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ON THE MEAN OF THE SHIFTED
ERROR TERM IN THE THEORY

OF THE DIRICHLET DIVISOR PROBLEM

XIAODONG CAO, JUN FURUYA, YOSHIO TANIGAWA
AND WENGUANG ZHAI

ABSTRACT. Let 0 < α < 1. We show that Bernoulli
polynomials appear in the difference

∑
n≤x ∆j(n + α) −∫ x

1 ∆j(t) dt for j = 1, . . . , 4. As a corollary of this fact,

we get better approximations of
∫ x
1 ∆j(t) dt by using zeros

of Bernoulli polynomials. For j = 1, 2, we give some
interpretation of this fact by means of Dirichlet series with
the coefficients ∆j(n+ α).

1. Introduction. Let d(n) be the number of positive divisors of n,
and let ∆(n) be the error term defined by

∆(x) =
∑
n≤x

d(n)− x(log x+ 2γ − 1),

where γ is the Euler constant. Many researchers are interested in the
behavior of ∆(x), especially the upper bound and the mean value of
powers of ∆(x). We shall concern with the mean values of ∆(x) in the
discrete and continuous sense.

The first deep result was obtained by Voronöı [16, 17]. He derived
the series representation of ∆(x) called the Voronöı formula and proved
that

(1.1) ∆(x) ≪ x1/3+ε,

where ε is an arbitrarily small positive constant which need not
be the same at each occurrence. The latest result is ∆(x) ≪

2010 AMS Mathematics subject classification. Primary 11M41, 11N37.
Keywords and phrases. Dirichlet divisor problem, mean value formulas,

Bernoulli polynomial.
The first and fourth authors are supported by the National Natural Science

Foundation of China (grant No. 11171344) and the Natural Science Foundation of
Beijing (grant No. 1112010).

Received by the editors on May 18, 2013, and in revised form on April 3, 2014.
DOI:10.1216/RMJ-2016-46-1-105 Copyright c⃝2016 Rocky Mountain Mathematics Consortium

105



106 X. CAO, J. FURUYA, Y. TANIGAWA AND W. ZHAI

x131/416(log x)26947/8320, which can be found in Huxley [5]. It is con-
jectured that ∆(x) ≪ x1/4+ε.

As for the mean estimate of ∆(x), Voronöı showed that
(1.2)∫ x

1

∆(t) dt =
1

4
x+

1

2
√
2π2

x3/4
∞∑

n=1

d(n)

n5/4
sin

(
4π

√
nx− π

4

)
+O(x1/4)

and

(1.3)
∑
n≤x

∆(n) =
1

2
x log x+

(
γ − 1

4

)
x+O(x3/4).

The mean square estimate of ∆(x) has a long history ([6, 13]).
Tong [14] proved that

(1.4)

∫ x

1

∆2(t) dt = C2x
3/2 + F2(x),

with F2(x) = O(x log5 x), where C2 is the constant given by C2 =
1/6π2

∑∞
n=1 d

2(n)/n3/2. Tong’s estimate was improved to F2(x) =

O(x log4 x) by Preissmann [11] and to F2(x) = O(x log3 x log log x) by
Lau and Tsang [10] recently.

In [9], Lau and Tsang studied the function F2(x) closely and proved
that ∫ x

2

F2(t) dt = − 1

8π2
x2 log2 x+ c1x

2 log x+O(x2),

with a certain constant c1. Furthermore, they conjectured that

(1.5) F2(x) = − 1

4π2
x log2 x+A1x log x+O(x),

where A1 is a certain constant.

For higher power moments of ∆(x), it is known that
∫ x

1
∆j(t) dt

(3 ≤ j ≤ 9) has an asymptotic representation ([15, 18, 19]). In
particular, in the third power case, the best result to date is due to Ivić
and Sargos [8], who proved that

(1.6)

∫ x

1

∆3(t) dt = C3x
7/4 + F3(x),
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with

(1.7) F3(x) = O(x7/5+ε),

where C3 is a certain positive constant.

Recently, Furuya [3] studied the difference between the discrete
mean

∑
n≤x ∆

j(n) and the continuous mean
∫ x

1
∆j(t) dt for j ≥ 2 in

detail. For instance, he showed that

∑
n≤x

∆(n) =

∫ x

1

∆(t)dt+
1

2
x log x+

(
γ − 1

2

)
x(1.8)

+

(
1

2
− ψ(x)

)
∆(x) +O(log x),∑

n≤x

∆2(n) =

∫ x

1

∆2(t) dt+
1

6
x log2 x+

8γ − 1

12
x log x(1.9)

+
8γ2 − 2γ + 1

12
x+O(x3/4 log x)

and

∑
n≤x

∆3(n) =

∫ x

1

∆3(t) dt+
3

2
C2x

3/2 log x+ (3γ − 1)C2x
3/2(1.10)

+O(x log5 x),

where C2 is the constant defined by (1.4), and ψ(x) = x− [x]− 1/2.

The error term in (1.9) was studied by Cao and Zhai [2]. They
showed that

∑
n≤x

∆2(n) =

∫ x

1

∆2(t) dt+
1

6
x log2 x

(1.11)

+
8γ − 1

12
x log x+

8γ2 − 2γ + 1

12
x

+ (log x+ 2γ)G(x) +

(
1

2
− ψ(x)

)
∆2(x) +O(x1/2 log x)
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with

(1.12) G(x) =
1

2
√
2π2

x3/4
∞∑

n=1

d(n)

n5/4
sin

(
4π

√
nx− π

4

)
.

In [1], with a different method from [3], the authors of the present
paper showed

∑
n≤x

∆4(n) =

∫ x

1

∆4(t) dt+ 2C3x
7/4 log x

(1.13)

+
4(7γ − 2)

7
C3x

7/4 + C2x
3/2 log2 x

+
4(3γ − 1)

3
C2x

3/2 log x+
4(9γ2 − 6γ + 2)

9
C2x

3/2

+O(x7/5+ε),

where C2 is the same as above and C3 is the constant defined by (1.6).

We can observe that the difference between the discrete mean of
∆j(n) and the continuous mean of ∆j(x) is rather large. The reason
may be that ∆(x) has a jump at each integer n. This remark suggests
that we take a sum at non-integer points. In this paper, we shall
consider the sum of the form

∑
n≤x ∆

j(n + α), where α is a constant
such that 0 < α < 1. As there is a lack of precise form of the discrete
and continuous mean of higher powers of ∆(x) at present, we restrict
ourselves to consideration of up to the fourth power moments.

Theorem 1.1. Let α be a constant such that 0 ≤ α < 1. Let
B1(x) = x−1/2 and B2(x) = x2−x+1/6 be the Bernoulli polynomials
of degree 1 and 2, respectively. Then, under the above notation, we
have

∑
n≤x

∆(n+ α) =

∫ x

1

∆(t)dt−B1(α)x(log x+ 2γ − 1)

(1.14)

+

(
1

2
− ψ(x)

)
∆(x) +O(log x).
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∑
n≤x

∆2(n+ α) =

∫ x

1

∆2(t)dt+B2(α)x log
2 x

(1.15)

+

(
(4γ − 2)B2(α)−

1

2
B1(α)

)
x log x

+

((
4γ2 − 4γ + 2

)
B2(α)−

(
γ − 1

2

)
B1(α)

)
x

− 2B1(α)(log x+ 2γ)G(x) +

(
1

2
− ψ(x)

)
∆2(x)

+O(x1/2 log x).

∑
n≤x

∆3(n+ α) =

∫ x

1

∆3(t)dt− 3B1(α)C2x
3/2 log x

(1.16)

− (6γ − 2)B1(α)C2x
3/2 +O(x log5 x).

and

∑
n≤x

∆4(n+ α) =

∫ x

1

∆4(t)dt− 4C3B1(α)x
7/4 log x

(1.17)

− 8

7
(7γ − 2)C3B1(α)x

7/4

+ 6C2B2(α)x
3/2 log2 x+ 8(3γ − 1)C2B2(α)x

3/2 log x

+ 8

(
3γ2 − 2γ +

2

3

)
C2B2(α)x

3/2 +O(x7/5+ε).

The more precise form of (1.16) is derived under the conjecture of
Lau and Tsang (1.5). In fact, we can prove that

Theorem 1.2. Suppose that the conjecture of Lau and Tsang (1.5) is
true. Let B3(x) = x3 − 3/2x2 + 1/2x be the Bernoulli polynomial of
degree 3. Then we have∑

n≤x

∆3(n+ α) =

∫ x

1

∆3(t)dt− 3C2B1(α)x
3/2 log x
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− 2C2(3γ − 1)B1(α)x
3/2

−
{
B3(α)−

3

4π2
B1(α)

}
x log3 x

+ 3

{
(1− 2γ)B3(α) +

1

4
B2(α)

−
(
(1− 2γ)

4π2
+A1

)
B1(α)

}
x log2 x+O(x log x).

It is interesting to note that the Bernoulli polynomials appear in the
coefficients on the right-hand sides of Theorems 1.1 and 1.2. Hence, if
we take α as a root of B1(x) or B2(x), we can get better approximations
of

∫ x

0
∆j(t) dt. In fact, in Section 5, we shall consider the sum of the

forms
∑

n≤x ∆
j(n + 1/2) or

∑
n≤x(∆

j(n + β) + ∆j(n + β′))/2 to get

such approximations, where β and β′ are zeros of B2(x).

It is well known that the behavior of the sum of an arithmetical func-
tion is controlled by the singularities of the Dirichlet series generated by
that arithmetical function. Hence, the assertions of Theorem 1.1 could
be interpreted by means of the Dirichlet series

∑∞
n=1 ∆

j(n+ α)/ns. In
the last section, we shall discuss Theorem 1.1 from this viewpoint.

2. Preliminaries. First we shall give an expression of ∆(n+α) by
means of ∆(n).

Lemma 2.1. Let α be a real number such that 0 ≤ α < 1 and n a
positive integer. Then we have

(2.1) ∆(n+ α) = ∆(n)− α log n− 2αγ − α2

2n
+O

(
1

n2

)
.

Proof. From the definition of ∆(n), we have

∆(n) + n(log n+ 2γ − 1) = ∆(n+ α) + (n+ α)(log(n+ α) + 2γ − 1).

Hence,

∆(n+ α) = ∆(n)−
(
(n+ α) log

(
1 +

α

n

)
+ α logn

)
− α(2γ − 1)

(2.2)



THE MEAN OF THE SHIFTED ERROR TERM 111

= ∆(n)−
N∑

k=1

(−1)k−1

k(k + 1)

αk+1

nk
− α log n

− 2αγ +O

(
1

nN+1

)
,

whereN is any positive integer. TakingN = 1 in (2.2), we get (2.1). �

In this place, we shall collect the formulas for the sum of powers of
log n for later use. The proofs will be omitted since they are elementary
and well known.

Lemma 2.2. We have, for x ≥ 2,∑
n≤x

log n = x log x− x+O(log x),

∑
n≤x

log2 n = x log2 x− 2(x log x− x) +O(log2 x),

∑
n≤x

log3 n = x log3 x− 3x log2 x+ 6x log x− 6x+O(log3 x),

∑
n≤x

log n

n
≪ log2 x.

3. Proof of Theorem 1.1.

Proof of (1.14). From Lemma 2.1, we have

(3.1)
∑
n≤x

∆(n+ α) =
∑
n≤x

∆(n)− α
∑
n≤x

log n− 2αγ[x] +O(log x).

Substituting (1.8) in (3.1) and using Lemma 2.2, we get (1.14) imme-
diately.

Proof of (1.15). Squaring both sides of (2.1) and noting (1.1), we get

∆2(n+ α) = ∆2(n)− 2α∆(n) log n− 4αγ∆(n)− α2∆(n)

n
(3.2)

+ α2 log2 n+ 4α2γ log n+ 4α2γ2 +
α3 log n

n

+
2α3γ

n
+O

(
n−5/3

)
.
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It is easily seen that

(3.3)
∑
n≤x

∆(n)

n
≪ log2 x

by partial summation and (1.3), and∑
n≤x

∆(n) =
1

2
x log x+

(
γ − 1

4

)
x+G(x)(3.4)

+

(
1

2
− ψ(x)

)
∆(x) +O(x1/4)

by (1.2) and (1.8).

Next, we show that∑
n≤x

∆(n) log n =
1

2
x log2 x+

(
γ − 3

4

)
x log x(3.5)

−
(
γ − 3

4

)
x+G(x) log x

+

(
1

2
− ψ(x)

)
∆(x) log x+O(x1/4 log x).

In fact, by partial summation and (1.8), we have∑
n≤x

∆(n) log n = log x

(∑
n≤x

∆(n)

)
−

∫ x

1

1

t

(∑
n≤t

∆(n)

)
dt(3.6)

=
1

2
x log2 x+

(
γ − 3

4

)
x log x

−
(
γ − 3

4

)
x+G(x) log x

+

(
1

2
− ψ(x)

)
∆(x) log x−

∫ x

1

t−1G(t) dt

−
∫ x

1

(
1

2
− ψ(t)

)
∆(t)

t
dt+O(x1/4 log x).

As for the sixth term on the right-hand side of (3.6), one may integrate
term by term, since the series of G(x) is absolutely convergent. Hence,
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we get∫ x

1

t−1G(t) dt =
1

2
√
2π2

∞∑
n=1

d(n)

n5/4

∫ x

1

t−1/4 sin

(
4π

√
nt− π

4

)
dt

≪
∞∑

n=1

d(n)

n5/4
x1/4√
n

≪ x1/4.

Here we used the first derivative test for the integral on the right-hand
side.

For the seventh term in the right-hand side of (3.6), we apply
Cauchy’s inequality and (1.4) to get∫ 2X

X

(
1

2
− ψ(t)

)
∆(t)

t
dt≪

(∫ 2X

X

∆2(t) dt

)1/2(∫ 2X

X

t−2dt

)1/2

≪ X1/4.

Hence, by the splitting argument

(3.7)

∫ x

1

(
1

2
− ψ(t)

)
∆(t)

t
dt≪ x1/4.

The sixth and seventh terms are absorbed into the error term, and this
completes the proof of (3.5).

Now take the sum over n on both sides of (3.2). Using Lemma 2.2,
(3.3), (3.4) and (3.5), we find that

∑
n≤x

∆2(n+ α)

(3.8)

=
∑
n≤x

∆2(n) + (α2 − α)x log2 x+

(
(4γ − 2)α2 −

(
4γ − 3

2

)
α

)
x log x

+

(
(4γ2 − 4γ + 2)α2 +

(
− 4γ2 + 3γ − 3

2

)
α

)
x

− 2α(log x+ 2γ)

(
G(x) +

(
1

2
− ψ(x)

)
∆(x)

)
+O(x1/4 log x).

Substituting (1.11) in the right hand side of (3.8) and using (1.1), we
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find that

∑
n≤x

∆2(n+ α) =

∫ x

1

∆2(t) dt+

(
α2 − α+

1

6

)
x log2 x

(3.9)

+

(
4γ

(
α2 − α+

1

6

)
− 2

(
α2 − 3

4
α+

1

24

))
x log x

+

(
4γ2

(
α2 − α+

1

6

)
− (4γ − 2)

(
α2 − 3

4
α+

1

24

))
x

+ (1− 2α)(log x+ 2γ)G(x)

+

(
1

2
− ψ(x)

)
∆2(x) +O(x1/2 log x),

which proves (1.15).

Remark. The inequality (3.7) can be improved to ≪ log x with the
help of (1.2) and the similar discussion given in [3, pages 16–18], but
the above estimate is enough for our purposes.

Proof of (1.16). Taking the third power of both sides of (2.1), we
have

∆3(n+ α) = ∆3(n)− 3α∆2(n) log n− 6αγ∆2(n)(3.10)

+ 3α2∆(n) log2 n+ 12α2γ∆(n) log n

+ 12α2γ2∆(n)− 3

2
α2∆

2(n)

n

+ 3α3∆(n) log n

n
+ 6α3γ

∆(n)

n
− α3 log3 n

− 6α3γ log2 n+O(log n).

Similarly to (3.5), we find that∑
n≤x

∆(n) log2 n =
1

2
x log3 x+

(
γ − 5

4

)
x log2 x(3.11)

−
(
2γ − 5

2

)
(x log x− x)

+G(x) log2 x+

(
1

2
− ψ(x)

)
∆(x) log2 x
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+O(x1/4 log2 x)

=
1

2
x log3 x+

(
γ − 5

4

)
x log2 x

−
(
2γ − 5

2

)
x log x+O(x).

Furthermore, it is easy to see that∑
n≤x

∆2(n)

n
≪ x1/2(3.12)

and ∑
n≤x

∆(n) log n

n
≪ log3 x.(3.13)

By making use of (1.3), (3.3), (3.6), (3.11)–(3.13) and Lemma 2.2,
we take the sum over n on both sides of (3.10) and get∑

n≤x

∆3(n+ α) =
∑
n≤x

∆3(n)− 3α
∑
n≤x

∆2(n) log n(3.14)

− 6αγ
∑
n≤x

∆2(n) +

(
3

2
α2 − α3

)
x log3 x

+

(
3α2

(
3γ − 5

4

)
+ 3α3(1− 2γ)

)
x log2 x

+O(x log x).

As for the second and the third sums on the right hand side of (3.14),
from (1.4) and (1.9), we have

(3.15)
∑
n≤x

∆2(n) = C2x
3/2 +O(x log4 x),

(here we have used Preissmann’s estimate of F (x) for simplicity), and
hence by partial summation,∑

n≤x

∆2(n) log n = log x
(
C2x

3/2 +O(x log4 x)
)

(3.16)
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−
∫ x

1

1

t

(
C2t

3/2 +O(t log4 t)
)
dt

= C2x
3/2 log x− 2

3
C2x

3/2 +O(x log5 x).

Therefore, the left hand side of (3.14) (by the error estimateO(x log5 x))
is expressed as∑

n≤x

∆3(n+ α) =
∑
n≤x

∆3(n)− 3αC2x
3/2 log x

+ 2α(1− 3γ)C2x
3/2 +O(x log5 x).

Now, combining (1.10) and the above equation, we get∑
n≤x

∆3(n+ α) =

∫ x

1

∆3(t) dt+ 3

(
1

2
− α

)
C2x

3/2 log x(3.17)

+ (3γ − 1)(1− 2α)C2x
3/2 +O(x log5 x).

This completes the proof of (1.16). �

Proof of (1.17). Taking the fourth power of (2.1), we have

∆4(n+ α) = ∆4(n)− 4α∆3(n) log n− 8αγ∆3(n)(3.18)

+ 6α2∆2(n) log2 n+ 24α2γ∆2(n) log n

+ 24α2γ2∆2(n)− 4α3∆(n) log3 n

− 24α3γ∆(n) log2 n− 48α3γ2∆(n) log n

− 32α3γ3∆(n) +O(log4 n).

From (1.6), (1.7) and (1.10), we see that∑
n≤x

∆3(n) = C3x
7/4 +

3

2
C2x

3/2 log x+ (3γ − 1)C2x
3/2(3.19)

+O(x7/5+ε),

hence by partial summation, we get∑
n≤x

∆3(n) log n = C3x
7/4 log x− 4

7
C3x

7/4(3.20)
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+
3

2
C2x

3/2 log2 x+ (3γ − 2)C2x
3/2 log x

− 2

3
(3γ − 2)C2x

3/2 +O(x7/5+ε).

We also need the following estimate:∑
n≤x

∆2(n) log2 n = C2x
3/2 log2 x− 4

3
C2x

3/2 log x(3.21)

+
8

9
C2x

3/2 +O(x log6 x).

The sums arising from the terms after the seventh one in the right hand
side of (3.18) are estimated as O(x log4 x).

By using (3.15), (3.16) and (3.19)–(3.21), we make the sum over n
on both sides of (3.18). This time, we have∑
n≤x

∆4(n+ α) =
∑
n≤x

∆4(n)− 4α
∑
n≤x

∆3(n) log n− 8αγ
∑
n≤x

∆3(n)

+ 6α2
∑
n≤x

∆2(n) log2 n+ 24α2γ
∑
n≤x

∆2(n) log n

+ 24α2γ2
∑
n≤x

∆2(n) +O(x log4 x)

=
∑
n≤x

∆4(n)− 4αC3x
7/4 log x+

(
16

7
− 8γ

)
αC3x

7/4

+ 6(α2 − α)C2x
3/2 log2 x

+ 8(3γ − 1)(α2 − α)C2x
3/2 log x

+ 8

(
3γ2 − 2γ +

2

3

)
(α2 − α)C2x

3/2 +O(x7/5+ε).

Therefore, by (1.13), we deduce that

∑
n≤x

∆4(n+ α) =

∫ x

1

∆4(t) dt+ 2C3(1− 2α)x7/4 log x

(3.22)

+
4

7
(7γ − 2)(1− 2α)C3x

7/4
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+ 6

(
α2 − α+

1

6

)
C2x

3/2 log2 x

+ 8(3γ − 1)

(
α2 − α+

1

6

)
C2x

3/2 log x

+ 8

(
3γ2−2γ +

2

3

)(
α2−α+1

6

)
C2x

3/2+O(x7/5+ε).

This proves (1.17). �

4. Proof of Theorem 1.2. We assume that the conjecture (1.5) of
Lau and Tsang is true. Under this assumption, Furuya [3, Theorem 2]
proved that∑

n≤x

∆3(n) =

∫ x

1

∆3(t) dt+
3

2
C2x

3/2 log x+ (3γ − 1)C2x
3/2(4.1)

− 3

8π2
x log3 x

+

(
3

8π2
− 3

4π2
γ +

1

8
+

3

2
A1

)
x log2 x+O(x log x),

where A1 is the constant which appears in Lau and Tsang’s conjecture
(1.5).

Furthermore, their conjecture (1.5) with (1.9) and (1.4) gives∑
n≤x

∆2(n) = C2x
3/2 +

(
1

6
− 1

4π2

)
x log2 x(4.2)

+

(
A1 +

8γ − 1

12

)
x log x+O(x),

and

∑
n≤x

∆2(n) log n = C2x
3/2 log x− 2

3
C2x

3/2

(4.3)

+

(
1

6
− 1

4π2

)
x log3 x

+

(
A1 +

8γ − 1

12
−
(
1

6
− 1

4π2

))
x log2 x+O(x log x).
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by partial summation. Therefore, from (3.14) and (4.1)–(4.3), we
obtain∑
n≤x

∆3(n+ α) =

∫ x

1

∆3(t)dt+ 3C2

(
1

2
− α

)
x3/2 log x

+ C2(3γ − 1)(1− 2α)x3/2

+

{
3

(
1

2
− α

)(
1

6
− 1

4π2

)
− 1

4
+

3

2
α2 − α3

}
x log3 x

+

{(
3(1− 2γ)

8π2
+

3

2
A1

)
(1− 2α) +

1

8
+

3

4
α− 3αγ

+ 3α2

(
3γ − 5

4

)
+ 3α3(1− 2γ)

}
x log2 x+O(x log x).

Noting that B3(x) = x3 − 3/2x2 + 1/2, we get the assertion of
Theorem 1.2.

5. Better approximation for the integral of ∆j(x). As we
remarked in Section 1,

∑
n≤x ∆

j(n) does not give a good approximation

for
∫ x

0
∆j(t) dt. But, by specifying α in Theorems 1.1 and 1.2, we can

get better approximations. Namely, we have

Corollary 5.1. We have∑
n≤x

∆

(
n+

1

2

)
=

∫ x

1

∆(t) dt+

(
1

2
− ψ(x)

)
∆(x) +O(log x)(5.1)

and ∑
n≤x

∆3

(
n+

1

2

)
=

∫ x

1

∆3(t) dt+O(x log5 x).

Corollary 5.2. Let β and β′ be zeros of the Bernoulli polynomial B2(x)
of degree 2. Then we have

(5.2)
∑
n≤x

∆2(n+ β) + ∆2(n+ β′)

2

=

∫ x

1

∆2(t) dt+

(
1

2
− ψ(x)

)
∆2(x) +O(x1/2 log x),
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∑
n≤x

∆3(n+ β) + ∆3(n+ β′)

2
=

∫ x

1

∆3(t) dt+O(x log5 x),(5.3)

and

∑
n≤x

∆4(n+ β) + ∆4(n+ β′)

2
=

∫ x

1

∆4(t) dt+O(x7/5+ε).

Since B3(x) = B1(x)(B2(x)− 1/6), we get from Theorem 1.2 that

Corollary 5.3. Let β and β′ be zeros of B2(x). Assume that the Lau
and Tsang conjecture (1.5) is true. Then, we have

(5.4)
∑
n≤x

∆3(n+ β) + ∆3(n+ β′)

2
=

∫ x

1

∆3(t) dt+O(x log x).

It is interesting to note that, under the conjecture of Lau and Tsang,
the error term in (5.3) is improved to O(x log x) in (5.4). There seems
to be no conjecture on the behavior for F3(x) in (1.6) similar to (1.5).

6. Dirichlet series of ∆j(n + α). In this section, we give some
interpretation of Corollaries 5.1 and 5.2 from the viewpoint of the
Dirichlet series. Let D(s) be a Dirichlet series, which is first defined
by the absolutely convergent series

∑∞
n=1 ann

−s and continued as
a meromorphic function to some right-half plane. Let

∑
n≤x an =

g(x) + E(x), where g(x) is the main term and E(x) is the error term.
It is expected that g(x) is obtained from the residues of the poles of
D(s)xs/s. For a rigorous proof, we need more precise information on
the order of gratitude of D(s) as |ℑs| → ∞. Here, we shall see that
the assertions in Corollaries 5.1 and 5.2 are compatible with the above
heuristic argument. See also the last section of [4].

Let Dj(s, α) and Ij(s) be functions defined by

(6.1) Dj(s, α) =
∞∑

n=1

∆j(n+ α)

ns
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and

(6.2) Ij(s) =

∫ ∞

1

t−s∆j(t) dt,

respectively. We simply write Dj(s) = Dj(s, 0). The analytic proper-
ties of Dj(s) and Ij(s) are known in the cases j = 1, 2 [4], but unfortu-
nately we know little about them in the case j ≥ 3. So we shall restrict
ourselves to the cases j = 1, 2. Equations (5.1) and (5.2) suggest that
D1(s, 1/2)−L1(s) and [D2(s, β) +D2(s, β

′)]/2−I2(s) are holomorphic
for ℜs > 1− c with some constant c > 0, which we will show now.

We recall some facts from [4]. For j = 1, 2, Dj(s, α) and Ij(s)
converges absolutely in the range ℜs > 1+ j/4. It is shown that D1(s)
can be continued analytically to the whole plane C as a meromorphic
function. It has a double pole at s = 1 and simple poles at s = −2n
(n = 0, 1, 2, . . .). In particular, the Laurent expansion of D1(s) at s = 1
is given by

(6.3) D1(s) =
1

2(s− 1)2
+
γ + 1/4

s− 1
+O(1)

(see [4, Theorem 1]). The function I1(s) can be expressed as

(6.4) I1(s) =
ζ2(s− 1)

s− 1
− 2γ − 1

s− 2
− 1

(s− 2)2
,

(see Sitaramachandrarao [12]). Note that s = 2 is not a pole of I1(s).

On the other hand, it is shown in [4] that D2(s) and I2(s) can be
analytically continued to the region ℜs > 2/3 as meromorphic functions
[4, Theorem 2]. They have a simple pole at s = 3/2 with the same
residue and a triple pole at s = 1. The results for I2(s) are essentially
due to Ivić [7]. (See also [4, Lemmas 3 and 4].) Furthermore, we
showed that D2(s) − I2(s) has an analytic continuation to the region
ℜs > 1/2 with the triple pole at s = 1, whose Laurent expansion at
s = 1 is given by

D2(s)− I2(s) =
1

3(s− 1)3
+

2/3γ + 1/4

(s− 1)2
(6.5)

+
(2/3γ + 1/2)γ

s− 1
+O(1).



122 X. CAO, J. FURUYA, Y. TANIGAWA AND W. ZHAI

We return to the Dirichlet series Dj(s, α). From (2.2), we have

D1(s, α) = D1(s)−
N∑

k=1

(−1)k−1αk+1

k(k + 1)
ζ(s+ k) + αζ ′(s)− 2αγζ(s)

+O

( ∞∑
n=1

1

nℜs+N+1

)
,

for any N . The last sum converges for ℜs > −N . Since N can be taken
arbitrarily large, D1(s, α) can be continued to the whole complex plane
C. In particular, we have

D1(s, α) = D1(s) + αζ ′(s)− 2αγζ(s)− α2

2
ζ(s+ 1) +O(1)

for ℜs > −1, whose Laurent expansion of D1(s, α) at s = 1 is given by

(6.6) D1(s, α) =
1/2− α

(s− 1)2
+
γ(1− 2α) + 1/4

s− 1
+O(1).

Comparing (6.6) with (6.4), we have

(6.7) D1(s, α)− I1(s) = − B1(α)

(s− 1)2
− 2γB1(α)

s− 1
+O(1),

at s = 1; in particular, we can see thatD1(s, 1/2)−L1(s) is holomorphic
at s = 1.

Similarly we can see that D2(s, α)−D2(s) can be continued analyt-
ically to the half plane ℜs > −2/3 as a meromorphic function. More
precisely, by using (3.2), we have

D2(s, α) = D2(s) + 2αD′
1(s)− 4αγD1(s)− α2D1(s+ 1)(6.8)

+ α2ζ ′′(s)− 4α2γζ ′(s) + 4α2γ2ζ(s)− α3ζ ′(s+ 1)

+ 2α3γζ(s+ 1) +K(s),

where K(s) is holomorphic in ℜs > −2/3, from which we have

D2(s, α) = D2(s) +
2α2 − 2α

(s− 1)3
+

(4α2 − 4α)γ − α/2

(s− 1)2
(6.9)

+
(4α2 − 4α)γ2 − αγ

s− 1
+O(1).
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at s = 1. Combining (6.5) and (6.9), we find that

D2(s, α) = I2(s) +
2B2(α)

(s− 1)3
+

4B2(α)γ − 1/2B1(α)

(s− 1)2

+
4B2(α)γ

2 −B1(α)γ

s− 1
+O(1).

Let β and β′ be zeros of B2(x). Then, from the above formula, we can
see that [D2(s, β) +D2(s, β

′)]/2 − I2(s) is holomorphic at s = 1. It is
also clear from (6.8) that this difference is holomorphic at s = 3/2.
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16. G.F. Voronöı, Sur un problème du calcul des fonctions asymptotiques, J.

reine angew. Math. 126 (1903), 241–282.

17. , Sur une fonction transcendante et ses applications à la sommation
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