) below. (The
isotropy for points of the form z = (0, z1, 0) with z1 ̸= 0 can be obtained
by exchanging the indices 1 and 2.)
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We begin with a lemma describing the Smith normal form of an
integer matrix with exactly one zero entry.

Lemma 4.9. For non-zero a, b, c ∈ Z, the Smith normal form of [ a b
c 0 ]

is
[
g 0
0 bc/g

]
, where g = gcd(a, b, c).

Proof. Suppose that gcd(a, b) = d. Then, we claim that there exist
x, y ∈ Z such that xa+ yb = d, and gcd(x, d) = 1.

To prove this claim, we first note that it is equivalent to the following:
Suppose u, v ∈ Z are relatively prime. Consider the set of solutions
X = {x | xu+ yv = 1 for some y ∈ Z}. For any given integer d, there
is some x ∈ X so that gcd(x, d) = 1.

In this latter formulation, let d ∈ Z be given, and suppose that x0
is any solution to x0u + yv = 1. Recall that all solutions are then of
the form x = x0 + tv with t ∈ Z. Moreover, x0u + yv = 1 implies
that gcd(x0, v) = 1. Then, showing that there is an x ∈ X such that
gcd(x, d) = 1 is equivalent to showing that there is a t ∈ Z such that
gcd(x0 + tv, d) = 1. We will construct such an integer, t.

Suppose that d = pα1
1 · . . . · pαs

s is the prime factorization of d. Let
t =

∏
pi such that pi does not appear in the prime factorization of

either x0 or v. Because x0 and v are relatively prime, it follows that,
in the sum x0+ tv, each prime in the factorization of d appears exactly
once, that is, each pi divides exactly one of x0 or tv. Thus, d cannot
divide the sum and gcd(x, d) = 1.

Therefore, we may find x and y such that ax + by = d and
gcd(x, d) = 1. Moreover, since gcd(cx, d) = gcd(c, d) = gcd(a, b, c) = g,
there exist p, q ∈ Z such that p(cx) + qd = g. Hence,[

x −b/d
y a/d

]
,

[
q p

−cx/g d/g

]
∈ SL2(Z),

and [
q p

−cx/g d/g

] [
a b
c 0

] [
x −b/d
y a/d

]
=

[
g −cbp/d
0 −bc/g

]
.

Recall that d | b and that g | c, so g | (cbp/d). Thus, by elementary
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column operations [
g −cbp/d
0 −bc/g

]
←→

[
g 0
0 −bc/g

]
.

Finally, note that g | (bc/g), so the above is the desired Smith normal
form. �

We now can give the explicit form of the isotropy groups of a labeled
sheared simplex in the plane.

Proposition 4.10. Let (Z2,∆(a), β) be a labeled sheared simplex with
labels {m0,m1,m2} and [ZΣ/G] its corresponding toric DM stack. The
isotropy of z = (0, 0, z2) ∈ ZΣ with z2 ̸= 0 is Stab(z) ∼= Z/gZ ⊕
Z/((m0m1a2)/g)Z, where g = gcd(m0,m1).

Proof. We consider the map β : Z3 → Z2 given by the matrix

β =

[
−m0a1 m1 0
−m0a2 0 m2

]
.

By Lemma 4.9, the Smith normal form of

Bz =

[
−m0a1 m1

−m0a2 0

]
is

[
g 0
0 m0m1a2/g

]
since g = gcd(m0,m1) = gcd(m0a1,m1,m0a2), which, by Theorem 2.2,
gives the result. �

Although Proposition 4.10 gives the general form of the isotropy
group of points corresponding to the vertex (0, a1) of a sheared simplex,

Table 1. The isotropy group Stab(z) corresponding to points of the form
(0, 0, z2) with z2 ̸= 0, i.e., corresponding to the vertex (0, a1) of ∆, for a toric
DM stack corresponding to a labeled sheared simplex (Z2,∆(a), β). Here,
g = gcd(m0,m1).

Labels Lengths Stab(z)

m0 = m1 = m2 = 1
a1 = a2 = 1 {1}, i.e., smooth

a1, a2 arbitrary Z/a1Z

m0,m1,m2 arbitrary
a1 = a2 = 1 Z/m0Z⊕ Z/m1Z

a1, a2 arbitrary Z/gZ⊕ Z/(m0m1a2/g)Z
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it can be instructive to consider several special cases to illustrate the
interplay of the facet labels and the geometry of the sheared simplex,
see Table 1.
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