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THE UNIMODALITY OF PURE O-SEQUENCES OF
TYPE TWO IN FOUR VARIABLES

BERNADETTE BOYLE

ABSTRACT. Since the 1970’s, great interest has been
taken in the study of pure O-sequences, which, due to
Macaulay’s theory of inverse systems, have a bijective cor-
respondence to the Hilbert functions of Artinian level mono-
mial algebras. Much progress has been made in classifying
these according to their shape. Macaulay’s theorem imme-
diately gives us that all Artinian algebras in two variables
have unimodal Hilbert functions. Furthermore, it has been
shown that all Artinian level monomial algebras of type two
in three variables have unimodal Hilbert functions. This pa-
per will classify all Artinian level monomial algebras of type
two in four variables into two classes of ideals, prove that
they are strictly unimodal and show that one of the classes is
licci.

1. Introduction. The study of pure O-sequences began in 1977
with the work of Stanley [19]. In the relatively short time since then,
these objects have appeared in the study of a wide array of other
mathematical areas, some much older than pure O-sequences them-
selves. In his initial study of pure O-sequences, Stanley conjectured
that the h-vector of a matroid complex is a pure O-sequence [19].
Since then, many mathematicians have taken an interest in studying
pure O-sequences. Although Stanley’s conjecture is still open, there
have been a number of interesting, albeit partial, results. These results
include proving the conjecture for paving matroids [14], cotransver-
sal matroids [16], one-dimensional matroid complexes [21] and lattice
path matroids [18], among others. Additional connections have been
found between pure O-sequences and the areas of topological combina-
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torics [3], error-correcting codes [12] and more; we refer the reader to
[1] for other examples.

One of the promising approaches for addressing pure O-sequences is
to study them in light of their bijective correspondence to the Hilbert
functions of Artinian level monomial algebras, which is what we will
do in this paper. This bijective correspondence between these objects
is due to Macaulay’s theory of inverse systems. More background on
inverse systems and Artinian level monomial algebras will be given in
the next section. Here we will recall some definitions and previous
results to motivate this paper.

An order ideal is a non-empty setX of (monic) monomials such that,
if M ∈ X and N is a monomial dividing M , then N ∈ X. The h-vector
of X is the sequence h= (h0 = 1, h1, . . . , he) (with he ̸= 0) which counts
the monomials ofX in each degree. An order ideal is pure if all maximal
monomials of X have the same degree. A pure O-sequence is the h-
vector of a pure order ideal. The type of an O-sequence is the number
of maximal monomials (ordered by divisibility) in the order ideal. A
sequence is unimodal if it does not increase after a strict decrease; a
sequence is strictly unimodal if it is unimodal and only constant in its
peak degree(s). We should note that pure O-sequences and the Hilbert
functions of algebras are not affected by the characteristic; therefore,
without loss of generality, we assume characteristic zero throughout
this paper.

Example 1.1. Let X be a pure order ideal in three variables and

{x2y2, z4, x3z} ∈ X.

Then we must also have

{x, y, z, x2, y2, z2, xy, xz, x3, z3, xy2, x2y, x2z} ∈ X.

This gives us that h = (1, 3, 5, 5, 3). By design, the order ideal is
pure since the maximal monomials, (x2y2, z4, x3z), all have the same
degree; furthermore, we have that the type is three since there are three
generating monomials. This h-vector is strictly unimodal.

Recently, there has been interest and progress in classifying and
characterizing the shape of pure O-sequences. In particular, two main
results are due to Hibi and to Hausel. In [9, Theorem 1.1], Hibi
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showed that all pure O-sequences h = (1, h1, h2, . . . , he) are flawless
or, equivalently, that

hi ≤ he−i for all i ≤
⌊e
2

⌋
.

Hibi also showed that

hi−1 ≤ hi for all i ≤
⌊e
2

⌋
,

so the “first half” of h is non-decreasing. Hausel built on this result
([7, Theorem 6.3]) showing that, in addition to the first half being non-
decreasing, it is differentiable. Thus, the first difference of the first half
of h satisfies Macaulay’s theorem, which implies that it is the h-vector
for an order ideal (which is not necessarily pure). The converse of this
was proven by Boij, et al. in [1]. Specifically, they showed that a finite
non-decreasing O-sequence h is the “first half” of a pure O-sequence if
and only if it is differentiable.

These results give us a lot of information about the first half of the
h-vector, which naturally leads one to ask about the second half of
the h-vector, in particular whether the h-vector, or equivalently the
Hilbert function of an Artinian level monomial algebra, is unimodal.
There have been several results which give families where the Hilbert
function of Artinian level monomial algebras are unimodal. In two
variables, Macaulay’s maximal growth theorem immediately implies
that all Artinian algebras have unimodal Hilbert functions. In more
variables, one tool that has been useful is the weak Lefschetz property
(WLP). This property says that multiplication by a general linear
form has maximal rank from any component of the algebra to the
next. A consequence of this property is that the Hilbert function of
the algebra is unimodal. This is due to the standard grading of the
algebra which was first noted in [6]. Using this tool, Stanley [20],
Watanabe [22] and Reid, Roberts, and Roitman [17] showed that
all monomial complete intersections have unimodal Hilbert functions.
Furthermore, in [1, Corollary 6.8], the authors showed that all Artinian
level monomial algebras of type two in three variables have the WLP
in characteristic zero and thus have unimodal Hilbert functions in any
characteristic. Unfortunately, [1, Theorem 7.17] shows that, in three
or more variables, the only cases where the weak Lefschetz property is
guaranteed for level Artinian monomial algebras in characteristic zero
are type one for any number of variables and type two in three variables.
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The first counterexample of a codimesion three level Artinian monomial
algebra which fails to have the WLP (with type as low as three) was
found by Zanello [23]. Furthermore, in three variables, Brenner and
Kaid ([2]) showed that WLP can fail for a level type three monomial
algebra, even an almost complete intersection.

Even without the WLP holding for these algebras, one can still ask
if pure O-sequences are unimodal. However, for high enough type, the
unimodality of pure O-sequences can fail, as several examples have been
found. The first example of a non-unimodal pure O-sequence is due to
Stanley [19]. He showed that (1, 505, 2065, 3395, 3325, 3493) is a pure
O-sequence, but clearly it is not unimodal. Furthermore in [1, Theorem
3.9], the authors found an infinite family of pure O-sequences which
are non-unimodal. In particular, they found that if M is any positive
integer and r ≥ 3, a fixed integer, then there exists a pure O-sequence
in r variables which is non-unimodal, having exactly M maxima. It
is clear from these last examples that not all pure O-sequences will be
unimodal, but it is still interesting to ask if fixing the type to be low
enough will guarantee that a pure O-sequence is unimodal.

It follows from what we have said above that pure O-sequences of
type one in any number of variables, and type two in three variables, are
known to be unimodal. In this paper, we will settle the next open case.
Specifically, we will show that any pure O-sequence of type two in four
variables is strictly unimodal. Since the WLP does not necessarily hold
in this case, we will approach this problem using modified techniques.
In particular, we will rely heavily on the fact that the Hilbert functions
of complete intersections peak in the middle degree. We will also
explore the liaison classes of these algebras.

2. Background. In this section, we will review some definitions and
results that are needed in the paper.

Let R = k[x1, . . . , xr] where k is a field of characteristic zero. Let
I be a monomial ideal of R with no non-zero elements of degree 1.
We will consider a standard graded Artinian monomial k-algebra with
codimension r,

R/I =
⊕
i≥0

(R/I)i.
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The Hilbert function of R/I is

H(R/I, i) = dimk(R/I)i = dimk Ri − dimk Ii.

Let m = (x1, . . . , xr) be the maximal ideal of R; the homogeneous
maximal ideal in R/I is m = (x1, . . . , xr). The socle of R/I is the
annihilator of m, so soc (R/I) = {a ∈ R/I | am = 0}. The Hilbert
function of an Artinian algebra is finite, and thus H(R/I) = (h0 =
1, h1, h2, . . . , he), where e is the last degree i for which H(R/I, i) ̸= 0
(hi > 0 for 0 ≤ i ≤ e). Since our algebras are level, the socle is
necessarily concentrated in degree e, called the socle degree. The type
of R/I is dim (soc (R/I)) = he. We notice that some of this notation is
similar to that of the pure order ideal because these objects are actually
the same due to the theory of inverse systems.

Macaulay developed the theory of inverse systems, which helps
translate between order ideals and Artinian algebras. To set up this
theory, let

R = k[x1, . . . , xr]

and
S = k[y1, . . . , yr].

S acts on R in the following way: if F ∈ R, then

yi ◦ F =

(
∂

∂xi

)
F.

For inverse systems, we can assume that char (k) equals 0 and thus
essentially ignore the coefficients. This is to ensure the correct Hilbert
function which is not affected by the characteristic. This also ensures
that the action results in submodules that are consistent with pure
O-sequences. Using the language of inverse systems, the elements
produced by this action are called derivatives, even though they differ
slightly from the traditional concept of derivatives where the coefficients
are retained. There is a one-to-one correspondence between ideals of S
and S-submodules of R given by the function

φ1 : {ideals of S} −→ {S-submodules of R}
φ1(I) = {F ∈ R | G ◦ F = 0 for all G ∈ I}.

We denote φ1(I) as I
⊥ and call it the inverse system to I.
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In this paper, we will use the inverse of φ1, which is

φ2(M) = annS(M).

When focusing on monomial ideals (as we are in this paper), S can
be thought of as being the same polynomial ring as R. Furthermore,
in this case, we have that in any degree d, the inverse system I⊥d is
spanned by all the monomials in Rd that are not in Id. We refer the
reader to [4, 5] or [11, Appendix] for more on inverse systems.

This correspondence also preserves certain properties of the order
ideal and Artinian monomial algebras. We have that the order ideal
is pure if and only if the corresponding Artinian monomial algebra is
level. Furthermore, the type of the order ideal is the same as the type
of the algebra. Thus, we have that Artinian level monomial algebras
and their Hilbert functions have a bijective correspondence with pure
order ideals and pure O-sequences.

For this paper, we will focus on Artinian level monomial algebras of
type two in four variables. Thus, we can derive a lot of information
about these algebras from this theory of inverse systems. Let R =
k[x, y, z, w]. If A is an Artinian level monomial algebra of type two in
four variables, then A can be thought of as the inverse system of two
monomials of the same degree. Thus, A is isomorphic to R/(J ∩ K)
where J = (xa1 , ya2 , za3 , wa4) and K = (xb1 , yb2 , zb3 , wb4) such that
a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4. Furthermore, one can derive the
Hilbert series of this algebra from the following exact sequence:

0 −→ R/(J ∩K) −→ R/J ⊕R/K −→ R/(J +K) −→ 0.

This gives that

Hilb (R/(J ∩K), t) = Hilb (R/J, t) + Hilb (R/K, t)

−Hilb (R/(J +K), t)

=

∏4
i=1(1− tai)

(1− t)4
+

∏4
i=1(1− tbi)

(1− t)4

−
∏4

i=1(1− tci)

(1− t)4

where ci = min{ai, bi} for all i = 1, 2, 3, 4.
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Additional tools used in this paper come from liaison theory. Two
ideals A and B are CI-linked (respectively, G-linked) if there exists a
complete intersection ideal C (respectfully, Gorenstein ideal) such that

C ⊆ A ∩ B, [C : A] = B and [C : B] = A. This is denoted as A
C∼ B.

Two ideals are in the same liaison class if they can be linked together
in a finite number of links. An ideal is licci if it is in the liaison class of
a complete intersection, where all the links are complete intersections.
An ideal is glicci if it is the liaison class of a complete intersection, with
all Gorenstein ideal links.

The liaison classes of ideals are interesting to study since linkage
preserves several invariants such as codimension, certain cohomology
modules and the property of being arithmetically Cohen-Macaulay.
The study of liaison theory has led to the construction of particular
ideals through basic double linkage. Let

J ⊂ I ⊂ R = k[x1, . . . , xr],

where J and I are homogeneous ideals with codim (J) = codim (I)−1.
Let f ∈ R be homogeneous, with J : f = J . Then I ′ := f · I + J is a
basic double link. This name comes from the fact that if I is unmixed
and R/J is Cohen-Macaulay and generically Gorenstein, then I ′ can
be Gorenstein linked to I in two steps. There has been much progress
studying liaison, but we will only state what we will need in the rest of
the paper, namely, the Hilbert function formula of a basic double link.
We refer the reader to [13, 15] for more information on liaison theory.

For the next lemma and throughout this work we will use the
notation H(a1, a2, . . . , ar). This denotes the Hilbert function of a
complete intersection of the form (xa1

1 , xa2
2 , . . . , xar

r ).

Lemma 2.1. Let a = (xa1
1 , xa2

2 , . . . , xar
r ) be a complete intersection

in the ring k[x1, . . . , xr]. Let ∆H be the first difference of its Hilbert
function. Then

∆H = H(a1, a2, . . . , ar−1)−H(a1, a2, . . . , ar−1)(−ar),

where H(a1, a2, . . . , ar−1) and H(a1, a2, . . . , ar−1)(−ar) are in the ring
k[x1, . . . , xr−1]. Any permutation of the ai is equally valid.
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3. Main theorem. We ultimately want to look at the unimodality
of the Hilbert functions of Artinian level monomial algebras of type
two in four variables. First, we classify these algebras into two cases.

Lemma 3.1. Let R = k[x, y, z, w] and I be an Artinian monomial ideal
such that R/I is level of type two. Then I has one of the following two
forms, up to a change of variables. In both cases, we have a ≥ α > 0,
b ≥ β > 0, c ≥ γ > 0 and d ≥ δ > 0.

(i) (xa, yb, zc, wd, xαwδ, yβwδ, zγwδ) where a+b+c+δ = α+β+γ+d
and d > δ. The Hilbert function of R/I is

HR/I = H(a, b, c, δ) +H(α, β, γ, d− δ)(−δ).

(ii) (xa, yb, zc, wd, xαzγ , xαwδ, yβzγ , yβwδ) where α + β + c + d =
a+ b+ γ + δ. The Hilbert function of R/I is

HR/I = H(a− α, b, γ, δ)(−α) +H(α, b− β, γ, δ)(−β)

+H(α, β, c, d).

Proof. Section 2 givesR/I ∼= R/(J∩K) where J = (xa1 , ya2 , za3 , wa4)
and K = (xb1 , yb2 , zb3 , wb4) with a1 + a2 + a3 + a4 = b1 + b2 + b3 + b4.
Up to a change of variables we have two cases:

(i) ai ≥ bi for three i (if bi ≥ ai for three i, swap J and K)
(ii) ai ≥ bi for two i

For case (i) assume, without loss of generality, that ai ≥ bi for i ≤ 3
and a4 ≤ b4. Thus, from [8, Proposition 1.2.1], we have

I := J ∩K = (xa1 , ya2 , za3 , wb4 , xb1wa4 , yb2wa4 , zb3wa4),

and

Hilb (R/I, t) =

∏4
i=1(1− tai)

(1− t)4
+

∏4
i=1(1− tbi)

(1− t)4

−
(1− ta4)

∏3
i=1(1− tbi)

(1− t)4

=

∏4
i=1(1− tai)

(1− t)4
+

ta4(1− tb4−a4)
∏3

i=1(1− tbi)

(1− t)4
.
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For case (ii), assume that ai ≥ bi for i = 1, 2 and aj ≤ bj for i = 3, 4.
Thus, from [8, Proposition 1.2.1], we have

I := J ∩K = (xa1 , ya2 , zb3 , wb4 , xb1za3 , xb1wa4 , yb2za3 , yb2wa4),

and

Hilb (R/I, t) =

∏4
i=1(1− tai)

(1− t)4
+

∏4
i=1(1− tbi)

(1− t)4

− (1− tb1)(1− tb2)(1− ta3)(1− ta4)

(1− t)4

=

∏4
i=1(1− tbi)

(1− t)4
+

∏4
i=1(1− tai)

(1− t)4

−
(1− tbi)

∏4
i=2(1− tai)

(1− t)4

+
(1− tbi)

∏4
i=2(1− tai)

(1− t)4

− (1− tb1)(1− tb2)(1− ta3)(1− ta4)

(1− t)4

=

∏4
i=1(1− tbi)

(1− t)4

+

∏4
i=3(1− tai)[(1− ta2)[(1− ta1)− (1− tb1)]]

(1− t)4

+

∏4
i=3(1− tai)[(1− tb1)[(1− ta2)− (1− tb2)]]

(1− t)4

=

∏4
i=1(1− tbi)

(1− t)4
+

tb1(1− ta1−b1)
∏4

i=2(1− tai)

(1− t)4

+
tb2(1− tb1)(1− ta2−b2)(1− ta3)(1− ta4)

(1− t)4
.

After renaming the variables, we have that the ideals and their
Hilbert functions match those of the Proposition. �

Theorem 3.2. Let R = k[x, y, z, w], and let I be a monomial Artinian
ideal such that R/I is level of type two. Then the Hilbert function of
R/I is strictly unimodal.
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We will prove this theorem by looking at the two cases given in
Lemma 3.1 with Propositions 3.3 and 3.4, respectively.

Proposition 3.3. Let

I = (xa, yb, zc, wd, xαwδ, yβwδ, zγwδ),

where a+b+c+δ = α+β+γ+d with a ≥ α > 0, b ≥ β > 0, c ≥ γ > 0,
d > δ > 0 and

HR/I = H(a, b, c, δ) +H(α, β, γ, d− δ)(−δ) =: L+ J.

Then, this Hilbert function is strictly unimodal.

Proof. For strict unimodality, it is enough to show that the first
difference of HR/I is positive, possibly zero, then negative. First
observe that L and J are the Hilbert functions of complete intersections;
thus, they are strictly unimodal and peak in the middle degree. We
have that the first differences of L and J are positive then possibly zero
in degrees less than or equal to

A :=

⌊
a+ b+ c+ δ − 4

2

⌋
and

B :=

⌊
α+ β + γ + d+ δ − 4

2

⌋
,

respectively. Furthermore, ∆L and ∆J are possibly zero then negative
in all degrees after A and B, respectively. We note that A ≤ B since

a+ b+ c+ δ − 4 = α+ β + γ + d− 4 < α+ β + γ + d+ δ − 4.

This gives that both ∆L and ∆J , and thus ∆HR/I , are positive then
possibly zero from degree 0 to A. Similarly, ∆HR/I is possibly 0 then
negative from degree B to the end.

First, we assume that ∆HR/I = 0 for some degree t ≤ A or t ≥ B,
then ∆L = 0 and ∆J = 0 in degree t. Since both L and J are
strictly unimodal, ∆HR/I cannot become positive after this degree t.
Furthermore, if ∆HR/I = 0 for some degree t ≤ A or t ≥ B, then
when ∆HR/I becomes negative either ∆L or ∆J is negative and the
other equals 0, or both segments are negative. In either case ∆HR/I

will remain negative until the end. Thus, if ∆HR/I = 0 for some t ≤ A
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or t ≥ B, then HR/I is strictly unimodal. Therefore, without loss of
generality, assume that ∆HR/I ̸= 0 in degrees less than or equal to A
and greater than or equal to B.

To prove the strict unimodality of HR/I , it is enough to show that

∆2HR/I ≤ 0 for all degrees between A and B. If this is true, then
∆HR/I will be decreasing or constant between A and B. Thus, if
∆HR/I = 0, it will not become positive again; furthermore, once
∆HR/I < 0 it will remain negative until it ends. This would imply
that HR/I is strictly unimodal.

To show that ∆2HR/I(t) ≤ 0 for all degrees A ≤ t ≤ B, we will use
Lemma 2.1 to decompose ∆HR/I as

∆HR/I = H(a, b, c) +H(α, β, γ)(−δ)

−H(a, b, c)(−δ)−H(α, β, γ)(−d).

Each segment is the Hilbert function of a complete intersection; thus,
we have that

∆H(a, b, c) ≤ 0 after degree

⌊
a+ b+ c− 3

2

⌋
=: X

−∆H(α, β, γ)(−d) ≤ 0 through degree

⌊
α+ β + γ + 2d− 3

2

⌋
=: W.

Comparing these degrees to degrees A and B gives

a+ b+ c− 3 ≤ a+ b+ c+ δ − 4 =⇒ X ≤ A

=⇒ ∆H(a, b, c) ≤ 0 for all degrees ≥ A.

α+ β + γ + 2d− 3 ≥ α+ β + γ + d+ δ − 4 =⇒ W ≥ B

=⇒ −∆H(α, β, γ)(−d) ≤ 0 for all degrees ≤ B.

The above inequalities give that ∆H(a, b, c) and −∆H(α, β, γ)(−d)
are non-positive between degreesA andB. This leaves ∆[H(α, β, γ)(−δ)
− H(a, b, c)(−δ)] to check. We note that since H(α, β, γ)(−δ) and
H(a, b, c)(−δ) start in the same degree and a ≥ α, b ≥ β and c ≥ γ,
the difference of these two Hilbert functions will initially be zero and
then decrease until at least the peak value of H(a, b, c)(−δ). We also
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notice that this peak value is at⌊
a+ b+ c+ 2δ − 3

2

⌋
,

which is greater than or equal to B (since a+b+c+2δ−3 = α+β+γ+
d+δ−3 ≥ α+β+γ+d−4). Thus, ∆[H(α, β, γ)(−δ)−H(a, b, c)(−δ)] is
non-positive until at least degree B. Therefore, we have that ∆2HR/I is
zero or negative between A and B. This implies that ∆HR/I is positive,
possibly zero, then negative so HR/I is strictly unimodal. �

Proposition 3.4. Let

I = (xa, yb, zc, wd, xαzγ , xαwδ, yβzγ , yβwδ),

where α+β+c+d = a+b+γ+δ with a ≥ α > 0, b ≥ β > 0, c ≥ γ > 0,
d ≥ δ > 0 and

HR/I = H(a− α, b, γ, δ)(−α)

+H(α, b− β, γ, δ)(−β) +H(α, β, c, d)

=: H1 +H2 +H3.

Then, this Hilbert function is strictly unimodal.

Proof. For this proof, we will assume, without loss of generality, that
d ≥ a, d ≥ b and d ≥ c. If this is not true, then find the variable with
the highest exponent and set that variable to be w. It is enough to
show that the first difference of HR/I is positive, then possibly zero,
then negative. Since all three segments of the decomposition are Hilbert
functions of complete intersections, we know that they must be strictly
unimodal and peak in the middle degree. Thus, ∆H1, ∆H2 and ∆H3

are positive then possibly zero in all degrees less than or equal to:

A :=

⌊
a+ α+ b+ γ + δ − 4

2

⌋
B :=

⌊
α+ b+ β + γ + δ − 4

2

⌋
C :=

⌊
α+ β + c+ d− 4

2

⌋
,

respectively. Furthermore, ∆H1, ∆H2 and ∆H3 are possibly zero then
negative in all degrees after A, B and C, respectively. Thus, before
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min{A,B,C} =: T , all three segments are non-negative and, as a
result, so is ∆HR/I . Similarly, ∆HR/I is non-positive in all degrees
after max{A,B,C} =: Q.

First, assume that ∆HR/I = 0 in a degree t ≤ T or t ≥ Q. In
either case, the first differences of H1, H2 and H3 all must equal 0.
Since H1, H2 and H3 are strictly unimodal, once ∆HR/I = 0, it cannot
become positive again. Furthermore, once ∆HR/I becomes negative,
it will remain negative. Therefore, if ∆HR/I = 0 in a degree t ≤ T
or t ≥ Q, then HR/I is strictly unimodal. In particular, this addresses
the case where A = B = C (since T = Q). Furthermore, without loss
of generality, we will assume that ∆HR/I ̸= 0 in any degree t ≤ T or
t ≥ Q.

To prove the strict unimodality of HR/I , it is enough to show that

∆2HR/I ≤ 0 for all degrees between T and Q. If this is true, then
∆HR/I will be decreasing or constant between T and Q. Thus, if
∆HR/I = 0, it will not become positive again; furthermore, once
∆HR/I < 0, it will remain negative until it ends. This would imply
that HR/I is strictly unimodal.

We will now investigate the relationship between A, B and C. We
note that A ≥ C since

a+ α+ b+ γ + δ − 4 = 2α+ β + c+ d− 4 ≥ α+ β + c+ d− 4.

This leaves three cases to check.

(1) Q := max{A,B,C} = B and T := min{A,B,C} = C;
(2) Q := max{A,B,C} = A and T := min{A,B,C} = B;
(3) Q := max{A,B,C} = A and T := min{A,B,C} = C.

For case (1), we need B ≥ A, and thus we must have

α+ b+ β + γ + δ − 3 ≥ a+ α+ b+ γ + δ − 4 =⇒ β ≥ a− 1.

Note that if β = a − 1 and B ≥ A, then A = B; we will address this
situation in case (3) where A ≥ B. Thus, we will assume, without loss
of generality, that β ≥ a which gives us b ≥ β ≥ a ≥ α. Furthermore,
we note that b ̸= α (b > α) since, if b = α then

b ≥ β ≥ a ≥ α =⇒ b = β = a = α ⇒ R/I is a type 1 algebra.
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Using Lemma 2.1, we have

∆HR/I = H(a− α, γ, δ)(−α) +H(α, b− β, γ)(−β)

+H(α, c, d)−H(a− α, γ, δ)(−α− b)

−H(α, b− β, γ)(−β − δ)−H(α, c, d)(−β)

=: P1 + P2 + P3 −N1 −N2 −N3.

Since each of the Pi and Ni are the Hilbert functions of complete
intersections, we know that they are strictly unimodal and peak in
the middle degree. Ideally, we want to show that the middle (peak)
degree of each of the Pi is less than C, and the middle degree of each of
the Ni is greater than B. If so, then segments ∆Pi and −∆Ni will be
zero or negative between C and B, implying that ∆2HR/I ≤ 0 between
these degrees. Note that

a+ α+ γ + δ − 3 ≤ a+ b+ γ + δ − 4 =

α+ β + c+ d− 4 (since α < b) =⇒ P1 peaks before C

α+ c+ d− 3 ≤ α+ β + c+ d− 4 =⇒ P3 peaks before C

a+ α+ γ + δ + 2b− 3 ≥ α+ b+ β + γ + δ − 4 =⇒ N1 peaks after B

α+ b+ β + γ + 2δ − 3 ≥ α+ b+ β + γ + δ − 4 =⇒ N2 peaks after B

The above inequalities give that P1, P3, N1 and N2 are non-positive
between C and B. This leaves ∆[P2−N3] to check. We note that, since
P2 and N3 start in the same degree and c ≥ γ and d ≥ b (so d > b−β),
the difference of these two Hilbert functions will initially be zero and
then decrease until at least the peak value of N3. We notice that this
peak value is at ⌊

α+ c+ d+ 2β − 3

2

⌋
,

which is greater than or equal to B (since α + c + d + 2β − 3 =
a + b + γ + δ + β − 3 ≥ α + b + β + γ + δ − 4). Thus, ∆[P2 − N3]
is non-positive until at least degree B. Thus, we have that ∆2HR/I is
zero or negative between A and B. This implies that ∆HR/I is positive,
possibly zero, then negative so HR/I is strictly unimodal.

For cases (2) and (3), without loss of generality, we have the following
assumptions (in addition to our previous assumption that d ≥ c, d ≥ b
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and d ≥ a):

(a) a > β and b > α (if either inequality fails, change the variables so
that β ≥ a to be in case (1).

(b) b ≥ a (if b < a then swap the variables x and y).

For case (2), A ≥ C ≥ B so we want to show that ∆2HR/I ≤ 0
between B and A. To do this, we will change the decomposition of
the first difference of the Hilbert function of R/I using Lemma 2.1.
In particular, we will change P3 and N3. We note that this does not
change the values of A, B or C. Our new decomposition will be

∆HR/I = H(a− α, γ, δ)(−α) +H(α, γ, δ)(−β)

+H(α, β, c)−H(a− α, γ, δ)(−α− b)

−H(α, γ, δ)(−b)−H(α, β, c)(−d)

=: P1 + P2 + P3 −N1 −N2 −N3.

With the above assumptions and decomposition, we have that the Pi

peak before B and the Ni peak after A. Indeed,

a+ α+ γ + δ − 3 ≤ α+ b+ β + γ + δ − 4

(b ≥ a) =⇒ P1 peaks before B

α+ γ + δ + 2β − 3 ≤ α+ b+ β + γ + δ − 4

(b ≥ a, a > β =⇒ b > β) =⇒ P2 peaks before B

α+ β + c− 3 ≤ 2α+ 2β + c+ d− a− 4 =

α+ b+ β + γ + δ − 4(d ≥ a) =⇒ P3 peaks before B

a+ α+ γ + δ + 2b− 3 ≥ a+ α+ b+ γ + δ − 4 =⇒ N1 peaks after A

α+ γ + δ + 2b− 3 ≥ a+ α+ b+ γ + δ − 4

(b ≥ a)) =⇒ N2 peaks after A

α+ β + c+ 2d− 3 ≥ 2α+ β + c+ d− 4 =

a+ α+ b+ γ + δ − 4 (d ≥ a) =⇒ N3 peaks after A

Since ∆Pi and −∆Ni are zero or negative between B and A for
all degrees i, ∆2HR/I ≤ 0 between these degrees. Thus, ∆HR/I is
decreasing or constant between B and A. This implies that HR/I is
strictly unimodal, which completes case (2).
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For case (3), A ≥ B ≥ C so we want to show that ∆2HR/I ≤ 0
between degrees C and A. We note that, since B ≥ C, we have

α+ b+ β + γ + δ − 3 ≥ α+ β + c+ d− 4

= a+ b+ γ + δ − 4

=⇒ α+ β ≥ a− 1.

We note that, if α + β = a − 1 and B ≥ C then B = C. Since the
case A > B = C has already been addressed in case (2) above, we will
assume without loss of generality that

α+ β ≥ a.

To address case (3), we will change the decomposition of the first
difference of the Hilbert function to be

∆HR/I = H(a− α, γ, δ)(−α) +H(b− β, γ, δ)(−β)

+H(α, β, c)−H(a− α, γ, δ)(−α− b)

−H(b− β, γ, δ)(−α− β)−H(α, β, c)(−d)

=: P1 + P2 + P3 −N1 −N2 −N3.

With these assumptions and decomposition, we note that the Pi

peak before C and the Ni peak after A. Indeed,

a+ α+ γ + δ − 3 ≤ a+ b+ γ + δ − 4 =

α+ β + c+ d− 4 (b > α) =⇒ P1 peaks before C

b+ β + γ + δ − 3 ≤ a+ b+ γ + δ − 4 =

α+ β + c+ d− 4 (a > β) =⇒ P2 peaks before C

α+ β + c− 3 ≤ α+ β + c+ d− 4 =⇒ P3 peaks before C

a+ α+ γ + δ + 2b− 3 ≥ a+ α+ b+ γ + δ − 4 =⇒ N1 peaks after A

b+ β + γ + δ + 2α− 3 ≥ a+ α+ b+ γ + δ − 4

(β + α ≥ a) =⇒ N2 peaks after A

α+ β + c+ 2d− 3 ≥ 2α+ β + c+ d− 4 =

a+ α+ b+ γ + δ − 4 (d ≥ α) =⇒ N3 peaks after A.



PURE O-SEQUENCES 1797

Since ∆Pi and −∆Ni are zero or negative between C and A for all
degrees i, ∆2HR/I ≤ 0 between these degrees, so ∆HR/I is decreasing
or constant between C and A. Thus, we have that HR/I is strictly
unimodal, which completes the proof for case (3) and Proposition 3.4.

�

In addition to the unimodality of the Hilbert function of Artinian
level monomial algebras, we have found interesting results related to
the licciness of these algebras.

Remark 3.5. Let a ≥ α, b ≥ β, c ≥ γ and d ≥ δ.

(i) The ideal (xa, yb, zc, wd, xαwδ, yβwδ, zγwδ) with a + b + c + δ =
α+ β + γ + d, d > δ is licci.

(ii) Assume that a ̸= α, b ̸= β, c ̸= γ and d ̸= δ; if any of these
equalities hold, then this ideal falls into case (1) above. The
ideal (xa, yb, zc, wd, xαzγ , xαwδ, yβzγ , yβwδ) where a+b+γ+δ =
α+ β + c+ d is not licci.

Proof. For ideal (i), we will show that the ideal is licci by construct-
ing the CI-links. The ideal decomposes as

I = (xa, yb, zc, wd) + wδ(xα, yβ , zγ , wd−δ).

Lemma 2.5 from [10] gives that I is CI-linked to T := (xα, yβ , zγ , wd−δ)
by the double link defined by the monomial regular sequences C =

(xa, yb, zc, wd) and S = (xa, yb, zc, wd−γ). Thus, I
C∼ Y

S∼ T where Y
is some monomial ideal in R, so I is licci.

Ideal (ii) decomposes as

I = (xa, yb, zc, wd) + (xαzγ , xαwδ, yβzγ , yβwδ).

Since the second piece of this ideal is an ideal of height at least two,
Lemma 2.4 from [10] gives us that the original ideal cannot be licci.
However, we conjecture that ideal (ii) is glicci. �
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