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ON THE ADDITION OF UNITS AND
NON-UNITS IN FINITE COMMUTATIVE RINGS

DARIUSH KIANI AND MOHSEN MOLLAHAJIAGHAEI

ABSTRACT. Let R be a finite commutative ring. In this
paper, we find the number of representations of a fixed
member of R to be the sum of k units in R, and the sum
of k non-units, and as a sum of a unit and a non-unit. We
prove that, if Z2 is not a quotient of R, then every r ∈ R can
be written as a sum of k units, for each integer k > 1.

1. Introduction and preliminaries. The study of algebraic struc-
tures using the properties of graphs has become an exciting research
topic in the last thirty years, leading to many fascinating results and
questions. There are many papers on assigning a graph to a ring, see
for example, [1, 2, 6, 7, 8].

Interest in the question of how the units of a ring might generate
the ring additively goes back to the middle of the last century. In
1958, Skornyakov [11, Page 167, Problem 31] posed the problem of
determining which regular rings are generated by their units. More
precisely, he asked: Is every element of a Von Neumann regular ring,
which cannot have Z2 as a quotient, a sum of units? In 1974, Raphael
[9] launched a systematic study of rings generated by their units, which
he called S-rings.

Finally, in 1976, Fisher and Snider [5] proved that, if R is a Von
Neumann regular ring with artinian primitive factor rings in which 2
is a unit, then every element of R can be expressed as the sum of two
units.
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Theorem 1.1. [9]. Let R be a finite commutative ring with nonzero
identity. Then R is generated by its units if and only if R cannot have
Z2 × Z2 as a quotient.

In [10], the authors found the number of representations of a fixed
residue class modm as the sum of two units in Zm, the sum of two
non-units, and the sum of mixed pairs, respectively. We generalize
these results into commutative rings, as the sum of k units and the
sum of k non-units. In addition, we prove Theorem 1.1. Our methods
are different and much simpler.

Throughout this paper, R is a finite commutative ring with identity.
We denote the set of unit elements by R×. We say that R is local if
R has exactly one maximal ideal. If R is a finite commutative ring,
then R ≃ R1 × · · · × Rt, where each Ri is a finite commutative local
ring with maximal ideal Mi, by [3, Theorem 8.7]. It is obvious that
R/JR ≃ R1/M1 × · · · × Rt/Mt, where JR is the Jacobson radical of
R, since the Jacobson radical is the product of the maximal ideals of
the local factors. This decomposition is unique up to permutation of
factors. We denote by ki the (finite) residue field Ri/Mi, πi : Ri → ki
the quotient map, and fi = |ki|. We also assume (after an appropriate
permutation of factors) that f1 ≤ f2 ≤ · · · ≤ ft. Clearly, (u1, . . . , ut) is
a unit of R if and only if each ui is a unit element in Ri for i = 1, . . . , t.

The motivation of this paper is the determination of the number of
solutions of

(1.1) x1 + x2 + · · ·+ xk = r

where xi are either all units or all non-units.

Let A be an additive group with identity 0. For S ⊆ A such
that −S = {−s; s ∈ S} = S the Cayley graph X = Cay (A,S)
is the undirected graph having vertex set V (X) = A and edge set
E(X) = {{a, b}; a − b ∈ S}. Clearly, if 0 /∈ S, then there is no loop in
X, and if 0 ∈ S, then there is exactly one loop at each vertex. It is
easy to check that S generates A if and only if X is connected. The
unitary Cayley graph of a ring R, denoted by GR, is the graph whose
vertex set is R, and in which {x, y} is an edge if and only if x and y
are elements of R such that x− y ∈ R×.

Let G be a graph. Suppose v0 and vn are two vertices of G. A
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(v0, vn)-walk in G is a sequence W := v0e0v1e1v2 · · · en−2vn−1en−1vn,
whose terms are alternately vertices and edges of G (not necessarily
distinct), such that vi−1 and vi are the endpoints of ei for all i. We
denote by wk(G, x, y) the number of x − y walks of length k in the
graph G. It is interesting to find the number of walks in Cay (R,R×).

The tensor product G1 ⊗G2 of two graphs G1 and G2 is the graph
with vertex set V (G1⊗G2) := V (G1)×V (G2), with edges specified by
putting (u, v) adjacent to (u′, v′) if and only if u is adjacent to u′ in G1

and v is adjacent to v′ in G2. So, we immediately see that GR is the
tensor product of the graphs GR1 , . . . , GRt .

Let AG be the adjacency matrix of the simple graph G. The next
lemma can be proved easily by induction.

Lemma 1.2. [13]. If AG is the adjacency matrix of a graph G in such
a way that the vertices are labeled by v1, v2, . . . , vn, then the (i, j) entry
of Ak, is the number of vi − vj walks of length k in G.

We refer the reader to [13] for general definitions of graph theory.

The next theorem determines the diameter of unitary Cayley graphs.

Theorem 1.3. [2]. If R ∼= R1 × · · · × Rt is a product of local rings,
then

diam (GR) =



1 if t = 1 and R is a field;

2 if t = 1 and R is not a field;

2 if t > 1, f1 > 2;

3 if t > 1, f1 = 2, f2 > 2;

∞ if t > 1, f1 = f2 = 2.

The above result generalizes Theorem 1.1, since GR is a disconnected
graph if and only if t > 1 and f1 = f2 = 2. In the other cases, GR is
connected and R is generated (additively) by its units.

2. Representation by units. The purpose of this section is to find
the number of representations of a member of ring R as the sum of k
units of R.
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Lemma 2.1. [2]. Let R be a finite commutative ring.

(i) GR is a regular graph of degree |R×|.
(ii) If R ∼= R1 × · · · × Rt is a product of local rings, then GR =

⊗t
i=1GRi .

(iii) If R is a commutative local ring with maximal ideal M , then GR

is a complete multipartite graph whose partite sets are the cosets
of M .

We denote the number of solutions of equation (1.1) in R× and
R−R×, by Su(R, r, k) and Snu(R, r, k), respectively.

Next are some basic consequences of this definition.

Lemma 2.2. Let R be a ring, and r be an arbitrary member of R. Let
k be a natural number. Then the following hold :

(a) Su(R, r, k) = wk(Cay (R,R
×), r, 0).

(b) Snu(R, r, k) = wk(Cay (R,R−R×), r, 0).
(c) If r′ is a unit of R, then Su(R, r, k) = Su(R, r

′r, k), and
Snu(R, r, k) = Snu(R, r

′r, k).

Proof.

(a) Let S and W be the set of solutions of equation (1.1) in R× and
the set of walks of length k between 0 and r, respectively. Let
φ : S →W be defined as

φ((x1, x2, . . . , xk)) = (0, x1, x1 + x2, . . . , x1 + · · ·+ xk).

Obviously, φ is one to one and onto. So,

Su(R, r, k) = wk(Cay (R,R
×), r, 0).

(b) The proof is similar to (a).
(c) Let Sr and Sr′r be the set of solutions of equation (1.1) in R×, for

r and r′r, respectively. Let ψ : Sr → Sr′r be defined as

ψ((x1, x2, . . . , xk)) = (r′x1, r
′x2, . . . , r

′xk).

Obviously, φ is one to one and onto. So, Su(R, r, k) = Su(R, r
′r, k).

Applying the same argument as above we get

Snu(R, r, k) = Snu(R, r
′r, k). �
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In what follows, we generalize Theorems 1.1 and 1.3. Our proofs
are based on walks on unitary Cayley graphs. We need the following
result, whose proof is clear from the definition of adjacency in the tensor
product.

Lemma 2.3. Let G and H be simple graphs. Then

wk(G⊗H, (x1, y1), (x2, y2)) = wk(G, x1, x2)wk(H, y1, y2).

Theorem 2.4. Let R be a finite local ring with maximal ideal M of
size m. Then we have the following :

Su(R, r, k) =

{
( (t−1)k−(−1)k

t + (−1)k)mk−1 if r ∈M
(t−1)k−(−1)k

t mk−1 if r ∈ R−M,

where t = |R|/m.

Proof. By Lemma 2.1, the graph GR is a complete multipartite
graph, so the adjacency matrix of GR is equal to AG = (Jt − It)⊗ Jm,
where Jm is them×m all 1-matrix. Thus, by the fact that, for arbitrary
matrices A, B, C and D, we have (A⊗B)(C ⊗D) = (AC ⊗BD), so:

(2.1) Ak
G =

( k∑
i=1

((−1)k−i

(
k

i

)
ti−1Jt) + (−1)kIt

)
⊗ (mk−1Jm).

We can easily see that

k∑
i=1

((−1)k−i

(
k

i

)
ti−1) =

(t− 1)k − (−1)k

t
.

Therefore, if r ∈M , then

Su(R, r, k) =

(
(t− 1)k − (−1)k

t
+ (−1)k

)
mk−1;

otherwise,

Su(R, r, k) =
(t− 1)k − (−1)k

t
mk−1.

The next theorem, which can be easily obtained by Lemma 2.3 and
Theorem 2.4, gives the number of solutions of equation (1.1) for a fixed
member of R. �
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Theorem 2.5. Let R be a ring, where R = R1 ×R2 × · · · ×Rt and Ri

is a local ring with maximal ideal Mi of size mi, for all i ∈ {1, 2, . . . , t}.
Let r = (r1, . . . , rt) be a member of R. Then

Su(R, r, k) =
t∏

i=1

((
(ti − 1)k − (−1)k

ti
+ (−1)k

)
mk−1

i

)ai

(2.2)

×
(
((ti − 1)k − (−1)k)mk−1

i

ti

)1−ai

,

where ti = |Ri|/mi and ai = 1 if and only if ri ∈Mi, otherwise ai = 0.

Corollary 2.6. A ring R is generated by units if and only if R does
not have Z2 × Z2 as a quotient. It is enough to check that, for r ∈ R,
wk(GR, r, 0) is not zero.

Remark 2.7. It should be mentioned that Theorem 1.3 can be derived
from Theorem 2.5. Theorem 2.5 is a generalization of [10, Theorem
1.1] and [4, Theorem 4.4].

In the following, we study the good number of elements of a ring.

Definition 2.8. [12]. An element r ∈ R is called k-good if r =
u1 + u2 + · · · + uk with u1, u2, . . . , uk ∈ R×, and the ring R is called
k-good if every element of R is k-good. The ring R is called ω-ring if
it is not k-good for any k, but every element of R is k-good for some
k (that is, when at least R× generates R additively); otherwise, R is
called an ∞-ring.

Clearly, a unit element is 1-good.

The good number of a ring has been studied in [12] . In the sequel,
we prove that, if R is a ring where Z2 is not a quotient of R, then R is
a k-good ring, for each k > 1. Otherwise, R is not 2-good.

Theorem 2.9. Let R be a ring and k > 1 a natural number. Then R
is k-good if and only if Z2 is not a quotient of R.

Proof. Let R be a ring such that Z2 is not a quotient of R. By
definition, it is enough to prove that each r ∈ R is k-good. By
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Theorem 2.5, it is enough to show that

(2.3)

t∏
i=1

((
(ti − 1)k − (−1)k

ti
+ (−1)k

)
mk−1

i

)ai

(
((ti − 1)k − (−1)k)mk−1

i

ti

)1−ai

̸= 0.

To show this, we prove that:(
(ti − 1)k − (−1)k

ti
+ (−1)k

)
mk−1

i ̸= 0(2.4)

and

((ti − 1)k − (−1)k)mk−1
i

ti
̸= 0.

These inequalities are equivalent to:

(ti − 1)k − (−1)k + ti(−1)k ̸= 0(2.5)

and

(ti − 1)k − (−1)k ̸= 0,

if and only if

(2.6) (ti − 1)k−1 ̸= (−1)k and (ti − 1)k ̸= (−1)k,

if and only if ti ̸= 0, 2 for all i. �

The proof of the next result is similar.

Theorem 2.10. Let R be a ring. Then R is an ω-ring if and only if
Z2 × Z2 is not a quotient of R, but Z2 is a quotient of R.

Remark 2.11. Let R be a ring. Then R is an ∞-ring if and only
Z2 × Z2 is a quotient of R.

3. Representation by non-units. In this section, we study those
rings which are generated by their non-unit members. In what follows,
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we find the number of solutions of the following equation in non-unit
members of a ring R:

(3.1) x1 + x2 + · · ·+ xk = r.

Obviously, if R is a local ring, then there is no solution to the above
equation for unit members.

The next theorem shows the relation between Snu(R, r, k) and
Su(R, r, k):

Theorem 3.1. Let R = R1 ×R2 × · · · ×Rs be a finite ring where, for
i ∈ {1, 2, . . . , s}, each Ri is local of order ni with maximal ideal Mi of
order mi. Let n =

∏s
i=1 ni. Then the number of solutions of (3.1) in

which all xi are non-units is given by :

Snu(R, r, k) = (−1)kSu(R, r, k)(3.2)

+

k∑
t=1

(
(−1)k−t

(
k

t

)
nt−1

( s∏
i=1

(ni −mi)
k−t

))
.

Proof. We assign labels to the vertices of GR such that v1 = 0 and
v2 = r. We know that Jn − In − AGR

is the adjacency matrix of
the complement graph Gc

R. The adjacency matrix of Cay (R,R−R×)
is (Jn − In − AG) + In, since Gc

R is isomorphic to the Cay (R,R −
(R× ∪ {0})). By Lemma 2.2, Snu(R, r, k) is the (1, 2) entry of matrix
(Jn − In −AG + In)

k = (Jn −AG)
k. So,

Snu(R, r, k) = ((Jn −AG)
k)1,2(3.3)

=

( k∑
t=0

(−1)k−t

(
k

t

)
(Jn)

tAk−t
G

)
1,2

.

Since GR is an
∏s

i=1(ni −mi)-regular graph, it follows that

JnA
k−t
G =

s∏
i=1

(ni −mi)
k−tJn

and

(Jn)
t = nt−1Jn.



FINITE COMMUTATIVE RING UNITS AND NON-UNITS 1895

Therefore, we have:

(3.4) Snu(R, r, k) =

(
(−1)kAk

G +
k∑

t=1

(−1)k−t

(
k

t

)
nt−1

( s∏
i=1

(ni −mi)

)k−t

Jn

)
1,2

.

Thus,

Snu(R, r, k) = (−1)kSu(R, r, k)(3.5)

+
k∑

t=1

(
(−1)k−t

(
k

t

)
nt−1

( s∏
i=1

(ni −mi)
k−t

)
. �

Remark 3.2. Let R be a finite local ring with maximal ideal M of
size m. Then, for the number of solutions of equation (3.1) in non-unit
members of R, we have the following:

(a) If r ∈ R−M , then there is no solution.
(b) If r ∈M , then this number is mk−1.

The following corollary is obtained from Theorems 2.4 and 3.1.

Corollary 3.3. Let R be a finite ring. Then the number of solutions
of the equation

(3.6) x1 + x2 = r,

where x1 ∈ R× and x2 ∈ R−R× is

(3.7)
|R| − Su(R, r, 2)− Snu(R, r, 2)

2
.

It would be interesting to calculate the number of solutions of
equation (1.1) for mixed pairs, and we leave it as an open problem.
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