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THE SYMBOLIC GENERIC INITIAL SYSTEM OF
ALMOST LINEAR POINT CONFIGURATIONS IN P2

SARAH MAYES

ABSTRACT. Consider an ideal I ⊆ K[x, y, z] correspond-
ing to a point configuration in P2 where all but one of the
points lies on a single line. In this paper, we study the sym-
bolic generic initial system {gin (I(m))}m obtained by taking
the reverse lexicographic generic initial ideals of the uniform
fat point ideals I(m). We describe the limiting shape of
{gin (I(m))}m and, in proving this result, demonstrate that

infinitely many of the ideals I(m) are componentwise linear.

1. Introduction. Given a set of distinct points {p1, . . . , pr} of P2,
we may consider the fat point subscheme Z = m(p1 + · · ·+ pr), whose
ideal IZ ⊆ K[x, y, z] consists of functions vanishing to at least order m
at each point. If I is the ideal of {p1, . . . , pr}, IZ is equal to the mth
symbolic power of I, denoted I(m). While uniform fat point ideals are
relatively easy to describe, computing even simple invariants such as
Hilbert functions or the degree of least degree elements has proved
very difficult. Understanding how the configuration of the points
{p1, . . . , pr} is related to invariants of the ideals I(m) is an active area
of research (see, for example, [2, 3, 7, 11]).

Our main objective is to describe the limiting behavior of the Hilbert
functions of the uniform fat point ideals {I(m)}m as m gets large. We
study the case where I is the ideal of a point configuration where all
but one of the points lies on a single line. The study of the asymptotic
behavior of algebraic objects has been a significant research trend over
the past 20 years; it is motivated by the philosophy that the limiting
behavior of a collection of objects is often simpler than the individual
elements within the collection. For example, within the study of fat
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points, more can be said about the limit limm→∞ α(I(m))/m than the
individual invariants α(I(m)), where α(I(m)) denotes the degree of the
least degree element of I(m) (for example, see [9]).

It is well known that the Hilbert function of an ideal and its generic
initial ideal are equal. Thus, to describe the limiting behavior of the
Hilbert functions of {I(m)}m we will study the reverse lexicographic
symbolic generic initial system {gin (I(m))}m of I and describe its
limiting shape. The limiting shape P of {gin (I(m))}m is defined to
be the limit

lim
m→∞

1

m
Pgin(I(m))

where Pgin (I(m)) denotes the Newton polytope of gin(I(m)). When I is

an ideal corresponding to a point configuration in P2 each reverse lex-
icographic generic initial ideal gin (I(m)) is generated in two variables;
thus, Pgin (I(m)), and P itself, may be thought of as a subset of R2.
There is evidence that this limiting shape captures geometric informa-
tion about the corresponding arrangement of points (see discussion in
[12, Section 5]).

The main result of this paper is the following theorem describing
the limiting shape of {gin (I(m))}m when I is an ideal of a point
configuration where all but one of the points lies on a single line.

Theorem 1.1. Fix some integer l > 2, and let I ⊂ K[x, y, z] be the
ideal corresponding to the arrangement of l + 1 points p1, . . . , pl+1 of
P2 such that p1, . . . , pl lie on a line L and pl+1 does not lie on L. Then
the limiting shape of the symbolic generic initial system {gin (I(m))}m
of I is the shaded polytope pictured in Figure 1.

In proving this theorem, we will show that when I is the ideal of
such an almost linear point configuration, I(m) is componentwise linear
for infinitely many m (Theorem 3.1). This property means that the
minimal free resolution of the ideal has a very simple form. Other
classes of ideals that are componentwise linear include stable monomial
ideals, Gotzmann ideals and ideals of at most n+1 fat points in general
position in Pn ([5, 10]).

The almost linear point configuration addressed by Theorem 1.1
may be viewed as one step more complex than the case where all
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Figure 1. The limiting shape of {gin (I(m))}m where I is an ideal corre-
sponding to a point configuration with l points on a line and one point off of
that line.

points lie on a smooth conic. Recent work by Denkert and Janssen
in [4] demonstrates that the relationship between the symbolic and
ordinary powers of ideals of such point configurations is moderately
more intricate than in the case where all points lie on a smooth conic.
Similarly, Theorem 1.1 tells us that the limiting shape of the symbolic
generic initial system of almost linear point configurations is slightly
more complex than the limiting shape that arises when all points lie
on a smooth conic (see [13]).

Background information necessary for the proof of the main result is
contained in Section 2. In Section 3, we prove results on componentwise
linearity for individual fat point ideals. Section 4 uses these results to
prove Theorem 1.1.

2. Background. In this section, we will review facts about compo-
nentwise linearity, generic initial ideals of fat points and blow-ups of
points in P2. Throughout, R = K[x, y, z] is a polynomial ring over
a field of characteristic 0 with the standard grading and the reverse
lexicographic order where x > y > z.

2.1. Componentwise linearity. Componentwise linear ideals are
homogeneous ideals with particularly nice minimal free resolutions.
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Definition 2.1 ([10]). Let R = K[x1, . . . , xn] and M be a graded R-
module. Then M has a d-linear resolution if the graded minimal free
resolution of M is of the form

0−→R(−d−s)βs −→· · ·−→R(−d−1)β1 −→R(−d)β0 −→M−→0.

For any homogeneous ideal I ⊂ R, let (Ik) be the ideal generated by all
homogeneous polynomials of degree k contained in I. A homogeneous
ideal I is said to be componentwise linear if (Ik) has a linear resolution
for all k.

The following theorem of Aramova, Herzog and Hibi connects com-
ponentwise linearity to the study of generic initial ideals and will be
our main tool for detecting this property.

Theorem 2.2 ([1]). Let I be a homogeneous ideal of K[x1, . . . , xn].
Then I is componentwise linear if and only if I and its reverse lexico-
graphic generic initial ideal gin (I) have the same Betti numbers.

2.2. Generic initial ideals of fat point ideals. When I is the ideal
of distinct points of P2, the reverse lexicographic generic initial ideals
gin (I(m)) have a very simple form detailed in the following proposition.

Proposition 2.3. Suppose that I ⊆ K[x, y, z] is the ideal of a set of
distinct points of P2. Then the minimal generators of gin (I(m)) under
the reverse lexicographic order are of the form

{xα(m), xα(m)−1yλα(m)−1(m), . . . , xyλ1(m), yλ0(m)},

where λ0(m) > λ1(m) > · · · > λα(m)−1(m) ≥ 1 and α(m) = α(I(m)) is

the degree of the least degree generator of I(m).

This follows from the fact that generic initial ideals are Borel-fixed
and the ideals I(m) and gin (I(m)) are saturated; see [14, Corollary 2.9]
for a proof. The following corollary now follows from Theorem 2.2 and
Proposition 2.3.

Corollary 2.4. Let I be the ideal of a set of distinct points in P2 and
m be an integer such that I(m) is componentwise linear. The generators
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of gin (I(m)) are completely determined by the degrees of the minimal
generators of I(m).

2.3. Blow-ups of points in P2. The algorithms that we will use to
prove Theorems 1.1 and 3.1 come from [8] and are very similar to the
procedures outlined in [12]. The key to these algorithms is to consider
divisors on the blow-ups of each point arrangement.

Suppose that π : X → P2 is the blow-up of distinct points p1, . . . , pr
of P2. Let Ei = π−1(pi) for i = 1, . . . , r, and let L be the total transform
in X of a line not passing through any of the points p1, . . . , pr. The
classes of these divisors form a basis of Cl (X); for convenience, we will
write ei in place of [Ei] and e0 in place of [L]. Further, the intersection
product in Cl (X) is defined by e2i = −1 for i = 1, . . . , r; e20 = 1; and
ei · ej = 0 for all i ̸= j.

Let Z = m(p1 + · · · + pr) be a uniform fat point subscheme with
sheaf of ideals IZ ; set

Fd = dE0 −m(E1 + E2 + · · ·+ Er)

and Fd = OX(Fd). Much of our interest in the blow-ups comes from
the fact that the Hilbert function of I(m) is related to the divisors Fd

(see [12]):
h0(X,Fd) = HI(m)(d).

For convenience, we will sometimes write h0(X,F ) = h0(X,OX(F )).
Recall that, if [F ] is not the class of an effective divisor, then h0(X,F ) =
0. On the other hand, if F is effective, then we will see that we can
compute h0(X,F ) by finding h0(X,H) for some numerically effective
divisor H.

Definition 2.5. A divisor H is numerically effective if [F ] · [H] ≥ 0 for
every effective divisor F . The cone of classes of numerically effective
divisors in Cl (X) is denoted NEF (X).

Lemma 2.6. Suppose that X is the blow-up of P2 at distinct points
p1, . . . , pr. Let F ∈ NEF (X). Then F is effective, and

h0(X,F ) = ([F ]2 − [F ] · [KX ])/2 + 1,

where KX = −3E0 + E1 + · · ·+ Er.
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Proof. This is a consequence of Riemann-Roch and the fact that
h1(X,F ) = 0 for any numerically effective divisor F on X. See [8,
Lemmas III.1.1 (b) and 2.2] for a discussion. �

Knowing how to compute h0(X,H) for a numerically effective divisor
H will allow us to compute h0(X,F ) for any divisor F . In particular,
given a divisor F , there exists a divisor H such that h0(X,F ) =
h0(X,H) and either:

(a) H is numerically effective so

h0(X,F ) = h0(X,H) = ([H]2 − [H] · [KX ])/2 + 1

by Lemma 2.6; or
(b) there is a numerically effective divisor G such that [G] · [H] < 0

so [H] is not the class of an effective divisor and h0(X,F ) =
h0(X,H) = 0.

The set of classes of effective, reduced and irreducible curves of
negative self-intersection in X is denoted by

NEG(X) := {[C] ∈ Cl (X) : [C]2 < 0,

C is effective, reduced and irreducible}.

NEG(X) is significant because it allows us to reduce a divisor in the
sense of the following lemma. The proof involves looking at a long
exact sequence of cohomology; see the discussion in [6, Section 3] for
details.

Lemma 2.7. Suppose that [C] ∈ NEG(X) is such that [F ] · [C] < 0.
Then h0(X,F ) = h0(X,F − C).

We have the following enumeration of the elements of NEG (X) from
[8, Lemma 3.1.1 (c)]. For convenience, we set

A := E0 − E1 − · · · − El, Bi := E0 − Ei − El+1,

where i = 1, . . . , l.
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Lemma 2.8 ([8]). Let X be the blow-up of points p1, . . . , pl+1 ∈ P2,
where p1, . . . , pl lie on a line and pl+1 lies off of that line. Then

NEG(X) = {[A]; [Bi] for i = 1, . . . , l; ei for i = 1, . . . , l + 1}.

The method for finding an H satisfying (a) or (b) above is as follows.

Procedure 2.9 (Remark 2.4 of [7]). Let X be the blow-up of points
p1, . . . pr ∈ P2. Given a divisor F , we can find a divisor H with
h0(X,F ) = h0(X,H) satisfying either condition (a) or (b) above as
follows.

(i) Reduce to the case where [F ] · ei ≥ 0 for all i = 1, . . . , r: if
[F ] · ei < 0 for some i, h0(X,F ) = h0(X,F − ([F ] · ei)Ei), so we
can replace F with F − ([F ] · ei)Ei.

(ii) Since L is numerically effective, if [F ] · e0 < 0 then [F ] is not the
class of an effective divisor, and we can take H = F (case (b)).

(iii) If [F ] · [C] ≥ 0 for every [C] ∈ NEG(X), then, by Lemma 2.8, F
is numerically effective, so we may take H = F (case (a)).

(iv) If [F ] · [C] < 0 for some [C] ∈ NEG(X) then h0(X,F ) =
h0(X,F − C) by Lemma 2.7. Replace F with F − C and repeat
from Step 2.

There are only a finite number of elements in NEG (X) to check
(by Lemma 2.8) so it is possible to complete step (iii). Further,
[F ] · e0 > [F −C] · e0 when [C] ∈ NEG(X), so the condition in step (ii)
will be satisfied after at most [F ] · e0 +1 repetitions. Thus, the process
will terminate.

Denote the number of minimal generators of I(m) of degree d by
vd(I

(m)). Then

vd+1(I
(m)) = dim (coker ((I(m))d ⊗R1 −→ (I(m))d+1))

= dim (coker (H0(X,Fd)⊗H0(X, e0) −→ H0(X,Fd+1)))

:= s(Fd, e0).

If [Fd] is not the class of an effective divisor, then h0(X,Fd) = 0 and

(2.1) s(Fd, e0) = h0(X,Fd+1).
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In the case that [Fd] is the class of an effective divisor, let Hd be the
numerically effective divisor produced by Procedure 2.9. Then

s(Fd, e0) = s(Hd, e0) + h0(X,Fd+1)− h0(X,H+ e0)

by [8, Lemma 2.10]. Further, since Hd is numerically effective by
definition, s(Hd, e0) = 0 when the points p1, . . . , pr lie on a conic by
[8, Theorem 3.1.2]. Thus, in the cases we are interested in,

(2.2) s(Fd, e0) = h0(X,Fd+1)− h0(X,H+ e0).

Therefore, to find the number of generators s(Fd, e0) of each degree
d+ 1, we will proceed as follows

(a) Follow Procedure 2.9 to determine if Fd is effective or non-effective.
If Fd is effective, the procedure will yield a numerically effective
divisor Hd.

(b) Compute vd+1(I
(m)) = s(Fd, e0) for each d using expressions (2.1)

or (2.2) together with the formula from Lemma 2.6.

3. Generators of I(m) and componentwise linearity. Through-
out this section, R = K[x, y, z] is a polynomial ring over a field of
characteristic zero with the reverse lexicographic order. Also, I is the
ideal of a point configuration {p1, . . . , pl+1} in P2 where p1, . . . , pl lie
on a single line, pl+1 is off of that line, and l > 2. The purpose of this
section is to enumerate the generators of the fat point ideals I(m) and,
in doing so, prove the following theorem.

Theorem 3.1. Let I ⊆ K[x, y, z] be an ideal of l + 1 > 3 points in
P2 where l points lie on a single line and the other point lies off of
the line. Then an infinite number of the uniform fat point ideals I(m)

are componentwise linear. In particular, I(m) is componentwise linear
when l(l − 1) divides m.

The following proposition gives a specific criterion for an ideal of fat
points to be componentwise linear.

Proposition 3.2. Let J be a homogeneous ideal of K[x1, . . . , xn] such
that the reverse lexicographic generic initial ideal gin (J) is generated
in two variables. If α is the degree of the smallest degree generator of
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J and
α = {number of minimal generators of J} − 1,

then J is componentwise linear.

Proof. By Theorem 2.2, J is componentwise linear if and only if J
and gin (J) have the same Betti numbers. Since the Betti numbers of
J are obtained from those of gin (J) by making a series of consecutive
cancelations (see [15, Section I.22]), J is componentwise linear if and
only if no consecutive cancellations occur. However, since the minimal
free resolution of gin (J) is of the form

0 −→
⊕
j

R(−j)β1,j −→
⊕
j

R(−j)β0,j −→ gin (J) −→ 0,

any consecutive cancelation must involve canceling a β0,j ; these Betti
numbers correspond to minimal generators of gin (J). Therefore,
showing that J is componentwise linear in this case is equivalent to
showing that the minimal generators of J and gin (J) are of the same
degrees or, equivalently by consecutive cancelation, that J and gin (J)
have the same number of generators.

Since α is the degree of the least degree generator of J , it is also the
degree of the least degree generator of gin (J). By Borel-fixedness,

gin (J) = (xα
1 , x

α−1
1 x

λα−1

2 , . . . , x1x
λ1
2 , xλ0

2 )

for some invariants {λi}i and gin (J) has α+1 generators. Since J also
has α+ 1 generators, it must be componentwise linear. �

To prove Theorem 3.1, it remains to show that the conditions of
Proposition 3.2 are satisfied when J = I(m) and l(l−1) dividesm. That
is, we need to show that the degree of the smallest degree generator
of I(m) is one less than the number of minimal generators of I(m). To
prove that this holds we will compute the number of generators of each
degree using the procedure outlined at the end of subsection 2.3.

3.1. Finding Hd. In this section, we follow Procedure 2.9 to deter-
mine if each divisor Fd = dE0 − m(E1 + · · · + El+1) is numerically
effective and, if it is, to compute the associated numerically effective
divisor Hd satisfying equation (2.2). These results will be used in the
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next section to compute the number of generators of I(m) of each de-
gree. As d varies, the sign of the product [Fd] · [C], C ∈ NEG(X),
changes, influencing the divisors that are obtained throughout Proce-
dure 2.9. The four cases below correspond to the different directions
that Procedure 2.9 may take. In most cases, obtaining Hd requires
several iterations of the procedure and lengthy computations; we only
include the results here.

Recall that p1, . . . , pl are fixed points of P2 lying on a single line, pl+1

is an additional point lying off of that line (where l > 2), and I is the
ideal of {p1, . . . , pl+1}. Let X be the blow-up of the points p1, . . . , pl+1.
Throughout this section, we will assume that m = ρl(l − 1) for some
ρ ∈ N and write

a0E0 − a1E1 − · · · − arEl+1 := (a0; a1, . . . , al+1).

As before we will write elements of NEG (X) as

A := E0 − E1 − · · · − El, Bi := E0 − Ei − El+1,

where i = 1, . . . , l.

3.1.1. Case d ≥ lm. When d ≥ lm, [Fd] · [C] ≥ 0 for all [C] ∈
NEG(X). Therefore, Fd is already numerically effective, so

Hd = Fd.

3.1.2. Case 2m ≤ d < lm. When 2m ≤ d < lm, [Fd] · [A] < 0 and
[Fd] · [Bi] ≥ 0. Thus, only copies of A are subtracted in Procedure 2.9,
and we obtain

Hd = Fd −
⌈
lm− d

l − 1

⌉
A

=

(
d−

⌈
lm− d

l − 1

⌉
;m−

⌈
lm− d

l − 1

⌉
, . . . ,m−

⌈
lm− d

l − 1

⌉
,m

)
.

3.1.3. Case 2m−m/l ≤ d < 2m. When d < 2m, both [Fd] · [Bi] < 0
and [Fd] · [A] < 0, so copies of both A and Bi are subtracted in
Procedure 2.9. Writing d = 2m− γ where γ ≤ m/l, we obtain

Hd = Fd −
⌈
lm− d

l − 1

⌉
A− γ(B1 + · · ·+Bl)
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=

(
d−

⌈
lm− d

l − 1

⌉
− γl;m−

⌈
lm− d

l − 1

⌉
− γ, . . . ,

m−
⌈
lm− d

l − 1

⌉
− γ,m− γl

)
.

Notice that d−⌈(lm− d)/(l − 1)⌉−γl > 0 exactly when 2m−m/l ≤ d.

3.1.4. Case d < 2m−m/l. When d < 2m−m/l, Procedure 2.9 will
eventually yield a divisor class equal to that of Hd from the previous
case. However, since d < 2m−m/l, this intermediate divisor is of the
form a0E0 − a1E1 − · · · − al+1El+1 with a0 < 0 and therefore is not
effective. It follows that Fd is not effective so h0(X,Fd) = 0.

3.2. Determining s(Fd, e0). Fix I, X, l > 2 and m = ρl(l − 1)
as in subsection 3.1. In this section, we will compute the number of
generators of I(m) of each degree d + 1, i.e. , s(Fd, e0). The following
facts are used to evaluate these expressions.

• The divisors Hd and Hd+1 computed in the previous section.
• When [Fd+1] is the class of an effective divisor,

h0(X,Fd+1)=h0(X,Hd+1)=([Hd+1]
2−[KX ] · [Hd+1])/2+1

by Lemma 2.6 and Procedure 2.9.

3.2.1. Case d ≥ lm. We will find the number of generators of I(m)

and gin (I(m)) of degree d + 1, assuming that d ≥ lm. In this case,
Hd + E0 = Fd + E0 = Fd+1, so

s(Fd, e0) = h0(X,Fd+1)− h0(X,Fd+1) = 0.

3.2.2. Case 2m ≤ d ≤ lm − 2. To obtain the number of generators
of I(m) of degree d + 1 for 2m ≤ d ≤ lm − 1, we begin by writing
d = jm + w(l − 1) + p where j = 2, . . . , l − 1, w = 0, . . . , ρl − 1
and p = 0, . . . , l − 2. Then ⌈(lm− d)/(l − 1)⌉ = (l − j)lρ − w and,
referring to the expression for Hd from subsection 3.1.2, we see that
Hd + E0 = Hd+1 exactly when p ̸= l − 2. Thus, when p ̸= l − 2,

s(Fd, e0) = h0(X,Hd+1)− h0(X,Hd + e0) = 0,

and, when p = l − 2,

s(Fd, e0) = h0(X,Fd+1)− h0(X,Hd + e0) = 1.
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3.2.3. Case 2m−m/l ≤ d < 2m. To find the number of generators of
I(m) of degree d + 1 for 2m − m/l ≤ d < 2m, we begin by writing
d = 2m − (p + w(l − 1)), where: p = 1, . . . , l − 2 when w = 0;
p = 0, . . . , l − 2 when w = 1, . . . , ρ − 1; and p = 0 when w = ρ.
The expressions for Hd from subsection 3.1.3 yield

s(Fd, e0) =

{
l if p ̸= 1

l + 1 if p = 1.

3.2.4. Case d = 2m−m/l − 1. When d = 2m−m/l − 1, [Fd] is not
in the class of an effective divisor but [Hd+1] is. Therefore, the formula
for s(Fd, e0) yields

s(Fd, e0) = h0(X,Fd+1) = h0(X,Hd+1) = 1.

3.2.5. Case d < 2m−m/l− 1. When d < 2m−m/l− 1, neither [Fd]
nor [Fd+1] is in the class of an effective divisor, so

s(Fd, e0) = h0(X,Fd+1) = 0.

3.3. Generators of I(m). Let I, X, l > 2 and m = ρl(l+ 1) be as in
subsections 3.1 and 3.2. In this section we write down the number of
generators of each degree, using the results of the previous section and
the fact that vd+1(I

(m)) = s(Fd, e0).

3.3.1. Case 2m < d ≤ lm. We saw in subsection 3.2.2 that, when
2m ≤ d ≤ lm− 1, we only obtain nonzero values for s(Fd, e0) when we
can write d = jm+y(l−1) for j, y ∈ N. Therefore, when 2m < d ≤ lm,
there is one generator of I(m) of degree

jm+ w(l − 1) + (l − 2) + 1 = jm+ w(l − 1) + l − 1

for each j = 2, . . . , l − 1, w = 0, . . . , ρl − 1.

3.3.2. Case 2m − m/l + 1 ≤ d ≤ 2m. As in the previous case, the
number of generators of degree d when 2m−m/l+1 ≤ d ≤ 2m depends
on the form of d.

• There are l generators of degrees

2m− (p+ w(l − 1)) + 1
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when w = 0 and p = 2, . . . , l − 2 or w = 1, . . . , ρ − 1 and
p = 0, 2, 3, . . . , l − 2.

• There are l generators of degree

2m− (ρ(l − 1)) + 1 = 2m− m

l
+ 1.

• There are l + 1 generators of degrees

2m− (1 + w(l − 1)) + 1 = 2m− w(l − 1),

where w = 0, 1, . . . , ρ− 1.

3.3.3. Case d = 2m − m/l. In subsection 3.2.4 we observed that
s(F2m−m/l−1, e0) = 1. Therefore, there is exactly one generator of
degree 2m−m/l.

3.4. Componentwise linearity.

Proof of Theorem 3.1. Let I be the ideal corresponding to a point
configuration where l points lie on a line and one point lies off of the
line. Fix m = ρ(l)(l − 1) for ρ ∈ N. By Proposition 3.2, it is sufficient
to show that the degree of the smallest degree generator of I(m) is one
less than the number of elements in a minimal generating set of I(m).
By our work in subsection 4, the smallest degree generator of I(m) is
of degree 2m−m/l. The number of minimal generators is equal to

[no. gens. of degree > 2m] + [no. gens. of degree d,

2m− m

l
+ 1 ≤ d ≤ 2m] +

[
no. gens. of degree ≤ 2m− m

l

]
= [(l − 2)(ρl)] + [l(l − 2)(ρ− 1) + l(l − 3) + l + (l + 1)ρ] + 1

= [ρl2 − 2ρl] + [ρl2 − ρl + ρ] + 1

= 2m− ρl + ρ+ 1 = 2m− m

l
+ 1. �

4. Computation of the limiting shape. In this section we will
prove Theorem 1.1 using the fact from Theorem 3.1 that infinitely many
of the I(m) are componentwise linear. As before, we assume that l, the
number of points on the line, is greater than 2.
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Proof of Theorem 1.1. Let m be divisible by l and l1 so that m =
ρl(l1) for some ρ ∈ N. Then I(m) is componentwise linear by Theo-
rem 3.1, so the degrees of the minimal generators of I(m) are equal to
the degrees of the minimal generators of gin (I(m)). Proposition 2.3
implies that

gin (I(m)) = ({xα(m), xα(m)1yλα(m)−1(m), . . . , xyλ1(m), yλ0(m)}),

where α(m) = 2mm/l and λ0(m) = lm by our work in subsection .

We may think of the sequence of invariants {λi(m)}i of gin (I(m))
as having two phases: the first phase corresponds to λi(m) where
lm ≥ λi(m) + i > 2m and the second corresponds to λi(m) where
λi(m) + i ≤ 2m. The λi(m) within each of these two phases are
regularly spaced, that is, there are patterns in the gaps λi(m)λi+1(m)
forced by the patterns within the sequence of degrees {λi(m) + i}.

For example, consider the case where λi(m) + i ≤ 2m. If there are
l generators of a certain degree µ, then the fact that λi(m) + i = µ
for l consecutive i forces λi(m)λi+1(m) = 1 for l consecutive i. On the
other hand, when the degree of the jth generator is µ and the degree
of the (j + 1)st generator is µ1, (λj(m) + j)(λj+1(m) + j + 1) = 1
so λj(m)λj+1(m) = 2. Putting these observations together with the
results of subsection , the gap sequence {λi(m)λi+1(m)} for λi(m)+i ≤
2m exhibits the following pattern:

1, 1, . . . , 1︸ ︷︷ ︸
l repeats

, 2, 1, 1, . . . , 1︸ ︷︷ ︸
l−1 repeats

, 2, 1, 1, . . . , 1︸ ︷︷ ︸
l−1 repeats︸ ︷︷ ︸

repeats l−2 times

, . . . , 2.

This pattern repeats a total of ρ times.

If we plot the points (i, λi(m)) where λi(m) + i ≤ 2m and connect
consecutive points, the resulting line segments will have slopes 1 or 2
as in the pattern above. Taking the convex hull of this set of points
removes much of this detail; with some sketching, it is not difficult to
see that the boundary of the convex hull of this set of points is a single
line segment.

With similar considerations for the case where λi + i > 2m,
one sees that the Newton polytope of gin (I(m)) is defined by the
points (α(m), 0) = (2mm/l, 0), (J, λJ(m)) where λJ + J = 2m, and
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(0, λ0(m)) = (0, lm) (see Figure 2). Also note that, when λi + i > 2m,

(l1) = (λi1 + i1)(λi + i) = λi1λi1,

so λi1λi = l, and the slope of the line L1 in Figure 2 is equal to l. There
are a total of (l2)(ρl1 + 1) = ρl22ρl = mm/(l1) generators of degree
greater than 2m, so J = mm/(l1), and

λJ (m) = lml

(
m
m

l1

)
= l

(
m

l1

)
.

Note that

J + λJ (m) =

[
m
m

l1

]
+ l

(
m

l1

)
= m+

m

l1
(l1) = 2m,

as required.

Figure 2. The Newton polytope of gin (I(m)) where I is an ideal corre-
sponding to a point configuration with l points on a line and one point off of
that line.

Thus, the limiting shape of {gin (I(m))}m is defined by the points:(
lim

m→∞

2m−m/l

m
, 0

)
=

(
2− 1

l
, 0

)
(
0, lim

m→∞

lm

m

)
= (0, l)
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(
lim

m→∞

m− (m/l − 1)

m
, lim
m→∞

l(m/l − 1)

m

)
=

(
1− 1

l − 1
,

l

l − 1

)
,

as claimed. �

One can easily check that the area under the limiting shape is equal
to (l+1)/2. This is consistent with the general fact that the area under
the limiting shape of {gin (I(m))}m when I is the ideal of r points is
equal to r/2 (see [14, Proposition 2.14]).
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