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A NOTE ON A CHARACTERIZATION OF METRICS
GENERATED BY NORMS

JACEK CHMIELIŃSKI

ABSTRACT. With reference to papers of Oikhberg and
Rosenthal [3] and Šemrl [4, 5], we make a contribution
to the problem of characterization of metrics generated by
norms.

1. Introduction. Let X be a real linear space with a metric d on
it. Šemrl [5] (motivated by earlier papers [3, 4]) showed that d is
generated by a norm if and only if: it is translation invariant

(1.1) d(x+ z, y + z) = d(x, y), x, y, z ∈ X,

algebraic midpoints are metric ones
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and

(1.3) for each x ∈ X the set {tx : t ∈ [0, 1]} is bounded.

Conditions (1.1) and (1.2) do not suffice, for consider the metric df
in R where df (x, y) = |f(x) − f(y)| and f : R → R is an injective and
discontinuous additive mapping.

Analyzing the proof of Šemrl’s theorem one can notice that, in fact,
condition (1.2) can be relaxed to

(1.2′) d(2x, 0) = 2d(x, 0), x ∈ X.

2010 AMS Mathematics subject classification. Primary 39B52, 39B62, 46B20,
54E35.

Keywords and phrases. Metrics generated by norms, additive mappings, convex
mappings.

Received by the editors on January 26, 2014, and in revised form on March 7,
2014.
DOI:10.1216/RMJ-2015-45-6-1801 Copyright c⃝2015 Rocky Mountain Mathematics Consortium

1801



1802 JACEK CHMIELIŃSKI

The conjunction of (1.1) and (1.2) is equivalent to that of (1.1) and
(1.2′). Condition (1.2′) is essentially weaker than (1.2), and it is easy
to observe that neither (1.2′) implies (1.1), nor (1.1) implies (1.2′).

The aim of this note is to consider another geometrical property of
a metric, which together with some regularity condition characterizes
normed spaces among metric ones.

2. Mid-segment property and a characterization of normed
spaces. Let us consider a condition which relates to the elementary
mid-segment property: if x, y and z are vertices of a triangle, then the
segment joining the midpoints (x+ z)/2 and (y + z)/2 is half as long
as the one joining x and y. Thus, let
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which equivalently could be written in a simpler form:
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Condition (∗) is equivalent to the conjunction of conditions (1.1) and
(1.2). Indeed, it follows from (∗) that d(x/2, 0) = d(x, 0)/2, whence
d(x, y) = d(x− y, 0). Inserting x+ z and y + z in place of x and y one
gets (1.1). Next, using (1.1), we have
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whence (1.2) holds true. Conversely, assuming (1.1) and (1.2), one gets
(∗):
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It follows thus from the theorem of Šemrl that any metric d satisfying
(∗) and (1.3) comes from a norm and conversely. Assuming merely (∗),
we obtain a somewhat weaker result.

Proposition 2.1. If a metric d on a real vector space X satisfies (∗),
then there exists a mapping φ : X → [0,∞) satisfying conditions:
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(i) φ(x) = 0 ⇔ x = 0;
(ii) φ(−x) = φ(x), x ∈ X;
(iii) φ(x+ y) ≤ φ(x) + φ(y), x, y ∈ X;
(iv) φ(2x) = 2φ(x), x ∈ X,

and such that d(x, y) = φ(x− y), x, y ∈ X.

Conversely, if φ : X → R satisfies (i)–(iv), then d(x, y) := φ(x− y),
x, y ∈ X, is a metric on X and satisfies (∗).

Proof. Take φ(x) := 2d((x/2), 0), x ∈ X. Then it follows from (∗)
that φ(x−y) = d(x, y). Conditions (i)–(iv) follow easily from (1.1) and
(1.2). For the converse, it is easy to check that conditions (i), (ii) and
(iii) imply that d is a metric, and (∗) follows from (iv). �

It is well known that conditions (iii) and (iv) imply

φ(nx) = nφ(x), x ∈ X, n ∈ N.

Hence, φ(px) = pφ(x), x ∈ X, p ∈ Q+ and, from (ii), one gets

(iv′) φ(px) = |p|φ(x), x ∈ X, p ∈ Q.

Proposition 2.2. Let X be a real vector space, and let a mapping
φ : X → [0,∞) satisfy conditions (i)–(iv). Then φ is a norm on X if
and only if φ additionally satisfies

(v) for all x ∈ X there exists ε > 0 and M ≥ 0 for all t ∈ [0, ε],
φ(tx) ≤ M .

Proof. Obviously, each norm satisfies (v). Conversely, assuming (v),
we have to check that φ(tx) = |t|φ(x) for all x ∈ X and t ∈ R. Let
x ∈ X and t ∈ R. For n ∈ N, choose rn ∈ Q such that t−ε/n ≤ rn ≤ t.
Thus, 0 ≤ n(t − rn) ≤ ε, which implies 0 ≤ φ((t − rn)x) ≤ M/n. By
(iii) and (iv′),

φ(tx) ≥ φ(rnx)− φ((rn − t)x) = |rn|φ(x)− φ((rn − t)x),

whence, letting n → ∞, φ(tx) ≥ |t|φ(x). Inserting tx and 1/t in place
of x and t, respectively, we get the reverse inequality. �

Remark 2.3. Actually, the above elementary proof can be omitted
in view of a more general result. It follows from (iii) and (iv) that,
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for any fixed x ∈ X, the mapping φx : R ∋ t 7→ φ(tx) ∈ [0,∞) is
Jensen-convex and, due to (v), bounded from above on some interval
[0, ε]. Hence, it is continuous (Bernstein-Doetsch theorem, cf., [1]
or [2, Theorem 6.4.2]) and homogeneity of φx, with respect to real
scalars, follows. What is more, intervals [0, ε] on which mappings φx

are bounded from the above, can be replaced by sets from a wider
class A of subsets possessing the property that any J-convex function
bounded from above on such set must be continuous (cf., [2, Chapter
9, Theorem 9.3.3]). Furthermore, one could replace (v) by any other
condition guaranteeing continuity of J-convex mappings φx.

Let D be a subset of a real vector space X. An algebraic interior of
D is defined by

x0 ∈ alg intD ⇐⇒ for all y ∈ X there exists ε > 0 :

x0 + λy ∈ D for λ ∈ [0, ε).

We say that D is bounded on rays at a point x0 ∈ D whenever, for any
y ∈ X, the set

Dy := {x0 + λy : λ ≥ 0} ∩D

is bounded (however, the bound may depend on y).

Finally, we arrive at our main result.

Theorem 2.4 (Main theorem). Let d be a metric in a real vector space
X satisfying the mid-segment property (∗). Suppose that there exist a
subset D ⊂ X and a point x0 ∈ alg intD such that D is bounded on
rays at x0. Then d is generated by a norm.

Proof. Due to Proposition 2.1, the mapping φ(x) := 2d((x/2), 0)
satisfies (i)–(iv) and generates d. Assuming that D is bounded on
rays at x0 ∈ alg intD and defining D′ := D − x0, one gets that
0 ∈ alg intD′ and D′ is bounded on rays at 0. Thus, φ satisfies (v),
and it follows from Proposition 2.2 that φ is a norm. �

In particular, the following holds true.
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Corollary 2.5. Let d be a metric in X satisfying (∗), and suppose
that there exists a bounded subset D ⊂ X with a nonempty algebraic
interior. Then d is generated by a norm.
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żych 2, 30-084 Kraków, Poland
Email address: jacek@up.krakow.pl


