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ANGULAR VALUE DISTRIBUTION
CONCERNING SHARED VALUES

BIAO PAN AND WEICHUAN LIN

ABSTRACT. In this paper, we investigate the number of
sharing values of a meromorphic function and its derivative
in one angular domain instead of the whole complex plane
and obtain the following results: Let f be a meromorphic
function of lower order > 2 in the complex plane. Then
there exists a direction H: arg z = θ0 (0 ≤ θ0 < 2π) such
that for any positive number ε, f and f ′ share at most two
distinct finite values without counting multiplicities in the
angular region {z : | arg z − θ0| < ε}. This improve a result of
Weichuan and Mori.

1. Introduction and main result. In this paper, by a meromor-
phic function, we mean that the function is meromorphic in the whole
complex plane C. It is assumed that the reader is familiar with the
basic result and notations of the Nevanlinna’s value distribution the-
ory (see [1, 9]), such as T (r; f), N(r, f) and m(r, f). Meanwhile, the
lower order µ and the order λ of a meromorphic function f are, in turn,
defined as below:

µ := µ(f) = lim inf
r→∞

log T (r, f)

log r
,

λ := λ(f) = lim sup
r→∞

log T (r, f)

log r
,

Let D be a domain in the complex plane C, and let

ED(a, f) = {z ∈ D : f(z) = a, counting multiplicity},
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and

ED(a, f) = {z : z ∈ D, f(z) = a}( as a set in C).

We say that two meromorphic functions f and g share the value a IM
(ignoring multiplicity) in D if ED(a, f) = ED(a, g).

The problems about the uniqueness of meromorphic functions and
their derivatives with shared values have been studied by several au-
thors (see [5, 10, 11]). Mues, Steinmetz and Gundersen proved the
following theorem.

Theorem A [11]. Let f(z) be a meromorphic function, a1, a2, a3
distinct finite complex numbers. If a1, a2, a3 are IM shared values of
f and f ′ in C, then f ≡ f ′.

From Theorem A, we can immediately obtain Theorem A
′
.

Theorem A′. Let f be a non-constant meromorphic function. If
f ̸≡ f ′, then f and f ′ share at most two finite distinct values IM in the
complex plane C.

Theorem A′ shows that the number of sharing values of f(z) and
f ′(z) are two at most in the complex plane C except f(z) ≡ f ′(z).

People have established a connection between normality criteria
and shared values (see [3, 6, 8]). Naturally, we ask whether we can
extend Theorem A′ to some angular domains and establish a connection
between angular value distribution (singular directions) and shared
values of a meromorphic function. Lin and Mori [7] dealt with this
subject under certain value-sharing condition in a sector instead of the
plane C and proved the following theorem.

Theorem B. Let f(z) be a meromorphic function of infinite order
and

lim sup
r→∞

log log T (r, f)

log r
< +∞.

Then there exists a direction arg z = θ (0 ≤ θ < 2π) such that, for
every small positive number ε < π/2, f(z) and f ′(z) share at most two
distinct finite values in the angular domain {z : | arg z − θ| < ε}.

The direction arg z = θ in Theorem B is called one SV direction
by Lin and Mori [7]. Theorem B only discussed the infinite order
meromorphic functions of finite hyper order. In this paper, we shall
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prove that Theorem B is valid for any transcendental meromorphic
functions of lower order µ > 2.

Theorem 1.1. Let f be a meromorphic function of lower order µ > 2
in the complex plane C. Then there exists a direction H: arg z = θ0
(0 ≤ θ0 < 2π) such that, for every positive number ε, f and f ′ share
two distinct finite values IM at most in {z| arg z − θ0| < ε}.

2. Some lemmas. In order to prove Theorem 1.1, we will collect
and prove some lemmas in this section.

Lemma 2.1. ([4]). Let F be a family of meromorphic functions such
that, for every function f ∈ F , its zeros of multiplicity are at least k.
If F is not a normal family at the origin 0, then for 0 ≤ α < k, there
exist :

(i) a number r(0 < r < 1);
(ii) a sequence of complex numbers zn → 0, |zn| < r;
(iii) a sequence of functions fn ∈ F ;
(iv) a sequence of positive numbers ρn → 0

such that
gn(z) = ρn

−αfn(zn + ρnz)

converges locally uniformly with respect to a spherical metric of a non-
constant meromorphic function g(z) on C, and, moreover, g is of order
at most two.

For convenience, we will use the following notation

LD(r, f : c1, c2) = c1

[
m

(
r,
f ′

f

)
+

3∑
i=1

m

(
r,

f ′

f − ai

)]

+ c2

[
m

(
r,
f ′′

f ′

)
+

3∑
i=1

m

(
r,

f ′′

f ′ − tai

)]
.

Lemma 2.2. ([6]). Let f, g be nonconstant meromorphic functions in
the unit disc, which share distinct finite complex numbers a1, a2, a3
and a4 = ∞. If a ̸= aj and f(0) ̸= a, aj, (j = 1, 2, 3, 4), f ′(0) ̸= 0,∞
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and f(0) ̸= g(0), then

T (r, f) ≤ T (r, g) + log

∏3
i=1 |f(0)− ai|

|f ′(0)||f(0)− g(0)|

+O(1)

[
m

(
r,

f ′

f − a
) +

3∑
i=1

m(r,
f ′

f − ai

)
+ 1

]
,

where O(1) is a complex number depending only on a and ai (i =
1, 2, 3).

Lemma 2.3. Let f be a meromorphic function in a domain D = {z :
|z| < R}, let a1, a2 and a3 be three distinct finite complex numbers,
and let t be a positive real number. If

ED(ai, f) = ED(tai, f
′) for i = 1, 2, 3;

and if a ̸= aj and f(0) ̸= aj ,∞ (j = 1, 2, 3, ), f ′(0) ̸= 0, at and
f ′′(0) ̸= 0, f ′(0) ̸= tf(0), then, for 0 < r < R, we have

T (r, f) ≤ LD(r, f : 2, 3) + log

∏3
i=1 |f(0)− ai|2|f ′(0)− tai|3

|tf(0)− f ′(0)|5|f ′(0)|2

+ 3 log
1

|f ′′(0)|
+

(
log+ t+m

(
r,

f ′′

f ′ − ta

)
+ 1

)
O(1),

where O(1) is a complex number depending only on a and ai (i =
1, 2, 3).

Proof. Firstly, we distinguish two cases to deduce the following
inequality:

2T (r, f) ≤ T (r, f ′) +N(r, f) + LD(r, f : 1, 0)(2.1)

+ log

∏3
i=1 |f(0)− ai|

|(tf − f ′)(0)||f ′(0)|
+O(1) + log+ t.

Case 1. a1a2a3 ̸= 0. Since ED(ai, f) = ED(tai, f
′) (i = 1, 2, 3) with

t ̸= 0, we get that f − a1, f − a2, f − a3 has only simple zeros in D.
By the assumption, we see that f ′(z) ̸≡ tf(z). Therefore, we have

3∑
j=1

N

(
r,

1

f − aj

)
≤N

(
r,

1

tf − f ′

)
≤T (r, tf − f ′)+ log

1

|tf(0)−f ′(0)|
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≤ N(r, f ′) +m(r, f) +m

(
r,
f ′

f

)
+ log+ t+O(1) + log

1

|tf(0)− f ′(0)|

≤ T (r, f) +N(r, f) +m

(
r,
f ′

f

)
+ log+ t+O(1) + log

1

|tf(0)− f ′(0)|
.

Note that

(2.2)
3∑

j=1

m

(
r,

1

f − aj

)
= m

(
r,

1

f ′

3∑
j=1

f ′

f − aj

)
+O(1),

we have

3∑
j=1

T

(
r,

1

f − aj

)
≤ T (r, f) +N(r, f) +m

(
r,

1

f ′

)
+ LD(r, f : 1, 0) + log+ t

+ log
1

|(tf − f ′)(0)|
+O(1).

By Nevanlinna’s first fundamental theorem, we have

2T (r, f) ≤ T (r, f ′) +N(r, f)

+ LD(r, f : 1, 0) + log

∏3
i=1 |f(0)− ai|

|(tf − f ′)(0)||f ′(0)|
+O(1) + log+ t.

Case 2. a1a2a3 = 0. Without loss generality, we set a3 = 0. By
assumption, we have that f − aj(j = 1, 2, ) has only simple zeros, and
the zeros of f are of multiplicity ≥ 2. Thus,

3∑
1

N

(
r,

1

f − ai

)
=

2∑
1

N

(
r,

1

f − ai

)
+N

(
r,

1

f

)
+N

(
r,

1

f ′

)
≤ N

(
r,

1

tf − f ′

)
+N

(
r,

1

f ′

)
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≤ T (r, f) +N(r, f) +N

(
r,

1

f ′

)
+m

(
r,
f ′

f

)
+ log+ t+O(1) + log

1

|tf(0)− f ′(0)|
.

Combining this with (2.2), we also have

2T (r, f) ≤ T (r, f ′) +N(r, f) + LD(r, f : 1, 0)

+ log

∏3
i=1 |f(0)− ai|

|(tf − f ′)(0)||f ′(0)|
+O(1) + log+ t.

Thus, inequality (2.1) is proved.

On the other hand, note that ED(ai, f) = ED(tai, f
′), i = 1, 2, 3,

and ED(∞, f) = ED(∞, f ′), f(0) ̸= aj ,∞ (j = 1, 2, 3). It follows that
f ′(0) ̸= taj ,∞ (j = 1, 2, 3). By application of Lemma 2 to f ′ and tf ,
we have

T (r, f ′) ≤ T (r, f) + LD(r, f : 0, 1))(2.3)

+ log

∏3
i=1 |f ′(0)− tai|

|tf(0)− f ′(0)||f ′′(0)|

+ (log+ t+m(r,
f ′′

f ′ − ta
) + 1)O(1).

Now, substituting (2.3) into (2.1), we have

T (r, f) ≤ N(r, f) + LD(r, f : 1, 1)

+ log

∏3
i=1 |f(0)− ai||f ′(0)− tai|

|f ′′(0)||tf(0)− f ′(0)|2|f ′(0)|

+

(
log+ t+m

(
r,

f ′′

f ′ − ta

)
+ 1

)
O(1).

Notice that

2N(r, f) ≤ N(r, f) +N(r, f) +m(r, f ′) = T (r, f ′).

Hence,

2T (r, f) ≤ T (r, f ′) + 2LD(r, f : 1, 1)

+ 2 log

∏3
i=1 |f(0)− ai||f ′(0)− tai|

|f ′′(0)||tf(0)− f ′(0)|2|f ′(0)|
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+

(
log+ t+m

(
r,

f ′′

f ′ − ta

))
O(1).

Combining with (2.3), we have

T (r, f) ≤ LD(r, f : 2, 3)

+ log

∏3
i=1 |f(0)− ai|2|f ′(0)− tai|3

|tf(0)− f ′(0)|5|f ′(0)|2

+ 3 log
1

|f ′′(0)|

+

(
log+ t+m

(
r,

f ′′

f ′ − ta

)
+ 1

)
O(1).

This completes the proof of Lemma 2.3. �

Lemma 2.4. ([2]). Let f(z) be a meromorphic function in C. Let

(2.4) βp(r) = sup
2≤t≤r

{
T0(t, f)

(log t)p

}
, ε(r) =

(
1

βp(r)

)1/q

with p ≥ 2 and q ≥ 3. If limr→∞ βp(r) = ∞, then there exists a
sequence of a positive number {rn}∞1 and a sequence of points {zn}∞1
in C such that limn→∞ rn = limn→∞ |zn| = +∞ and

A(ε(|zn|)|zn|, zn, f) ≥
1

64π2
βp(rn)}1−2/q(log rn)

p−2(2.5)

(n = 1, 2, . . .),

where

(2.6) A(r, a, f) =
1

π

∫ 2π

0

∫ r

0

(
|f ′(a+ ρeiθ)|

1 + |f(a+ ρeiθ)|2

)2

dρ dθ, |zn| ≤ rn

and

T0(r, f) =

∫ r

0

A(t)

t
dt,(2.7)

A(t) =
1

π

∫ 2π

0

∫ t

0

(
|f ′(ρeiθ)|

1 + |f(ρeiθ)|2

)2

dρ dθ.

We also need the following lemmas.
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Lemma 2.5. ([9]). Let f(z) be a meromorphic function in discD(0, R)
centered at 0 with radius R. If f(0) ̸= 0,∞, then we have for
0 < r < ρ < R

m

(
r,
f (k)

f

)
< ck

{
1 + log+ log+

∣∣∣∣ 1

f(0)

∣∣∣∣+ log+
1

r
+ log+

1

ρ− r

+ log+ ρ+ log+ T (ρ, f)

}
,

where k is a positive integer, and ck is a constant depending only on k.

Lemma 2.6. ([9]). Let T (r) be a continuous, non-decreasing, non-
negative function, and let a(r) be a non-increasing, non-negative func-
tion on [r0, R] (0 < r0 < R < ∞). If there exist constants b, c such
that

T (r) < a(r) + b log+
1

ρ− r
+ c log+ T (ρ),

for r0 < r < ρ < R, then

T (r) < 2a(r) +B log+
2

R− r
+ C,

where B,C are two constants dependent only on b, c.

Lemma 2.7. ([12]). Let f(z) be a meromorphic function in a domain
D = {z : |z| < R}. If f(0) ̸= ∞, then we have for 0 < r < R,

(2.8) |T (t, f)− T0(t, f)− log+ |f(0)|| ≤ 1

2
log 2.

where log+ |f(0)| will be replaced by log |c(0)| when f(0) = ∞, and
c(0) is the coefficient of the Laurent series of f(z) at 0, and T0(t, f) is
defined as (2.7).

3. Proof of theorem.

Proof. Now we are to prove Theorem 1.1. Let f be meromorphic in
C with the lower order greater than 2. Then there exists a sequence of
positive numbers {ln}∞1 such that

lim
n→∞

ln = ∞ and lim
n→∞

log T (ln, f)

log ln
> 2.
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Thus, we have

lim
n→∞

log T0(ln, f)

log ln
> 2

by combining with (2.8). Hence, we get that limr→∞ βp(r) = ∞ (βp(r)
as defined in Lemma 2.4, p ≥ 3). By Lemma 2.4, there are zn ∈ C and

rn ∈ (1,∞) (|zn| ≤ rn, lim
n→∞

|zn| = +∞)

such that (2.5) holds. We write

(3.1) zn = |zn|eiθn , θn ∈ [0, 2π).

Thus, there is a convergent subsequence of {θn}, and, without loss of
generality, we may assume that

(3.2) lim
n→∞

θn = θ0 ∈ [0, 2π).

Let εn = |zn|ε(|zn|), then there exists a convergent subsequence of
εn, and, without loss of generality, we still denote it by εn, such that

lim
n→∞

εn = s,

where s is a non-negative real number or s = ∞ and ε(|zn|) is as defined
in Lemma 2.4.

For any ε > 0, if there are three distinct complex numbers a1, a2,
a3 such that

EA(θ0,ε)(aj , f) = EA(θ0,ε)(aj , f
′), j = 1, 2, 3,

where A(θ0, ε) = {z| arg z − θ0| < ε}. Then we claim that one of the
following two cases hold:

(1) If s = 0, then there exists a constant M > 0 such that

(3.3)
εn|f ′(zn + εnz)|
1 + |f(zn + εnz)|2

≤ M, n = 1, 2, 3 . . . .

(2) If s > 0 or s = ∞, then there exists a constant M1 > 0 such that

(3.4)
|f ′(zn + εnz)|

1 + |f(zn + εnz)|2
≤ M1, n = 1, 2, 3 . . . ,

where |z| ≤ 1 and εn = |zn|ε(|zn|).
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In the case that s = 0, from (3.3), we obtain

A(εn, zn, f) =
1

π

∫ 2π

0

∫ εn

0

(
|f ′(zn + εne

iθ|
1 + |f(zn + εneiθ)|2

)2

ρdρ dθ ≤ 2M.

Combining with (2.5), we have

1

64π2
{βp(rn)}1−2/q(log rn)

p−2 ≤ 2M.

Note that p ≥ 2, q ≥ 3 and βp(r) are non-decreasing functions on the
interval (2,+∞). This contradicts the assumption that limr→∞ βp(r) =
∞.

In the case that s > 0 or s = ∞, from (3.4), we obtain

A(εn, zn, f) =
1

π

∫ 2π

0

∫ εn

0

(
|f ′(zn + εne

iθ|
1 + |f(zn + εneiθ)|2

)2

ρdρ dθ ≤ 2Mε2n.

Combining with (2.5), we have

1

64π2
{βp(rn)}1−2/q(log rn)

p−2 ≤ 2Mε2n = 2M |zn|2ε(|zn|)2,

where |zn| ≤ rn, p ≥ 2 and q ≥ 3.

Noting that βp(r) is a non-decreasing function on the interval
(2,+∞), we have

1

64π2
{βp(|zn|)}1−2/q(log |zn|)p−2 ≤ 2M |zn|2ε(|zn|)2.

Hence,

{βp(zn)}1−2/q(log zn)
p−2 ≤ 128π2M |zn|2ε(|zn|)2

= 128π2M |zn|2{βp(zn)}−2/q.

Thus, we have

lim
n→∞

log βp(zn)

log |zn|
≤ 2.

Therefore, we can deduce that

lim
n→∞

log T0(|zn|, f)
log |zn|

≤ 2.
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By using Lemma 2.7, we get

lim
n→∞

log T (|zn|, f)
log |zn|

≤ 2.

This contradicts the assumption that the lower order of f is greater
than 2. Thus, the proof of theorem is complete if we prove claims (1)
and (2). �

Proof of Claim. Now we prove part (1) of the clam.

Suppose that the claim (3.3) fails. Then there exists a sequence of
points ωn, ωn = zn + εnz

∗
n with |z∗n| ≤ 1 such that

lim
n→∞

εn|f ′(zn + εnz
∗
n)|

1 + |f(zn + εnz∗n)|2
= ∞.

Set
fn(z) = f(zn + εnz).

Then, by Marty’s criteria, we have that a sequence of a function {fn(z)}
is not normal at |z| < 1. We take α = 0 in Lemma 2.1. According to
Lemma 2.1, there exist

(i) a sequence of point {z′n} ⊂ {|z| < 1};
(ii) a subsequence of {fn(z)}∞1 . Without loss of generality, we still

denote it by {fn(z)};
(iii) positive numbers ρn with ρn → 0(n → ∞) such that

hn(z) = ρ−α
n fn(z

′
n + ρnz) = fn(z

′
n + ρnz) → g(z)

in a spherical metric uniformly on a compact subset of C as
n → ∞, where g(z) is a non-constant meromorphic function.

Thus, for any positive integer k, we have

h(k)
n (ξ) = ρn

kf (k)
n (z′n + ρnξ) −→ g(k)(ξ).

We claim g′′(ξ) ̸≡ 0. Otherwise, g(z) = cz+ d, (c, d ∈ C and c ̸= 0).
We can choose ξ0, with g(ξ0) = a1. By Hurwitz’s theorem, there exists
a sequence ξn → ξ0 such that

hn(ξn) = fn(z
′
n + ρnξn) = g(ξ0) = a1.
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Notice that f and f ′ share a1 IM in {z : | arg z − θ0| < ε}, and
εn → s = 0 (when n → ∞), and we have

c = g′(ξ0) = lim
n→∞

h′
n(ξn)

= lim
n→∞

ρnεnf
′(zn + εn(z

′
n + ρnξn))

= lim
n→∞

ρnεnf(zn + εn(z
′
n + ρnξn)) = lim

n→∞
ρnεna1 = 0.

This gives a contradiction. Hence, we can choose ξ0 ∈ C, such that

g(ξ0) ̸= 0, a1, a2, a3,∞, g′(ξ0) ̸= 0,∞, g′′(ξ0) ̸= 0,∞.

Let
pn(z) = fn(z

′
n + ρnξ0 + z).

Then, for every sufficiently large n (n ≥ n0), we have on |z| ≤ 1

pn(z) = ai
IM⇐⇒ p′n(z) = εnai (i = 1, 2, 3).

Note that

pn(0) = fn(z
′
n + ρnξ0) = hn(ξ0) −→ g(ξ0) ̸= a1, a2, a3,∞,

p′n(0) = f ′
n(z

′
n + ρnξ0) =

h′
n(ξ0)

ρn
, h′

n(ξ0) → g′(ξ0),

p′′n(0) = f ′′
n (z

′
n + ρnξ0) =

h′′
n(ξ0)

ρ2n
, h′′

n(ξ0) → g′′(ξ0),

εnpn(0)− p′n(0) =
εnρnhn(ξ0)− h′

n(ξ0)

ρn
.

Thus, we have

log

∏3
i=1 |pn(0)− ai|2|p′n(0)− εnai|3

|εnpn(0)− p′n(0)|5|p′n(0)|2
+ 3 log

1

|p′′n(0)|
(3.5)

= log

∏3
i=1 |pn(0)− ai|2|p′n(0)− εnai|3

|εnpn(0)− p′n(0)|5|p′n(0)|2|p′′n(0)|3

= 4 log ρn + log

∏3
i=1 |hn(ξ0)− ai|2|h′

n(ξ0)− ρnεnai|3

|ρnεnhn(ξ0)− h′
n(ξ0)|5|h′

n(ξ0)|2|h′′
n(ξ0)|3

.

Since ρn → 0 and εn → 0, we deduce

(3.6) log

∏3
i=1 |hn(ξ0)− ai|2|h′

n(ξ0)− ρnεnai|3

|ρnhn(ξ0)− h′
n(ξ0)|5|h′

n(ξ0)|2|h′′
n(ξ0)|3
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−→ log

∏3
i=1 |g(ξ0)− ai|2

|g′(ξ0)|−2|g′′(ξ0)|3
,

when n → ∞.

By applying Lemma 2.3 to pn(z) with (3.5) and (3.6), we have

T (r, pn) ≤ LD(r, pn; 2, 3)

+O(1)

(
log+ |zn|+m

(
r,

p′′n
p′n − εna

)
+ 1

)
for 0 < r ≤ 3 and sufficiently large n, where a ̸= aj (j = 1, 2, 3) and
a ∈ C.

By Lemmas 2.5 and 2.6, we have

T (r, pn) ≤ O(1)(1 + log+ |zn|).

Hence,

T0(r, pn) ≤ O(1)(1 + log+ |zn|).

Thus, we get

T0(3ε(|zn|)|zn|, zn + ε(|zn|)|zn|(z′n + ρnξ0), f) ≤ O(1)(1 + log+ |zn|).

It follows that

A(2ε(|zn|)|zn|, zn + ε(|zn|)|zn|(z′n + ρnξ0), f) ≤ O(1)(1 + log+ |zn|).

Note that z′n + ρnξ0 → 0. We get

{z : |z − zn| < ε(|zn|)|zn|}
⊆ {z : |z − zn − ε(|zn|)|zn|(z′n + ρnξ0) < 2ε(|zn|)|zn|}.

Thus, we have

A(εn, zn, f) ≤ O(1)(1 + log+ |zn|).

Combining this with (2.5), we have

βp(rn)
1−2/q(log rn)

p−2 ≤ O(1)(1 + log+ |zn|).

Notice that |zn| ≤ rn, p ≥ 3 and limn→∞ βp(rn) = ∞. We obtain a
contradiction. Therefore, part (1) of the claim is proved.
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Next we prove part (2) of the claim. With a similar argument, we
can get (3.4). Suppose that the claim (3.4) fails. Then there exists a
sequence of points ωn, ωn = zn + εnz

∗
n with |z∗n| ≤ 1 such that

lim
n→∞

|f ′(zn + εnz
∗
n)|

1 + |f(zn + εnz∗n)|2
= ∞.

Set
fn(z) = f(ωn + z).

Then, by Marty’s criteria, we have that a sequence of a function {fn(z)}
is not normal at z = 0. We take α = 0 in Lemma 2.1. According to
Lemma 2.1, there exist

(i) a sequence of point {z′n} ⊂ {|z| < 1};
(ii) a subsequence of {fn(z)}∞1 . Without loss of generality, we still

denote it by {fn(z)};
(iii) positive numbers ρn with ρn → 0(n → ∞) such that

hn(z) = fn(z
′
n + ρnz) → g(z)

in a spherical metric uniformly on a compact subset of C as
n → ∞, where g(z) is a non-constant meromorphic function.

Thus, for any positive integer k, we have

h(k)
n (ξ) = ρn

kf (k)
n (z′n + ρnξ) → g(k)(ξ).

We claim g′′(ξ) ̸≡ 0. Otherwise, g(z) = cz + d,(c, d ∈ C and c ̸= 0).
We can choose ξ0 with g(ξ0) = a1. By Hurwitz’s theorem, there exists
a sequence ξn → ξ0 such that

hn(ξn) = fn(z
′
n + ρnξn) = g(ξ0) = a1.

Notice that f and f ′ share a1 IM in {z : | arg z − θ0| < ε}, and

lim
n→∞

arg(ωn + z′n + ρnξn)

= lim
n→∞

(
arg zn + arg

(
1 +

εnz
∗
n + z′n + ρnξn

zn

))
= θ0.

We have

c = g′(ξ0) = lim
n→∞

h′
n(ξn)
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= lim
n→∞

ρnf
′(ωn + z′n + ρnξn)

= lim
n→∞

ρnf(ωn + z′n + ρnξn)

= lim
n→∞

ρna1 = 0.

This gives a contradiction. Hence, we can choose ξ0 ∈ C such that

g(ξ0) ̸= a1, a2, a3,∞, g′(ξ0) ̸= 0,∞, g′′(ξ0) ̸= 0,∞.

Let
pn(z) = fn(z

′
n + ρnξ0 + εnz).

Then, for every sufficiently large n(n ≥ n0), we have on |z| ≤ 1,

pn(z) = ai
IM⇐⇒ p′n(z) = εnai (i = 1, 2, 3)

and

pn(0) = fn(z
′
n + ρnξ0) = hn(ξ0) → g(ξ0) ̸= a1, a2, a3,∞

p′n(0) = εnf
′
n(z

′
n + ρnξ0) = εn

h′
n(ξ0)

ρn
,

h′
n(ξ0) → g′(ξ0),

p′′n(0) = ε2nf
′′
n (z

′
n + ρnξ0) = ε2n

h′′
n(ξ0)

ρ2n
,

h′′
n(ξ0) → g′′(ξ0),

ε(|zn|)|zn|pn(0)− p′n(0) = ε(|zn|)|zn|
(
hn(ξ0)−

h′
n(ξ0)

ρn

)
.

Thus, we have

log

∏3
i=1 |pn(0)− ai|2|p′n(0)− εnai|3

|εnpn(0)− p′n(0)|5|p′n(0)|2
+ 3 log

1

|p′′n(0)|

= log

∏3
i=1 |pn(0)− ai|2|p′n(0)− εnai|3

|εnpn(0)− p′n(0)|5|p′n(0)|2|p′′n(0)|3

= 4 log
1

εn
+ 4 log ρn

+ log

∏3
i=1 |hn(ξ0)− ai|2|h′

n(ξ0)− ρnai|3

|ρnhn(ξ0)− h′
n(ξ0)|5|h′

n(ξ0)|2|h′′
n(ξ0)|3

and
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(3.7) log

∏3
i=1 |hn(ξ0)− ai|2|h′

n(ξ0)− ρnai|3

|ρnhn(ξ0)− h′
n(ξ0)|5|h′

n(ξ0)|2|h′′
n(ξ0)|3)

−→ log

∏3
i=1 |g(ξ0)− ai|2

|g′(ξ0)|−2|g′′(ξ0)|3
,

when n → ∞.

By applying Lemma 2.3 to pn(z) with (3.7) and εn → s, s > 0, we
obtain for 0 < r ≤ 3 and every sufficiently large n that

T (r, pn) ≤ LD(r, pn; 2, 3) +O(1)

(
log+ |zn|+ log+

1

ε(|zn|)

+m

(
r,

p′′n
p′n − ta

)
+ 1

)
,

where a ̸= aj (j = 1, 2, 3) and a ∈ C. By Lemmas 2.5 and 2.6, we have

T (r, pn) ≤ O(1)

(
1 + log+ |zn|+ log+

1

ε(|zn|)

)
.

Hence,

T0(r, pn) ≤ O(1)

(
1 + log+ |zn|+ log+

1

ε(|zn|)

)
.

Thus, we get

T0(3ε(|zn|)|zn|, zn + ε(|zn|)|zn|z∗n + z′n + ρnξ0, f)

≤ O(1)

(
1 + log+ |zn|+ log+

1

ε(|zn|)

)
.

Note that ε(|zn|)|zn| → s, s ̸= 0 and |z∗n| ≤ 1, z′n + ρnξ0 → 0 (when
n → ∞). Thus, we have

{z : |z − zn| < ε(|zn|)|zn|}
⊆ {z : |z − zn − ε(|zn|)|zn|z∗n − z′n − ρnξ0|

< 3ε(|zn|)|zn|}.

Hence, we can get

A(εn, zn, f) ≤ O(1)

(
1 + log+ |zn|+ log+

1

ε(|zn|)

)
.
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Combining this with (2.6), we have

βp(rn)
1−2/q(log rn)

p−2 ≤ O(1)(1 + log+ |zn|+ log+ βp(rn)).

Notice that |zn| ≤ rn,p ≥ 3 and limn→∞ βp(rn) = ∞. We obtain a
contradiction. Therefore, part (2) of the claim is proved, and so is
Theorem 1.1. �

As the end of this section, we conjecture that the conditions of
Theorem 1.1, “f is a meromorphic function of lower order > 2 in the
complex plane” can be replaced by “f(z) ̸≡ f ′(z).”

REFERENCES

1. W.K. Hayman, Meromorphic functions, Clarendon Press, Oxford, 1964.

2. S.Y. Li, Hayman Directions of a meromorphic function, Acts Math. Sinica 4
(1988), 97–110.

3. W.C. Lin and L.Z. Yang, Normality of a family of holomorphic functions
which share one finite value with their derivatives, Acta Math. Sinica 46 (2003),
530–544.

4. X.C. Pan and L. Zalcman, Normal families and Shared Values, Bull. Lond.
Math. Soc. 32 (2000), 325–331.

5. L.A. Rubel and C.C. Yan, Values shared by an entire function and its
derivative. Complex analysis, Lect. Notes Math. 599, Springer, Berlin, 1977.

6. W. Schwick, Sharing values and normality, Arch. Math. 59 (1992), 50–54.

7. Lin Weichuan and S. Mori, On one new singular direction of meromorphic
functions. Compl. Var. Ellipt. Equat. 51 (2006), 295–302.

8. Y. Xu, Sharing values and normality criteria, Acta Math. Sinica 42 (1999),
833–838.

9. L. Yang, Value distribution and new study, Science Press, Beijing, 1982.

10. L.Z. Yang, Entire functions that share finite values with their derivatives,
Bull. Austral. Math. Soc. 41 (1990), 337–342.

11. H.X. Yi and C.C. Yang, Uniqueness theory of meromorphic functions,
Science Press, Beijing, 1995.

12. J.H. Zheng, Value distribution of meromorphic functions, Tsinghua Univer-
sity Press, Beijing, 2010.

Department of Mathematics, Fujian Normal University, Fuzhou 350007,
China
Email address: bhpan@fjnu.edu.cn

Department of Mathematics, Fujian Normal University, Fuzhou 350007,
China

Email address: sxlwc936@fjnu.edu.cn


