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ABSTRACT. This paper is concerned with the 513 iso-
morphism classes of degree 12 2-adic fields whose automor-
phism groups have order 4. For each extension, we iden-
tify a defining polynomial, the extension’s ramification index,
residue degree, discriminant, and the Galois group of the ex-
tension’s normal closure. These results extend previous work
of Jones and Roberts, Awtrey and Shill.

1. Introduction. Let p be a prime number and n a positive integer.
A standard result in number theory states that there are only finitely
many nonisomorphic degree n extensions of the p-adic numbers [13,
page 54]. It is therefore theoretically possible to classify all such exten-
sions. Early research into this problem has produced mass formulas;
formulas for the number of extensions of a local field which count sub-
fields of an algebraic closure. For example, Krasner [12] gives a formula
for the number of totally ramified extensions of a local field of speci-
fied degree. The main tool used is his well-known lemma. As another
example, Serre [18] computes the number of extensions in two differ-
ent ways, one using Eisenstein polynomials, the other applying Weyl’s
integration formula to the multiplicative group of a division algebra.

Current research is focused on determining arithmetic invariants for
each isomorphism class of extensions, including the ramification index,
residue degree, discriminant and Galois group (of the normal closure).
Only certain cases have been completely determined. For example,
if p - n, then each extension is tamely ramified and is therefore well
understood [10]. If p = n, then the situation has also been solved
[1, 10]. If p | n and n is composite, then the situation is more
complicated, and researchers have dealt with these extensions on a
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case-by-case basis. Jones and Roberts have studied all p-adic fields of
degree n ≤ 10 in [9, 10, 11]. Awtrey and his coauthors have classified
degree 12 extensions of the 3-adic numbers [3] and 2-adic numbers
[5, 6], as well as degree 14 extensions of the 2-adic numbers [4].

In this paper, we focus on degree 12 2-adic fields with mass equal to
3, i.e., those extensions whose automorphism group has order 4. After
describing the computation of defining polynomials of such extensions
in the next section, we use the final sections of the paper to show that
the Galois groups of these polynomials can be computed using subfield
information, the discriminant, and an additional resolvent polynomial
[8, 20, 21].

2. Defining polynomials. In this section, we outline our method
for determining defining polynomials of degree 12 2-adic fields with
automorphism group of order 4.

We employ a strategy that is similar in spirit to the algorithms
in [16, 14], by realizing our fields as towers of extensions. In both
cases, the authors focus on enumerating totally ramified extensions of
a general p-adic field, though their respective methods for identifying
one polynomial per isomorphism class are slightly different. However,
when taking norms of polynomials defining these relative extensions to
produce polynomials defining absolute extensions (over the base field
Qp), there can remain a necessity to discard isomorphic extensions.
In this case, the standard approach is to employ Panayi’s root-finding
algorithm [15], which can determine whether two polynomials define
isomorphic p-adic fields.

Our approach is similar. We first note that every degree 12 2-adic
field with automorphism group of order 4 has a degree 6 subfield (take
the fixed field of an element of order two in the automorphism group, or
see Corollary 4.2). This result then implies that each of our extensions
can be realized as a quadratic extension of a sextic 2-adic field. Using
the complete list of sectic 2-adic fields in [10], we construct all quadratic
extensions of these fields using [2]. Using Panayi’s algorithm, we
extract only those extensions with automorphism group of order 4,
and we discard isomorphic extensions. In this way, we found 513
nonisomorphic degree 12 2-adic fields with automorphism group of
order 4. Table 4 in Section 5 shows defining polynomials, their Galois
group, the extension’s residue degree and the discriminant exponent for
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a sampling of the extensions (the complete data set is available from
the first author).

3. Possible Galois groups. Having computed a defining polyno-
mial for each extension under consideration, we now turn our attention
to determining the Galois group of each polynomial.

Given one of our defining polynomials f , let K denote the corre-
sponding extension defined by adjoining to Q2 a root of f . We wish to
compute the Galois group G of f , or equivalently the Galois group of
the normal closure of K. Since the elements of G act as permutations
on the roots of f , once we fix an ordering on the roots, G can be con-
sidered as a subgroup of S12, well-defined up to conjugation (different
orderings correspond to conjugates of G). Since the polynomial f is
irreducible, G is a transitive subgroup of S12, i.e., there is a single orbit
for the action of G on the roots of f (each orbit corresponds to an
irreducible factor of f). Therefore, G must be a transitive subgroup
of S12. Our method for computing Galois groups thus relies on the
classification of the 301 transitive subgroups of S12 [17].

However, not all of these 301 groups can occur as the Galois group
of a degree 12 2-adic field, as we show next.

Definition 3.1. Let L/Qp be a Galois extension with Galois group
G. Let v be the discrete valuation on L, and let ZL denote the
corresponding discrete valuation ring. For an integer i ≥ −1, we define
the ith ramification group of G to be the following set:

Gi = {σ ∈ G : v(σ(x)− x) ≥ i+ 1 for all x ∈ ZL}.

The ramification groups define a sequence of decreasing normal sub-
groups which are eventually trivial and which give structural informa-
tion about the Galois group of a p-adic field. A proof of the following
result can be found in [19, Chapter IV].

Lemma 3.2. Let L/Qp be a Galois extension with Galois group G,
and let Gi denote the ith ramification group. Let p denote the unique
maximal ideal of ZL and U0 the units in L. For i ≥ 1, let Ui = 1+ pi.

(i) For i ≥ 0, Gi/Gi+1 is isomorphic to a subgroup of Ui/Ui+1.
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(ii) The group G0/G1 is cyclic and isomorphic to a subgroup of the
group of roots of unity in the residue field of L. Its order is prime
to p.

(iii) The quotients Gi/Gi+1 for i ≥ 1 are abelian groups and are direct
products of cyclic groups of order p. The group G1 is a p-group.

(iv) The group G0 is the semi-direct product of a cyclic group of order
prime to p with a normal subgroup whose order is a power of p.

(v) The groups G0 and G are both solvable.

Applying this lemma to our scenario, where K/Q2 is the extension
defined by f , and G is the Galois group of f , we see that G is a solvable
transitive subgroup of S12, of which there are 265 [17]. Furthermore,
G contains a solvable normal subgroup G0 such that G/G0 is cyclic.
The group G0 contains a normal subgroup G1 such that G1 is a 2-group
(possibly trivial), and G0/G1 is cyclic of order dividing 2

[G:G0]−1. Only
134 subgroups have the correct filtration. By Galois theory, it follows
that the automorphism group of K/Q2 is isomorphic to the centralizer
of G in S12. Therefore, we need only consider those subgroups whose
centralizer order is 4.

Direct computation on the 134 candidates shows that only 27 groups
can occur as the Galois group of f . Using the transitive group notation
in [7], these groups are TransitiveGroup(12,n), where n is one of the
following possibilities:

6, 7, 9, 10, 11, 21, 23, 24, 25, 26, 29, 30, 31, 48, 53, 55,
62, 63, 67, 68, 94, 95, 98, 101, 103, 139, 150.

4. Computation of Galois groups. In this section, we describe
our approach for computing the Galois group of the normal closure of
a degree 12 2-adic field with automorphism group of order 4. We follow
the standard approach for determining Galois groups [8]; we compute
enough group-theoretic and field-theoretic invariants so as to uniquely
identify a polynomial with its corresponding Galois group. However,
our method is of interest since we use only three invariants: Galois
groups of subfields, the discriminant and a linear resolvent polynomial.

First, we focus on subfield information. Toward that end, let K/Q2

be a degree 12 extension defined by an irreducible polynomial f from
Table 4, and consider the subfields of K up to isomorphism. The list
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Table 1. Subfield content for transitive subgroups of S12 with centralizer
order 4 that are subgroups of A12 and can be distinguished by their sgg con-
tent. The last column gives the number of extensions with the corresponding
Galois group.

G Subfields #Q12
2

12T6 3T1, 6T4, 6T6 7

12T7 2T1, 3T1, 6T1, 6T4, 6T6 7

12T9 2T1, 3T2, 6T2, 6T7, 6T8 3

12T10 2T1, 2T1, 2T1, 3T2, 4T2, 6T3, 6T3, 6T3 4

12T21 2T1, 3T2, 6T2, 6T11, 6T11 9

12T23 2T1, 3T2, 6T3, 6T7, 6T11 18

12T24 2T1, 3T2, 6T3, 6T8, 6T11 18

12T25 2T1, 3T1, 6T1, 6T6, 6T6 21

12T26 3T1, 6T6, 6T6, 6T6 14

12T48 2T1, 3T2, 6T3, 6T11, 6T11 36

12T67 3T2, 6T7, 6T7, 6T7 1

12T68 3T2, 6T7, 6T8, 6T8 3

12T101 3T2, 6T7, 6T11, 6T11 18

12T103 3T2, 6T8, 6T11, 6T11 18

12T139 3T2, 6T11, 6T11, 6T11 24

Table 2. Subfield content for transitive subgroups of S12 with centralizer
order 4 that are subgroups of A12 and cannot be distinguished by their
sgg content. The last column gives the number of extensions with the
corresponding Galois group.

G Subfields f220 Octic Subs #Q12
2

12T31 3T1, 6T4 12, 164, 242, 482 2

12T55 3T1, 6T4 12, 242, 322, 482 14

12T62 3T2, 6T7 12, 164, 48, 96 6

12T63 3T2, 6T7 12, 322, 48, 96 8T14 6

12T95 3T2, 6T7 12, 322, 48, 96 8T24 36

of the Galois groups of the normal closures of the proper nontrivial
subfields of K is important for our work. We call this the subfield
Galois group content of K, and we denote it by sgg (K).

Proposition 4.1. The set sgg (K) is an invariant of its Galois group
(thus, it makes sense to speak of the subfield content of a transitive
group).
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Proof. Let G denote the Galois group of f (i.e., of the normal closure
of K/Q2). Let E be the subgroup fixing K, arising from the Galois
correspondence. The nonisomorphic subfields of K correspond to the
intermediate subgroups F , up to conjugation, such that E ≤ F ≤ G.
Furthermore, if K ′ is a subfield and F is its corresponding intermediate
group, then the Galois group of the normal closure of K ′ is isomorphic
to the image of the permutation representation ofG acting on the cosets
of F in G. Consequently, every polynomial with Galois group G must
have the same subfield content, and this quantity can be determined
by a purely group-theoretic computation on G. �

For each possible Galois group of a degree 12 2-adic field with
automorphism group of order 4 (listed in Section 2), Tables 1–3 list
the sgg content. Using this data, we have an alternative proof that
every extension under consideration has a sextic subfield.

Table 3. Subfield content for transitive subgroups of S12 with centralizer
order 4 that are not subgroups of A12. The last column gives the number of
extensions with the corresponding Galois group.

G Subfields #Q12
2

12T11 2T1, 3T2, 4T1, 6T3 8

12T29 2T1, 3T1, 6T1 12

12T30 2T1, 3T2, 6T2 12

12T53 2T1, 3T2, 6T3 24

12T94 3T1, 6T6 48

12T98 3T2, 6T8 48

12T150 3T2, 6T11 96

Corollary 4.2. Let K/Q2 be a degree 12 extension and suppose that
the automorphism group of K has order 4. Then K has a sextic subfield.

Proof. Since sgg (K) is an invariant of the Galois group of the normal
closure of K, we need only analyze the sgg contents of the possible
Galois groups in Tables 1–3. We see that each possible group has an
sgg content that contains an element of the form 6Tj. Moreover, if the
automorphism group is cyclic, there is a unique such sextic subfield.
Otherwise, there are three, since, in this case, the automorphism group
is the Klein 4-group (which has three elements of order 2). In particular,
this proves that every extension K has a sextic subfield. �
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In addition to the sgg content, we also make use of the parity of the
extension. The parity of a group G is +1 if G ⊆ A12 and −1 otherwise.
Likewise, the parity of an extension is +1 if its discriminant is a square
in Q2 and −1 otherwise. As Tables 1 and 3 show, the sgg content and

Table 4. Defining polynomials and invariants for some of the degree 12
2-adic fields with automorphism group of order 4. The column e gives the
ramification index, c gives the discriminant exponent, and G gives the Galois
group as a transitive subgroup of S12 (using the numbering system of [7]).

Polynomial e c G

x12 − 6x10 − 73x8 + 140x6 + 79x4 − 6x2 + 57 2 12 12T7

x12 + 66x10 − 93x8 − 68x6 − 41x4 + 66x2 − 123 2 12 12T29

x12 + 22x10 + 75x8 − 12x6 − 89x4 + 54x2 − 115 2 12 12T29

x12 − 2x10 − 65x8 + 100x6 − 97x4 − 98x2 + 97 2 12 12T25

x12 + 132x10 − 4468x8 − 4640x6 − 4752x4 + 2112x2 − 7872 2 18 12T29

x12 − 4x10 − 260x8 − 3296x6 + 2544x4 + 5056x2 + 6208 2 18 12T25

x12 + 44x10 + 1324x8 − 6240x6 − 5520x4 − 6464x2 − 7360 2 18 12T29

x12 − 12x10 − 2340x8 + 1120x6 + 1264x4 − 192x2 + 3648 2 18 12T25

x12 − 18x10 + 171x8 + 116x6 − 313x4 + 190x2 + 877 6 12 12T30

x12 − x10 + 2x8 − x6 − 2x4 + 3x2 + 1 6 12 12T9

x12 − 54x10 − 509x8 − 964x6 − 777x4 − 934x2 + 357 6 16 12T30

x12 + x10 − 2x8 − 3x6 + 2x4 − 3x2 + 1 6 16 12T21

x12 + 14x10 − 5x8 − 12x6 − 5x4 + 14x2 − 11 6 20 12T30

x12 + x10 + x6 + x2 + 1 6 20 12T21

x12 − 14x10 + 19x8 + 24x6 + 3x4 − 26x2 + 13 6 20 12T30

x12 + 14x10 + 16x8 − 8x6 − 8x4 + 16x2 + 16 6 20 12T9

x12 − 18x10 − 21x8 − 8x6 + 19x4 − 6x2 + 21 6 20 12T30

x12 − 6x10 − x8 + 4x6 + 3x4 + 2x2 − 7 6 20 12T9

x12 − 26x10 − 5x8 + 8x6 + 19x4 + 2x2 + 21 6 20 12T30

x12 − 5x8 + 4x6 + 3x4 + 8x2 − 7 6 20 12T21

x12 − 2x10 + 4x8 + 4x6 + 4x4 + 4 6 22 12T21

x12 − 28x10 + 64x8 − 20x6 − 36x4 + 24x2 + 36 6 22 12T21

x12 + 2x10 + 4x6 + 4x4 + 8x2 + 4 6 22 12T21

x12 + 36x8 − 52x6 + 4x4 + 24x2 − 44 6 22 12T30

x12 + 40x10 + 4x8 + 20x6 − 12x4 + 40x2 + 52 6 22 12T30

x12 − 6x10 + 6x8 + 8x4 − 4x2 + 4 6 22 12T21

x12 + 56x10 + 48x8 − 60x6 + 48x4 + 64x2 + 52 6 22 12T30

x12 − 4x10 + 6x8 + 4x4 − 4x2 + 4 6 22 12T21

x12 − 14x10 − 10x8 − 8x6 + 8x4 − 4x2 − 12 6 22 12T30

x12 − 2x10 − 2x8 + 8x4 + 4x2 + 4 6 22 12T21

x12 + 56x10 − 28x8 − 4x6 + 52x4 + 56x2 − 44 6 22 12T30

x12 − 24x10 − 16x8 − 20x6 − 16x4 + 20 6 22 12T30
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parity are enough to determine Galois groups in all but 5 of the 27
cases.

For the other five cases, we introduce a resolvent polynomial [21] and
use information about its irreducible factors over Q2. This resolvent,
denoted as f220, has degree 220. It corresponds to the subgroup S9×S3

of S12 and can be computed as a linear resolvent on 3-sets [20], i.e.,
as a resultant. It can also be computed in the following way. Let f(x)
define a degree 12 extension over Q2, and let r1, r2, . . . , r12 be the roots
of f . Then,

f220(x) =
10∏
i=1

11∏
j=i+1

12∏
k=j+1

(x− ri − rj − rk).

As Table 2 shows, the groups 12T31, 12T55 and 12T62 can all be
distinguished by the list of degrees of the irreducible factors of f220.
However, 12T63 and 12T95 cannot be distinguished by degree consid-
erations alone. However, in this case, we see that f220 has a unique
degree 48 factor. It turns out that the field defined by this degree 48
factor has a unique degree 8 subfield, and the Galois group of this de-
gree 8 extension is enough to distinguish 12T63 and 12T95 (see the
column Octic Sub). Note: to compute the Galois group of a degree 8
polynomial over Q2, we can use [11].

In Tables 1–3, the final column #Q12
2 gives the number of extensions

with the corresponding Galois group.

5. Sample data table. As a sample, Table 4 gives polynomials and
their associated invariants for some of the degree 12 2-adic fields that
have an automorphism group of order 4. For each polynomial, the
table also gives its Galois group, as well as the ramification index and
discriminant exponent of its corresponding extension field. The entire
list can be obtained by emailing the first author.

Acknowledgments. The authors would like to thank the anony-
mous referee for their comments. The authors would also like to thank
Elon University for supporting this project through internal grants and
the Center for Undergraduate Research in Mathematics for their sup-
port.



DEGREE 12 2-ADIC FIELDS WITH MASS 3 1763

REFERENCES

1. Shigeru Amano, Eisenstein equations of degree p in a p-adic field, J. Fac. Sci.
Univ. Tokyo Math. 18 (1971), 1–21.

2. Chad Awtrey, Dodecic local fields, Ph.D. thesis, Arizona State University,
Tempe, 2010.

3. , Dodecic 3-adic fields, Int. J. Num. Theor. 8 (2012), 933–944.

4. Chad Awtrey, Nicole Miles, Jonathan Milstead, Christopher R. Shill and Erin
Strosnider, Degree 14 2-adic fields, Involve, to appear.

5. Chad Awtrey, Nicole Miles, Christopher R. Shill and Erin Strosnider, Com-
puting Galois groups of degree 12 2-adic fields with trivial automorphism group,
submitted.

6. Chad Awtrey and Christopher R. Shill, Galois groups of degree 12 2-adic
fields with automorphism group of order 6 and 12, Springer Proc. Math. Stat. 64
(2013), 55–65.

7. The GAP Group, GAP–Groups, algorithms, and programming, Version
4.4.12, 2008.

8. Alexander Hulpke, Techniques for the computation of Galois groups, Algor.
Alg. Num. Theor., Springer, Berlin, 1999.

9. JohnW. Jones and David P. Roberts, Nonic 3-adic fields, Algorithmic number

theory, Lect. Notes Comp. Sci. 3076, Springer, Berlin, 2004.

10. , A database of local fields, J. Symb. Comp. 41 (2006), 80–97.

11. , Octic 2-adic fields, J. Num. Theor. 128 (2008), 1410–1429.

12. Marc Krasner, Nombre des extensions d’un degré donné d’un corps p-adique,
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