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NEW LINEARIZATION FORMULAE FOR THE
PRODUCTS OF CHEBYSHEV POLYNOMIALS OF

THIRD AND FOURTH KINDS

E.H. DOHA AND W.M. ABD-ELHAMEED

ABSTRACT. This paper deals with the problem of find-
ing two new closed formulae for linearization coefficients
of two special nonsymmetric cases for Jacobi polynomials

P
(α,β)
n (x) corresponding to the parameters’ values β = −α =

±1/2. From these two formulae, the linearization coefficients
of the products of Chebyshev polynomials of the third and
fourth kinds are established. Based on using algorithmic
methods, such as the algorithms by Zeilberger, Petkovsek
and Van-Hoeij, and two certain Whipple’s transformations,
six new closed formulae for summing certain terminating
hypergeometric functions of unit argument are given.

1. Introduction. Chebyshev polynomials have become increasingly
important in numerical analysis, from both theoretical and practical
points of view. There are four kinds of Chebyshev polynomials. The
majority of books and research papers dealing with specific orthogonal
polynomials of Chebyshev family contain mainly results of Chebyshev
polynomials of first and second kinds Tn(x) and Un(x) and their
numerous uses in different applications, see for example, [5, 8, 9,
15, 22]. However, there is only a very limited body of literature on
Chebyshev polynomials of third and fourth kinds Vn(x) and Wn(x),
either from the theoretical or practical points of view and on their uses
in various applications. Recently, Doha and Abd-Elhameed in [13]
have introduced new closed formulae explicitly expressing the integrals
of third and fourth kinds Chebyshev polynomials of any degree that
has been integrated an arbitrary number of times in terms of third and
fourth kinds Chebyshev polynomials themselves. Gautschi [18], Mason
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[23] and Notaris [25] used Chebyshev polynomials of third and fourth
kinds in approximation and other applications. The interested reader
in Chebyshev polynomials of third and fourth kinds is referred to the
excellent book of Mason and Handscomb [24].

If we were asked for a “pecking order” of these four Chebyshev
polynomials Tn(x), Un(x), Vn(x) and Wn(x), then we would say that
Tn(x) is the most important and versatile. Moreover, Tn(x) generally
leads to the simplest formulae, whereas results for the other polynomials
may involve slight complications. However, all four polynomials have
their role. For example, Un(x) is useful in numerical integration (see
[23]), while Vn(x) and Wn(x) can be useful in situations in which
singularities occur at one end point (+1 or −1) but not at the other
(see [24]).

The general linearization problem consists of finding the coefficients
gijk in the expansion of the product of two polynomials pi(x) and qj(x)
in terms of an arbitrary sequence of orthogonal polynomials {yk(x)},
i.e.,

(1.1) pi(x) qj(x) =

i+j∑
k=0

gijk yk(x).

As particular cases of problem (1.1) we have the following two impor-
tant problems:

(i) The standard linearization or Clebsh-Gordan-type problem which
consists of finding the coefficients Lij(k) in the expansion of
the product of two polynomials pi(x) and pj(x) in terms of the
sequence {pn}n≥0, i.e.,

(1.2) pi(x) pj(x) =

i+j∑
k=0

Lij(k) pk(x).

(ii) The connection problem, which consists of finding the coefficients
cik such that

pi(x) =
i∑

k=0

cik yk(x).

The two problems of linearizing products of orthogonal polynomials
and the connection coefficients, in general, and of ultraspherical and
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Jacobi polynomials, in particular, have been studied by a large number
of authors, (see, among them, [6, 10, 11, 12, 14, 21, 28, 29, 30].

Linearization problems are frequently encountered in many applica-
tions; for instance, the case in which i = j in the standard linearization
formula (1.2) is often required to evaluate the logarithmic potentials
of orthogonal polynomials appearing in the calculation of the position
and momentum information entropies of quantum systems (see Dehesa
et al. [7]). This motivates our interest in these problems.

The standard linearization problem associated to Jacobi polynomials
and to establish the conditions of nonnegativity of the linearization
coefficients has been studied by many authors (see, for instance, [3,
16, 17, 19, 26]).

The main aim of this paper is to establish new simple closed formulae
for linearization of the product of two Jacobi polynomials for certain
special parameters. Also, the formulae for the linearization of the
products of Chebyshev polynomials of third and fourth kinds are
deduced. To the best of our knowledge all of these formulae are
completely new and are traceless in literature.

The paper is organized as follows. In Section 2, we give some rele-
vant properties of Jacobi polynomials. In Section 3, and with the aid of
some symbolic algebra such as the algorithms by Zeilberger, Petkovsek
and Van-Hoeij, the linearization formulae for Chebyshev polynomials
of third and fourth kinds are given. Making use of the results obtained
in Section 3, two formulae expressing the squares of Chebyshev poly-
nomials of third and fourth kinds in terms of Chebyshev polynomials
of third and fourth kinds themselves are given in Section 4. Moreover,
in this section, and with the aid of two certain Whipple’s transforma-
tions, reduction formulae for two terminating balanced hypergeometric
functions of the type 4F3(1), and two terminating very well-poised hy-
pergeometric functions of the type 7F6(1) are deduced.

2. Some properties of classical Jacobi polynomials. The clas-
sical Jacobi polynomials associated with the real parameters (α >
−1, β > −1) (see [1, 2]) are a sequence of polynomials

P (α,β)
n (x), x ∈ [−1, 1], n = 0, 1, 2, . . . ,

each respectively of degree n. For our present purposes, it is more
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convenient to introduce the normalized orthogonal polynomials

R(α,β)
n (x) =

P
(α,β)
n (x)

P
(α,β)
n (1)

.

This means that

(2.1) R(α,β)
n (x) =

n! Γ(α+ 1)

Γ(n+ α+ 1)
P (α,β)
n (x).

The polynomials R
(α,β)
n (x) satisfy the orthogonality relation,

(2.2)

∫ 1

−1

(1− x)α(1 + x)β R(α,β)
m (x)R(α,β)

n (x) dx =

{
0 m ̸= n,

hn m = n,

where

(2.3) hn =
2λ n! Γ(n+ β + 1) [Γ(α+ 1)]2

(2n+ λ) Γ(n+ λ) Γ(n+ α+ 1)
,

and λ = α+ β + 1.

Of these polynomials, the most commonly used are the ultraspheri-

cal polynomials C
(α)
n (x), the Chebyshev polynomials of first and second

kinds Tn(x), Un(x) and the Legendre polynomials Ln(x). These orthog-
onal polynomials are interrelated to the normalized Jacobi polynomials
by the following relations:

C(α)
n (x) = R(α−1/2,α−1/2)

n (x),

Tn(x) = R(−1/2,−1/2)
n (x),

Un(x) = (n+ 1)R(1/2,1/2)
n (x),

Ln(x) = R(0,0)
n (x).

The Chebyshev polynomials Vn(x) and Wn(x) of the third and fourth
kinds are polynomials in x defined, respectively, by (see [24])

Vn(x) =
cos(n+ 1/2)θ

cos(θ/2)

and
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Wn(x) =
sin(n+ (1/2))θ

sin(θ/2)
,

when x = cos θ.

These two kinds of polynomials are, in fact, rescalings of two par-

ticular Jacobi polynomials P
(α,β)
n (x) for the two nonsymmetric special

cases β = −α = ±1/2. They are given explicitly by

Vn(x) =
22n(
2n
n

) P (−1/2,1/2)
n (x)(2.4)

and

Wn(x) =
22n(
2n
n

) P (1/2,−1/2)
n (x).(2.5)

It is readily seen that

(2.6) Wn(x) = (−1)nVn(−x),

and, therefore, it is sufficient to establish properties and relations for
Vn(x), and then deduce analogous properties and relations for Wn(x)
(replacing x by −x).

Making use of formulae (2.1), (2.4) and (2.5) enables one to show
that

Vn(x) = R(−1/2,1/2)
n (x),

and
Wn(x) = (2n+ 1)R(1/2,−1/2)

n (x).

Several other properties for the polynomials Vn(x) and Wn(x), can be
found in [24].

3. Linearization formulae for Vn(x) and Wn(x). In this section,
we are interested in establishing new linearization formulae for Cheby-
shev polynomials of third and fourth kinds.

3.1. Linearization coefficients of Jacobi polynomials. Now, con-
sider the linearization of products of two normalized Jacobi polyno-

mials R
(α,β)
m (x) and R

(α,β)
n (x). Rahman [26] discussed the following
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linearization problem

(3.1) R(α,β)
m (x)R(α,β)

n (x) =

n+m∑
k=|n−m|

g(k,m, n;α, β)R
(α,β)
k (x).

Using the orthogonality relation (2.2), the linearization coefficients
g(k,m, n;α, β) can be expressed in terms of the integral of the product
of three Jacobi polynomials. Explicitly,
(3.2)

g(k,m, n;α, β)=
1

hk

∫ 1

−1

(1−x)α (1+x)β R
(α,β)
k (x)R(α,β)

m (x)R(α,β)
n (x) dx,

where hk is given by (2.3).

Thus, the evaluation of the integral in (3.2) is equivalent to the
linearization problem (3.1). The solution of the linearization problem
(3.1) is given in [26] by the following theorem.

Theorem 3.1. For all n ≥ m, [26] proved that

(3.3) R(α,β)
m (x)R(α,β)

n (x) =
2m∑
j=0

Lm,n,j R
(α,β)
n−m+j(x),

where
(3.4)

Lm,n,j =
n! Γ(α+ 1) (2n− 2m+ 2j + λ)

(n−m)! j! Γ(λ+ 2n+ 1)

× Γ(n−m+j+α+1)Γ(β+n+1)Γ(λ+2m) Γ(λ+2n−2m+j)

Γ(n−m+j+β+1)Γ(λ+m) Γ(α+n−m+1)Γ(α+m+1)

×
j∑

r=0

(−j)r (j + 2n− 2m+ λ)r
r! (λ+ 2n+ 1)r

× 4F3

(
−r, r + 2n− 2m+ 1, −m, −m− β
n−m+ 1, n−m+ α+ 1,−2m− α− β

∣∣∣∣ 1) .

It is worthwhile noting here that although the balanced 4F3(1) in
this formula is terminated, it cannot be summed in closed form except
for certain special values of its parameters. This motivates our interest
to study, in particular, the two cases correspond to β = −α = ±1/2.
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3.2. Linearization formula for Vn(x). To obtain the linearization
formula of the product of two Chebyshev polynomials of the third kind,
the following two lemmas are needed.

Lemma 3.2. For all r, n,m ∈ Z≥0 and r ≤ 2m, we have

(3.5) 4F3

(
−r, r + 2n− 2m+ 1, −m, −m− 1

2
n−m+ 1, n−m+ 1

2 , −2m

∣∣∣∣ 1)
=

(2n+ r + 1)! (2n− 2m)!

(2n− 2m+ r)! (2n+ 1)!
.

Proof. If we set

4F3

(
−r, r + 2n− 2m+ 1, −m, −m− 1

2
n−m+ 1, n−m+ 1

2 , −2m

∣∣∣∣ 1) = G(r, n,m),

then with the aid of algorithmic methods such as the algorithms by
Zeilberger, Petkovsek and Van-Hoeij (see, for instance, [20]), via the
Maple software, and in particular, sumrecursion command, G(r, n,m),
satisfies the following recurrence relation

(3.6) (r + 1)(r + 2n+ 2)G(r, n,m)

+ 2
[
(2m(n+ r + 2)− (r + 1)(2n+ r + 2)

]
G(r + 1, n,m)

− (2m− r − 1)(r + 2n− 2m+ 2)G(r + 2, n,m) = 0,

with the initial values

(3.7) G(0, n,m) = 1, G(1, n,m) =
2(n+ 1)

2n− 2m+ 1
.

The exact solution of this recurrence relation is given explicitly by

G(r, n,m) =
(2n+ r + 1)! (2n− 2m)!

(2n− 2m+ r)! (2n+ 1)!
. �

Remark 3.3. It is worthwhile noting here that the exact solution of
the recurrence relation (3.6) can be obtained with the aid of Petkovsek’s
algorithm (see [20]), or with the improved version of [31]. More-
over, and in this respect, one may use the package in Maple called
LREtools[hypergeomsols].
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Lemma 3.4. For all j, r, s ∈ Z≥0, we have

j∑
r=0

(−j)r (r + s+ 1)j
r!

= (−1)j j! .

Proof. Let

j∑
r=0

(−j)r (r + s+ 1)j
r!

= M(j, r, s).

Then, making use of symbolic algebra such as the algorithms of Zeil-
berger, Petkovsek and Van-Hoeij, M(j, r, s) satisfies the recurrence re-
lation

M(j + 1, r, s) + (j + 1)M(j, r, s) = 0, M(0, r, s) = 1,

which can immediately be solved to give

M(r, s, j) = (−1)j j! .

Now, based on Theorem 3.1 and Lemmas 3.2 and 3.4, we give the
following linearization formula for the product of Vm(x)Vn(x). �

Theorem 3.5. For any nonnegative integers m and n, we have

(3.8) Vm(x)Vn(x) =
n+m∑

k=|n−m|

(−1)k+m+n Vk(x).

Proof. If we substitute by α = −1/2 and β = 1/2 into relation (3.3),
then we get

R(−1/2,1/2)
m (x)R(−1/2,1/2)

n (x) =
2m∑
j=0

Lm,n,j R
(−1/2,1/2)
n−m+j (x), n ≥ m,
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where

(3.9)

Lm,n,j =
(j + 2n− 2m)!

j! (2n− 2m)!

×
j∑

r=0

(−j)r (j + 2n− 2m+ 1)r
r! (2n+ 2)r

×4 F3

(
−r, r + 2n− 2m+ 1, −m, −m− 1

2
n−m+ 1, n−m+ 1

2 ,−2m

∣∣∣∣ 1) ,

and if we make use of Lemma 3.2, then the linearization coefficients
Lm,n,j in equation (3.9) take the simpler form

Lm,n,j =
(2n+ 1)! (n−m)! Γ(n−m+ 1/2)

j! (2n− 2m)!n! Γ(n+ 3/2)

×
j∑

r=0

(−j)r(j+2n−2m+r)! Γ(n+(r/2)+1) Γ(n+(r/2)+(3/2))
r! (2n+r+1)! Γ(n−m+(r/2)+1) Γ(n−m+(r/2)+(1/2)) .

(3.10)

Now, the application of the Legendre duplication formula (see [27])
enables one to get

(3.11)
Γ(n+ (r/2) + 1) Γ(n+ (r/2) + (3/2))

Γ(n−m+ (r/2) + 1) Γ(n−m+ (r/2) + (1/2))

=
(2n+ r + 1)!

22m+1 (2n− 2m+ r)!
,

and

(3.12)
(2n+ 1)! (n−m)! Γ(n−m+ 1/2)

(2n− 2m)!n! Γ(n+ 3/2)
= 22m+1,

and hence, the substitution of relations (3.11) and (3.12) into formula
(3.10) gives

Lm,n,j =
1

j!

j∑
r=0

(−j)r(r + 2n− 2m+ 1)j
r!

.

If we make use of Lemma 3.4 with s = 2n − 2m ≥ 0, then we obtain
the following linearization formula

R(−1/2,1/2)
m (x)R(−1/2,1/2)

n (x) =
2m∑
j=0

(−1)j R
(−1/2,1/2)
n−m+j (x), n ≥ m,
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which immediately yields

Vm(x)Vn(x) =
n+m∑

k=|n−m|

(−1)k+m+n Vk(x), for all n,m ∈ Z≥0.

Thus, the proof of Theorem 3.5 is complete. �

3.3. Linearization formula for Wn(x). Similar analysis to that per-
formed in subsection 3.2 can be made to obtain a linearization formula
for the product Wm(x)Wn(x). However, and based on any suitable
symbolic algebra such as the algorithms by Zeilberger, Petkovsek and
Van-Hoeij, the following two lemmas can be proved.

Lemma 3.6. For all r, n,m ∈ Z≥0 and r ≤ 2m, we have

(3.13) 4F3

(
−r, r + 2n− 2m+ 1, −m, −m+ 1

2
n−m+ 1, n−m+ 3

2 , −2m

∣∣∣∣ 1)
=

(2n+ r + 1)! (2n− 2m+ 1)!

(2n− 2m+ 2r + 1) (2n− 2m+ r)! (2n+ 1)!
.

Proof. If we set

4F3

(
−r, r + 2n− 2m+ 1, −m, −m+ 1

2
n−m+ 1, n−m+ 3

2 , −2m

∣∣∣∣ 1) = G(r, n,m),

then the recurrence relation satisfied by G(r, n,m) is given by

(r + 1)(2n+ r + 2)(2n− 2m+ 2 r + 1)G(r, n,m)

+ 2(2n− 2m+ 2 r + 3)
[
2m(n+ r + 2)− (r + 1)(2n+ r + 2)

]
G(r + 1, n,m)− (2m− r − 1)(2n− 2m+ r + 2)

× (2n− 2m+ 2 r + 5)G(r + 2, n,m) = 0,

with the initial values

G(0, n,m) = 1, G(1, n,m) =
2(n+ 1)

2n− 2m+ 3
.

The exact solution of this recurrence relation is given explicitly by

G(r, n,m) =
(2n+ r + 1)! (2n− 2m+ 1)!

(2n− 2m+ 2r + 1) (2n− 2m+ r)! (2n+ 1)!
. �
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Lemma 3.7. For all j, r, s ∈ Z≥0, we have

j∑
r=0

(−j)r (j + s+ 1)r
r! (s+ r)! (s+ 2r + 1)

=
j!

(s+ 2j + 1) (s+ j)!
.

Proof. Let

j∑
r=0

(−j)r (j + s+ 1)r
r! (s+ r)! (s+ 2r + 1)

= M(j, r, s).

Then making use of a suitable symbolic algorithm such as the algo-
rithms by Zeilberger, Petkovsek and Van-Hoeij, M(j, r, s) satisfies the
recurrence relation

(j + s+1) (2j + s+3)M(j +1, r, s)−(j +1) (2j + s+1)M(j, r, s) = 0,

M(0, r, s) =
1

(s+ 1)!
,

which can be solved immediately to give

M(r, s, j) =
j!

(s+ 2j + 1) (s+ j)!
. �

Now, the linearization of product of Wm(x)Wn(x) is given in the
following theorem.

Theorem 3.8. For any nonnegative integers n and m, we have

(3.14) Wm(x)Wn(x) =
n+m∑

k=|n−m|

Wk(x).

Proof. With the aid of Theorem 3.1 and the two Lemmas 3.6 and
3.7, and after some manipulation, we get

R(1/2,−1/2)
m (x)R(1/2,−1/2)

n (x) =
2m∑
j=0

(2n− 2m+ 2j + 1)

(2n+ 1)(2m+ 1)
R

(1/2,−1/2)
n−m+j (x),

then if we make use of the identity
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R(1/2,−1/2)
n (x) =

1

2n+ 1
Wn(x),

formula (3.14) is obtained. �

Remark 3.9. Theorem 3.8 can be obtained as a direct consequence of
Theorem 3.5, with the aid of formula (2.6).

3.4. Comparison with the results in [6]. Reference [6] is integral
to our manuscript. The authors in [6] discussed the general lineariza-
tion problem

(3.15) P
(λ,δ)
i (x)P

(µ,γ)
j (x) =

i+j∑
k=0

Lij(k)P
(α,β)
k (x),

where P
(λ,δ)
i (x) is the Jacobi polynomial of degree i. In fact, they ob-

tained an expression for the linearization coefficients Lij(k) in terms
of the Kampé de Fériet function F 2:2

2:1 which is represented as a double
hypergeometric function. Comparing the results obtained in subsec-
tions 3.2 and 3.3 with those obtained in [6], it is worth pointing out
the following:

• Although linearization formula (3.15) is general, the coefficients
Lij(k) are not easy to reduce in simple forms even for special
choices of the involved parameters in (3.15). For the choice
corresponding to α = µ + λ and β = δ + γ, the authors in
[6] developed a new formula for the linearization coefficients
Lij(k) which is expressed in terms of a product of two cer-
tain terminating hypergeometric functions of the type 3F2(1).
For the particular choice corresponding to λ = δ = µ = γ,
one of the resulting 3F2(1) cannot be reduced to any hyperge-
ometric term, while the second can be reduced with the aid of
Petkovesk’s algorithm.

• The two developed linearization formulae (3.8) and (3.14) are
equivalent to those obtained from (3.15) with the following two
choices of parameters:
(i) λ = µ = α = −1/2, δ = γ = β = 1/2.
(ii) λ = µ = α = 1/2, δ = γ = β = −1/2, but if we

use (3.15), the two resulting linearization formulae are
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expressed in terms of F 2:2
2:1 , which cannot be reduced in

simple linearization formulae. So, we follow an alternative
approach to obtain (3.8) and (3.14), that is, we make use
of the linearization formula (3.3) of Rahman [26].

4. New trigonometric identities and transformation formu-
lae.

4.1. Squares formulae for Vn(x) and Wn(x). As special cases of the
linearization formulae (3.8) and (3.14), the expressions for the squares
of Vn(x) and Wn(x) in terms of Vn(x) and Wn(x) themselves are given
in the following corollary.

Corollary 4.1. The squares of Vn(x) and Wn(x) are given by the
following relations:

V 2
n (x) =

2n∑
k=0

(−1)k Vk(x),(4.1)

and

W 2
n(x) =

2n∑
k=0

Wk(x).(4.2)

Remark 4.2. It is worth noting that relations (4.1) and (4.2) are
equivalent to the following two trigonometric identities:

2n∑
k=0

(−1)k cos

(
k +

1

2

)
θ =

cos2(n+ 1/2) θ

cos θ/2
(4.3)

2n∑
k=0

sin

(
k +

1

2

)
θ =

sin2(n+ 1/2)θ

sin θ/2
.(4.4)

4.2. Reduction formulae for certain hypergeometric functions
of a unit argument. In this section, new reduction formulae for
summing four terminating hypergeometric series are deduced. These
reduction formulae are obtained by making use of the following two
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Whipple’s transformations: the first gives a connection between a two
terminating balanced 4F3(1) series, and the second gives a connection
between a terminating balanced 4F3(1) series and a terminating very
well-poised 7F6(1) series.

Theorem 4.3. For any positive integer r, we have

4F3

(
−r, a, b , c
d, e, f

∣∣∣∣ 1) =
(e− a)r (f − a)r

(e)r (f)r

4F3

(
−r, a, d− b , d− c
d, a+ 1− r − e, a+ 1− r − f

∣∣∣∣ 1) ,

where −r + a+ b+ c+ 1 = d+ e+ f .

(For the proof, see Andrews et al. [2]).

Theorem 4.4. For any positive integer r, we have

(4.5) 4F3

(
−r, x, y , z
u, v, w

∣∣∣∣ 1) =
(u− y)r (u− z)r
(u)r (u− y − z)r

× 7F6

(
−r, a, 1 + a

2 , w − x , v − x , y , z
1 + a+ r, a

2 , v , w , 1 + a− y , 1 + a− z

∣∣∣∣ 1) ,

where a = y + z − u− r = w + v − x− 1.

(For the proof, see Bailey [4]).

Now, we can state and prove the following two theorems:

Theorem 4.5. For all r, s, n ∈ Z≥0 and r ≥ 2n−2s, the following two
reduction formulae hold.

4F3

(
−r, r + 2s+ 1, n+ 1, n+ 3

2
s+ 1, s+ 3

2 , 2n+ 2

∣∣∣∣ 1) =
(2s− 2n)r (2 s+ 1)!

(2r + 2s+ 1) (r + 2s)!

(4.6)

and

4F3

(
−r, r + 2s+ 1, n+ 1, n+ 1

2
s+ 1, s+ 1

2 , 2n+ 2

∣∣∣∣ 1) =
(2s− 2n)r (2 s)!

(r + 2s)!
.

(4.7)
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Proof. If we make use of the Whipple’s transformation stated in
Theorem 4.3, then we have the following two transformation formulae:

(4.8) 4F3

(
−r, r + 2s+ 1, n+ 1, n+ 3

2
s+ 1, s+ 3

2 , 2n+ 2

∣∣∣∣ 1)
=

(s+ 1/2)r (2s− 2n)r
(−s− r − 1/2)r (−2n− r − 1)r

× 4F3

(
−r, r + 2s+ 1, s− n, s− n− 1

2
s+ 1, s+ 1

2 , 2s− 2n

∣∣∣∣ 1) ,

and

(4.9) 4F3

(
−r, r + 2s+ 1, n+ 1, n+ 1

2
s+ 1, s+ 1

2 , 2n+ 2

∣∣∣∣ 1)
=

(s+ 3/2)r (2s− 2n)r
(−s− r + 1/2)r (−2n− r − 1)r

× 4F3

(
−r, r + 2s+ 1, s− n, s− n+ 1

2
s+ 1, s+ 3

2 , 2s− 2n

∣∣∣∣ 1) .

Now, the two reduction formulae (4.6) and (4.7) can be immediately
obtained after the application of Lemmas 3.2 and 3.6 on the right hand
sides of the two transformation formulae (4.8) and (4.9). �

Theorem 4.6. For all n, r, s ∈ Z≥0 and r ≥ 2n−2s, the following two
reduction formulae hold :

(4.10)

7F6

(
−r,−2n−r+s− 3

2
,−n− r

2
+ s

2
+ 1

4
,−2n−r−1,−r − s− 1

2
, s−n,−n+s− 1

2

−2n+s− 1
2
,−n− r

2
+ s

2
− 3

4
, s+ 1

2
, 2s−2n,−n−r− 1

2
,−n−r

∣∣∣∣ 1)
=

(2s)! (2n+ r + 1)! (s+ 1)r
(
2n− s+ 3

2

)
r

(2n+ 1)! (r + 2s)! (n+ 1)r
(
n+ 3

2

)
r

,

and

7F6

(
−r,−2n−r+s− 1

2
,−n− r

2
+ s

2
+ 3

4
,−2n−r−1,−r−s+ 1

2
, s−n,−n+s+ 1

2

−2n+s+ 1
2
,−n− r

2
+ s

2
− 1

4
, s+ 3

2
, 2s−2n,−n−r+ 1

2
,−n−r

∣∣∣∣ 1)
(4.11)

=
(2s+ 1)! (2n+ r + 1)! (s+ 1)r

(
2n− s+ 1

2

)
r

(2n+ 1)! (2r + 2s+ 1) (r + 2s)!
(
n+ 1

2

)
r
(n+ 1)r

.
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Proof. The two reduction formulae (4.10) and (4.11), can be ob-
tained with the aid of Theorem 4.4, and the two reduction formulae
(3.5) and (3.13). �
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