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ALL EXPONENTIAL MOMENTS OF THE DYCK
PATHS’ MAXIMA (SCALED BY ROOT OF PATH

LENGTH) ARE UNIFORMLY BOUNDED: AN
ELEMENTARY PROOF

FELIX GRIMME

ABSTRACT. Let Cs be the set of Dyck paths of length
2s. For all s its cardinality is given by the Catalan number
Cs, i.e., #Cs = Cs. We denote the maximum of a Dyck path
X by Xmax, and thereby we define the exponential moments

Es(λ) := C−1
s

∑
X∈Cs

exp(λ(2s)−1/2Xmax), whereupon we

scale the Dyck paths’ maxima by the root of the path length.
Then, there exists a function d : R → R so that Es(λ) ≤ d(λ)
for all s ∈ N. We present an elementary proof of this well-
known result, which is based on the reflection principle and a
telescoping sum trick; in particular, nothing about stochastic
processes is used.

Introduction. In their groundbreaking work on the spectral edge
of symmetric random matrices Sinai and Soshnikov use the result that
all exponential moments of the Dyck paths’ maxima are uniformly
bounded, see [6, page 124]. In [5], Khorunzhiy and Marckert remark
that the work of Sinai and Soshnikov lacks a bibliographical reference
to this result. Khorunzhiy and Marckert present a proof, which relies
on the work of Chung on Brownian excursions [2]. Kaigh, in turn,
gives in his work [4] an elementary proof of Chung’s result, utilizing a
repeated reflection principle. In our work, this idea is combined with
a telescoping sum trick to give an elementary proof of the result used
by Sinai and Soshnikov.

Let s ∈ N0. A mapping X : {0, . . . , 2s} → N0 fulfilling X(0) =
X(2s) = 0 and |X(t)−X(t− 1)| = 1 for all 1 ≤ t ≤ 2s is called a Dyck
path of length 2s. We set

Cs := {Dyck paths of length 2s}.
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In Stanley’s book, [8, Exercise 6.19], one can find a list of combinatoric
bijections from Cs to further 65 sets. Their common cardinality is given
by the Catalan numbers

Cs =
1

s+ 1

(
2s

s

)
,

which are ubiquitous in combinatorics. For Dyck paths X ∈ Cs we use
the shorthand notation Xmax := max0≤t≤2s X(t) for their maxima. For
all λ ∈ R, we define

Es(λ) :=
1

Cs

∑
X∈Cs

exp

(
λ
Xmax√

2s

)
.

Stochastically interpreted, these are the exponential moments of the
random variableX 7→ Xmax/

√
2s with respect to a uniform distribution

on Cs. In [5], Khorunzhiy and Marckert showed, amongst other things,
that they are uniformly bounded in s:

Theorem 1. There is a function d : R → R so that Es(λ) ≤ d(λ) for
all s ∈ N0.

As indicated before, Khorunzhiy and Marckert prove this result by
tracing back the situation of Dyck paths to the situation of Brownian
excursions, which had been studied earlier. The purpose of our paper
is to give an elementary self-contained proof of this theorem.

A new elementary proof of Theorem 1. We divide the proof
into four steps.

Step I. We set

Cs(x) := {X ∈ Cs | Xmax < x}, and Cs(x) := #Cs(x),

and we define the distribution function

Gs(x) := P ({X ∈ Cs | Xmax < x}) = Cs(x)

Cs
.

Apparently, it has the following properties:

(i) Gs(x) = 0 for all x ≤ 0,
(ii) Gs(x) = 1 for all x > s,
(iii) Gs is left-continuous, piecewise constant, and jumps at 0, 1, . . . , s.
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Thus, we have

Es(λ) =
s∑

k=0

exp

(
λ

k√
2s

)
(Gs(k + 1)−Gs(k))

=

s∑
k=0

exp

(
λ

k√
2s

)
(1−Gs(k))

−
s+1∑
k=1

exp

(
λ
k − 1√

2s

)
(1−Gs(k))

=

(
1− exp

(
− λ

1√
2s

)) s∑
k=1

exp

(
λ

k√
2s

)
(1−Gs(k))

+ 1−Gs(0)− exp

(
λ

s√
2s

)
(1−Gs(s+ 1)).

Due to the above properties (i) and (ii) and 1− e−y ≤ y, we get

(1) Es(λ) ≤ 1 +
λ√
2s

s∑
k=1

exp

(
λ

k√
2s

)
(1−Gs(k)).

We define
G̃s(k) := Gs−1(k − 1).

To prove Theorem 1, it is obviously enough to show for all λ > 0 that

sup
s≥2

λ√
s

s∑
k=2

eλk/
√
s(1− G̃s(k)) < ∞.

Step II. We are looking for a useful expression for G̃s. We make a
detour over more general random walks. A mapping X : {0, . . . , p} → Z
fulfilling X(0) = 0, X(p) = q and |X(t)−X(t−1)| = 1 for all 1 ≤ t ≤ p
is called a random walk of type (p, q). We set

Bp,q := {random walks of type (p, q)}.

For integers a, b ∈ Z, we define furthermore

Bp,q(a, b) :=
{
X ∈ Bp,q | a < min

t
X(t) ≤ max

t
X(t) < b

}
.
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Their cardinalities are denoted by Bp,q := #Bp,q and Bp,q(a, b) :=
#Bp,q(a, b). Thereby,

(2) G̃s(k) =
Cs−1(k − 1)

Cs−1
=

B2s−2,0(−1, k − 1)

Cs−1
.

The next lemma, taken from the book by Billingsley ([1, page 78]), is
crucial. For the sake of completeness its proof is in the appendix.

Lemma 2. Let p ∈ N0. For all integers a, b, q with a ≤ 0 ≤ b and
a < q < b the following formula holds:

Bp,q(a, b) =
∑
m∈Z

Bp,q+2m(b−a) −
∑
m∈Z

Bp,2b−q+2m(b−a).

An immediate consequence of Lemma 2 is:

Corollary 3. For all integers s ≥ 1, k ≥ 2, we have

G̃s(k) = 1 + 2
∑

m∈ k·N

s− 2m2

s+m

m−1∏
j=1

s− j

s+ j
.

Proof. We use (2) and the formula of Lemma 2.

Cs−1 · G̃s(k) = B2s−2,0(−1, k − 1)

=
∑
m∈Z

B2s−2,2mk −
∑
m∈Z

B2s−2,2k−2+2mk

follows. After an index shift, we get∑
m∈Z

B2s−2,2mk−2

for the second sum. Utilizing the symmetry Bp,q = Bp,−q, we obtain

Cs−1 · G̃s(k) = B2s−2,0 −B2s−2,2

+

∞∑
m=1

(
2B2s−2,2mk −B2s−2,2mk−2 −B2s−2,2mk+2

)
.
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We have Bp,q =
(

p
(p−q)/2

)
, because random walks of type (p, q) have to

ascend (p+ q)/2 times and descend (p− q)/2 times. The terms before
the sum thus are

B2s−2,0 −B2s−2,2 =

(
2s− 2

s− 1

)
−
(
2s− 2

s− 2

)
=

1

s

(
2s− 2

s− 1

)
= Cs−1.

For the summands with s ≥ mk + 2, we have

2B2s−2,2mk −B2s−2,2mk−2 −B2s−2,2mk+2

= 2

(
2s− 2

s−mk − 1

)
−
(
2s− 2

s−mk

)
−
(

2s− 2

s−mk − 2

)
=

(2s− 2)! (2s− 4(mk)2)

(s−mk)! (s+mk)!

= Cs−1 · 2
s− 2(mk)2

s+mk

(s− 1)!

(s−mk)!

s!

(s+mk − 1)!

= Cs−1 · 2
s− 2(mk)2

s+mk

mk−1∏
j=1

s− j

s+ j

In the cases s ≤ mk − 1, s = mk, and s = mk + 1 one checks directly
that the first line of our calculation above equals the last. Successively,
one obtains 0 = 0, −1 = −1 and 4− 2s = 4− 2s. Inserting our results
and modifying the summation index we are done. �

Step III. We define

πm :=
m∏
j=1

s− j

s+ j
.

The following observation (joint with Peter Otte, Ruhr-Universität

Bochum) is the key to control the distribution function G̃s.

Lemma 4. Let 2 ≤ k ≤ s be integers. Then

s∑
m=k

2m2 − s

s+m
πm−1 = (k − 1/2)πk−1.
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Proof. Considered separately, the following two formulae,

2m2 − s

s+m
= (m+ 1/2)

2m

s+m
− 1,

and

πm−1 − πm = πm−1

(
1− s−m

s+m

)
= πm−1

2m

s+m

are a matter of course. Surprisingly, putting them together yields

s∑
m=k

2m2 − s

s+m
πm−1 =

s∑
m=k

(m−1/2)πm−1−(m+1/2)πm = (k−1/2)πk−1,

where we used πs = 0 when evaluating the telescoping sum. �

Step IV. To finish the proof of Theorem 1 we need the following three
elementary estimates. Their proofs are in the appendix.

Proposition 5. Let (ak)k∈N be a sequence of real numbers with ak = 0
for almost all k, such that there exists a number ξ ∈ N with the following
properties: ak ≤ ak+1 if k < ξ, and ak ≥ ak+1 if k ≥ ξ. Then, for
all l ∈ N :

∞∑
k=l

step l

ak :=
∑
k∈ l·N

ak ≤ amax(l,ξ) +
1

l

∞∑
k=l

ak.

(In Proposition 5, the assumption ak = 0 for almost all k is dispensable.
The statement is even true for divergent series.)

Proposition 6. Let a < ξ < b be real numbers, and let f : [a, b] →
[0,∞) be monotonically increasing on [a, ξ] and monotonically decreas-
ing on [ξ, b], respectively. Then the following estimate holds true:

∑
k∈Z∩[a,b]

f(k) ≤ f(ξ) +

∫ b

a

f(x) dx.
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Proposition 7. For all integers m ≥ 0 and n ≥ 1 the following holds:

m−1∏
k=1

(
1− k

n

)
≤ exp

(
− m2

2n
+

m

2n

)
.

Corollary 3 yields

(1− G̃s(k))
/
2 =

∑
m∈ k·N

am,

where

am =
2m2 − s

s+m
πm−1.

To make use of Proposition 5 we have to test (am)m∈N for monoto-
nicity. Immediately, we get am = 0 if m ≥ s+ 1, as 0 is a factor of the
product πm−1 in this case. If m ≤ s, we have to find out about the
sign of

am+1 − am =

(
2(m+ 1)2 − s

s+m+ 1

s−m

s+m
− 2m2 − s

s+m

)
πm−1.

The bracket can be written as

(2(m+ 1)2 − s)(s−m)− (2m2 − s)(s+m+ 1)

(s+m)(s+m+ 1)
.

The nominator of this fraction equals (2m + 1)(3s − 2m2 − 2m). It
changes its sign exactly once, namely at m0 = (−1+

√
1 + 6s )

/
2 from

plus to minus. The sequence (am)m∈N thus complies with Proposition 5
applied to ξ = ⌈m0⌉. So, with Lemma 4, we get

(3)
1√
s

s∑
k=2

eλk/
√
s(1−G̃s(k)) ≤

2√
s

s∑
k=2

eλk/
√
s
(
amax(⌈m0⌉,k) + πk−1

)
.

To further estimate amax(⌈m0⌉,k) we treat the cases max(⌈m0⌉, k) =
⌈m0⌉ and max(⌈m0⌉, k) = k separately. Firstly,

(4) a⌈m0⌉ ≤
2⌈m0⌉2 − s

s+ ⌈m0⌉
≤ 2(m0 + 1)2

s
− 1 ≤ 5

because 2(m0 + 1)2 = 1 +
√
1 + 6s + 3s ≤ 6s if s ≥ s0 ≥ 2. With the

help of Proposition 7 and using ak = 0 for all k ≥ s + 1, we obtain
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πk−1 ≤ e · e−k2/(2s) and, therefore, secondly,

(5) ak =
2k2 − s

s+ k
πk−1 ≤ 2e

k2

s
e−k2/(2s).

We insert this result into our inequality (3). Together with the
estimates (4) and (5), we get

1√
s

s∑
k=2

eλk/
√
s(1− G̃s(k))

≤ 2√
s

∞∑
k=2

eλk/
√
s
(
amax(⌈m0⌉,k) + πk−1

)
≤ 2√

s

( ⌈m0⌉∑
k=2

eλk/
√
s(5 + 1) +

∞∑
k=⌈m0⌉+1

eλk/
√
s(2ek2/s+ e)e−k2/(2s)

)
≤ 12√

s
⌈m0⌉eλ⌈m0⌉/

√
s

+
2e√
s

∞∑
k=1

(
2k2

s
+ 1

)
exp

(
λ

k√
s
− k2

2s

)
.

(6)

The ⌈m0⌉-term is uniformly bounded in s. We further estimate the
rest:

∞∑
k=1

(
2k2

s
+ 1

)
exp

(
λ

k√
s
− k2

2s

)

≤
⌊λ

√
s⌋∑

k=1

(
2k2

s
+ 1

)
exp

(
λ

k√
s

)

+
∞∑

k=⌈λ
√
s ⌉

(
2k2

s
+ 1

)
exp

(
− (k − λ

√
s)2

2s
+

λ2

2

)
≤ λ

√
s (2λ2 + 1)eλ

2

+ eλ
2/2

∞∑
k=⌈λ

√
s ⌉

(
2k2

s
+ 1

)
exp

(
− (k − ⌈λ

√
s ⌉)2

2s

)
.

(7)

It remains to handle the summation over k. After an index shift, it
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equals

(8)
∞∑
k=0

(
2(k + ⌈λ

√
s ⌉)2

s
+ 1

)
exp

(
− k2

2s

)

≤ c1
√
s+ c2

∞∑
k=⌈

√
s ⌉

k2

s
exp

(
− k2

2s

)

with constants c1 and c2, depending only on λ. The sum on the
right hand side is in turn bounded from above by

∑∞
k=0 f(k) where

f(x) = x2/s exp(−x2/(2s)). The derivative

f ′(x) =
x

s

(
2− x2

s

)
exp

(
− x2

2s

)
is initially positive and then negative for x >

√
2s. By Proposition 6 it

follows for all n ∈ N that

n∑
k=0

f(k) ≤ 2

e
+
√
s

∫ ∞

0

x2e−x2/2 dx =
2

e
+

√
s

√
π

2

and thus

(9)

∞∑
k=⌈

√
s ⌉

k2

s
exp

(
− k2

2s

)
≤ 2

e
+
√
s

√
π

2
.

Inserting the estimates (9) into (8), (8) into (7), and (7) into (6), we
are done. Hence, Theorem 1 is proved. �

APPENDIX

Proof of Lemma 2. To begin with, we remark that the sums in the
formula claimed in Lemma 2 effectively are finite sums because Bp,q = 0
for |q| > p.

Induction on p. First we check the formula for p = 0. Due to

B0,q =

{
1 if q = 0,
0 else,
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and |2(b− a)| > |q|, we have∑
m∈Z

B0,q+2m(b−a) =

{
1 if q = 0,
0 else.

Likewise, by means of 2b− q ̸= 0 and |2(b− a)| > |2b− q|,∑
m∈Z

B0,2b−q+2m(b−a) = 0.

Induction step p− 1 to p. For the first step of a path there are two
possibilities: up or down. The rest of the path can be regarded as a
path of its own, shorter by 1. Thus, we have, firstly,

Bp,q = Bp−1,q−1 +Bp−1,q+1

and, secondly,

Bp,q(a, b) = Bp−1,q−1(a− 1, b− 1) +Bp−1,q+1(a+ 1, b+ 1).

Combining this with the induction hypothesis yields

Bp,q(a, b) =
∑
m∈Z

Bp−1,q−1+2m(b−a) −
∑
m∈Z

Bp−1,2b−q−1+2m(b−a)

+
∑
m∈Z

Bp−1,q+1+2m(b−a) −
∑
m∈Z

Bp−1,2b−q+1+2m(b−a)

=
∑
m∈Z

Bp,q+2m(b−a) −
∑
m∈Z

Bp,2b−q+2m(b−a),

which is the desired formula. �

The proof above is indeed a simple way to check Lemma 2, but we
do not learn where the formula originates. How to derive it from the
reflection principle is set as a task in [1, Section 11], which is carried
out in [3].

Proof of Proposition 5. Let ξ̃ ∈ l ·N such that aξ̃ = maxk∈ l·N ak.

Since (ak)k is piecewise monotonic, we have the estimate

l ·
∞∑
k=l

step l

ak = laξ̃ +

ξ̃−l∑
k=l

step l

lak +
∞∑

k=ξ̃+l
step l

lak
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≤ laξ̃ +

ξ̃−l∑
k=l

step l

(ak + ak+1 + · · ·+ ak+l−1)

+
∞∑

k=ξ̃+l
step l

(ak + ak−1 + · · ·+ ak−l+1)

= laξ̃ +

ξ̃−1∑
k=l

ak +

∞∑
k=ξ̃+1

ak = (l − 1)aξ̃ +

∞∑
k=l

ak.

It is always true that aξ̃ ≤ aξ; in the case l ≥ ξ, we even have aξ̃ = al.
Dividing by l finishes the proof. �

Proof of Proposition 6. At first, we remark that f is piecewise con-
tinuous and thus integrable. The case Z ∩ [a, b] = ∅ is trivial. So, let

Z ∩ [a, b] ̸= ∅, and let ξ̂ be a point where f |Z∩[a,b] takes its maximum.

Then f |[k,k+1] ≥ f(k) for all k ∈ Z ∩ [a, ξ̂) and f |[k−1,k] ≥ f(k) for all

k ∈ Z ∩ (ξ̂, b]. Hence, we have∑
k∈Z∩[a,b]

f(k) = f(ξ̂) +
∑

k∈Z∩[a,ξ̂)

f(k) +
∑

k∈Z∩(ξ̂,b]

f(k)

≤ f(ξ̂) +
∑

k∈Z∩[a,ξ̂)

∫ k+1

k

f(x) dx

+
∑

k∈Z∩(ξ̂,b]

∫ k

k−1

f(x) dx

≤ f(ξ̂) +

∫ ξ̂

a

f(x) dx+

∫ b

ξ̂

f(x) dx,

which implies our claim due to f(ξ̂) ≤ f(ξ). �

Proof of Proposition 7. The case m ≥ n is trivial if m ≥ 2. If
m = n = 1, both sides equal 1. Thus, let m < n. Due to ln(1 + x) ≤ x
for all x > −1, we have

ln

( m−1∏
k=1

(
1− k

n

))
=

m−1∑
k=1

ln

(
1− k

n

)
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≤ −
m−1∑
k=1

k

n
= −m(m− 1)

2n
,

which implies the desired estimate. �
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