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ON ETEMADI’S SUBSEQUENCES AND THE STRONG
LAW OF LARGE NUMBERS FOR RANDOM FIELDS

PRZEMYS LAW MATU LA AND MICHA L SEWERYN

ABSTRACT. We study different concepts of the conver-
gence of sequences with multidimensional indices. Emphasis
is placed on the use of Etemadi’s subsequence method in
the study of almost sure convergence of random fields. An
improvement of the SLLN for pairwise independent random
variables is also obtained.

1. Introduction and notation. Since Etemadi demonstrated his
technique of proof of the strong law of large numbers (SLLN for short),
see [1], it has been widely used in the context of almost sure convergence
of dependent random variables. In the present paper, we aim to refine
Etemadi’s method and discuss consequences of its use in relation to
different modes of convergence of random fields.

We begin with some notation concerning random fields. Let Nd,
d ≥ 1, be a d-dimensional lattice and denote by m = (m1, . . . ,md),
n = (n1, . . . , nd) the elements of this lattice. The set Nd is partially
ordered by the relation m ≤ n if and only if for every i = 1, . . . , d,
we have mi ≤ ni. We shall also write m < n if m ≤ n and m ̸= n;
moreover, m � n if and only if for at least one i0 we have mi0 > ni0 .
Let us put

|n| =
d∏

i=1

ni
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and

∥n∥ = max
1≤i≤d

|ni|.

We study the convergence of sequences indexed by lattice points.
To this aim, let us recall that n → ∞ may have different meanings;
in other words, the term “n tends to infinity” may be understood as
|n| → ∞ (equivalently ∥n∥ → ∞) or min1≤i≤d(ni) → ∞ (we shall write
n →max ∞ and n →min ∞, respectively).

For the definition of convergence along a subsequence defined by the
infinite subset I ⊂ Nd, set

Imin(n) := I ∩
{
k ∈ Nd : k ≥ n

}
,

Imax(n) := I ∩
{
k ∈ Nd : k � n

}
,

and, in what follows, we shall require not only I to be infinite, but Imin

as well (Imax to be automatically infinite).

Definition 1.1. Let (an)n∈Nd be a field of real numbers indexed by

positive lattice points and I ⊂ Nd an infinite set. We write an →I,max a
if and only if, for every ε > 0, there exists a n0 ∈ I such that, for each
n ∈ Imax(n0), we have |an − a| < ε. Moreover, we write an →I,min a if
and only if, for every ε > 0, there exists a n0 ∈ I such that, for each
n ∈ Imin(n0), we have |an− a| < ε. In what follows, we shall also write

an →max a (an →min a) for the choice of I = Nd (alternatively, an → a,
n →max ∞ or an → a, n →min ∞).

A particularly interesting choice of subsets, I, are sectors defined as

I = Sd
θ :=

{
(i1, . . . , id) ∈ Nd : θ < il/ik < 1/θ, k, l = 1, . . . , d

}
,

where θ ∈ (0, 1). For convergence of random fields with indices
belonging to such sectors (i.e., sectorial convergence) see [3] or [5].

Another important choice of sets is:

Eα :=
{
n ∈ Nd : n1 = [αk1 ], . . . , nd = [αkd ], for some k = (k1, . . . , kd)

}
,

(1.1)
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where α > 1. We shall call elements of Eα Etemadi’s numbers, which is
related to the method of subsequences often used in the proofs of the
laws of large numbers (eg., see [1]).

The elementary relations between different modes of convergence for
sequences with multidimensional indices are established in the following
proposition.

Proposition 1.2. Let (an)n∈Nd be a field of real numbers indexed by

positive lattice points and I ⊂ Nd an infinite set. We have

(i) an →I,max a ⇒ an →I,min a,

(ii) an →max a ⇔ an →I,max a, for each infinite set I ⊂ Nd,

(iii) an →min a ⇔ an →I,min a, for each infinite set I ⊂ Nd,
(iv) an →Sd

θ ,max a ⇔ an →Sd
θ ,min a, θ ∈ (0, 1).

In this paper, we are going to prove that, for normalized sums of non-
negative numbers (or random fields) from the convergence an →Eα,max

a for every α ∈ A, it follows that an →max a, where

(1.2) A is a countable subset of real numbers such that inf A = 1.

In particular, we show that, if Etemadi’s method of subsequences is
used in the proof of the strong law of numbers for random fields, then
we can obtain not only the almost sure convergence in the sense of
min1≤i≤d(ni) → ∞, but max1≤i≤d(ni) → ∞ as well.

The paper is organized as follows. In the next section, we prove a
convergence result for sequences of real numbers with multidimensional
indices, whereas the last section is devoted to application of Etemadi’s
subsequence method to the problem of almost sure convergence of fields
of pairwise independent identically distributed random variables.

Let us recall that the study of the SLLN for random fields was started
in [7, 8]. The most important continuation may be found in [2, 3].
There were many papers concerning dependent random fields; let us
only mention [4, 5].

2. Non-random case. In the present section, we study properties
of Etemadi’s subsequences. For clarity, let us first consider a single
index setting. Let α > 1 and, for k ∈ N, we shall call e(k) := [αk] ∈ Eα
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Etemadi’s numbers. It is clear that the first Etemadi’s numbers
e(1), . . . , e(k) for k ≤ − ln lnα/lnα are the first consecutive natural
numbers, the “gaps” appear for k ≥ − ln lnα/lnα. We define the
“closest” Etemadi’s numbers: if n ∈ Eα, we put l(n) = u(n) = n,
whereas if n /∈ Eα we find kn ∈ N such that αkn < n < αkn+1, and
put l(n) = [αkn ] and u(n) = [αkn+1]. Then l(n) ≤ n ≤ u(n) and
u(n)/l(n) = 1 if n ∈ Eα or if n /∈ Eα (in this case kn ≥ − ln lnα/lnα)
we have

u(n)

l(n)
≤ αkn+1

αkn − 1
=

α

1− 1/αkn
≤ α

1− lnα
,

since αkn ≥ α− ln lnα/lnα = 1/lnα. Furthermore α/(1− lnα) ≥ 1.
Concluding the above estimates, for any n ∈ N, we have defined
u(n), l(n) ∈ Eα in such a way that l(n) ≤ n ≤ u(n) and

1 ≤ u(n)

l(n)
≤ α

1− lnα
−→ 1, as α → 1+.

For any n ∈ Nd, we extend the above definition to l(n) ∈ Eα and
u(n) ∈ Eα in an obvious manner, by setting coordinatewise l(n) =
l(n1, . . . , nd) = (l(n1), . . . , l(nd)) and similarly u(n). We easily see that

1 ≤ |u(n)|
|l(n)|

≤
(

α

1− lnα

)d

−→ 1, as α → 1+.

With such preparations done, we are now ready to state the main
result of this section, which is interesting for its own sense, but shall
also be the main tool in the proof of the SLLN for pairwise independent
random fields.

Theorem 2.1. Let (a(n))n∈Nd , (b(n))n∈Nd be two fields of nonnegative
numbers such that supn∈Nd b(n) < ∞. Assume that, for each α ∈ A
satisfying (1.2),

1

|n|

(∑
k≤n

a(k)−
∑
k≤n

b(k)

)
−→Eα,max 0,

then

1

|n|

(∑
k≤n

a(k)−
∑
k≤n

b(k)

)
−→max 0.
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Proof. Set ε > 0 and note that, since α may be arbitrarily close to 1,
then (α/(1− lnα))d may be also arbitrarily close to 1. Therefore, we
choose α > 1 small enough, that is, such that (α/(1− lnα))d − 1 < ε.
By the definition of convergence, there exists n′ ∈ Eα such that, for
every n � n′, n ∈ Eα, the following estimate holds true:∣∣∣∣ 1

|n|

(∑
k≤n

a(k)−
∑
k≤n

b(k)

)∣∣∣∣ < ε.

Now, for any n � n′, we define l(n), u(n) ∈ Eα as above. Since n′ ∈ Eα,
then also l(n) ≮ n′. By the nonnegativity of (a(n))n∈Nd , (b(n))n∈Nd

and the triangle inequality, we get

1

|n|

(∑
k≤n

a(k)−
∑
k≤n

b(k)

)

≤
∣∣∣∣
∑

k≤u(n) a(k)−
∑

k≤u(n) b(k)

|u(n)|

∣∣∣∣ |u(n)||n|

+

∣∣∣∣
∑

k≤u(n) b(k)−
∑

k≤l(n) b(k)

|n|

∣∣∣∣
≤ ε

|u(n)|
|l(n)|

+
|u(n)| − |l(n)|

|l(n)|
sup
n∈Nd

b(n)

≤ ε

(
α

1− lnα

)d

+

((
α

1− lnα

)d

− 1

)
sup
n∈Nd

b(n)

≤ ε

(
sup
n∈Nd

b(n) +

(
α

1− lnα

)d)
.

Similarly, we obtain the lower bound, which is slightly different:

1

|n|

(∑
k≤n

a(k)−
∑
k≤n

b(k)

)
≥ −

∣∣∣∣
∑

k≤l(n) a(k)−
∑

k≤l(n) b(k)

|l(n)|

∣∣∣∣ |l(n)||n|

−
∣∣∣∣
∑

k≤l(n) b(k)−
∑

k≤u(n) b(k)

|n|

∣∣∣∣
≥ −ε−

((
α

1− lnα

)d

− 1

)
sup
n∈Nd

b(n)
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≥ −ε

(
1 + sup

n∈Nd

b(n)

)
.

Since ε > 0 is arbitrary and α may be arbitrarily close to 1, we arrive
at the conclusion. �

3. Strong law of large numbers for random fields. In what
follows, we shall demonstrate the usefulness of Etemadi’s subsequence
technique in the proof of the SLLN for pairwise independent random
variables.

Theorem 3.1. Let (Xn)n∈Nd be a field of pairwise independent and
identically distributed random variables. Then the following conditions
are equivalent :

(3.1)
1

|n|
∑
k≤n

Xk →max c,

almost surely, for some constant c.

(3.2) E
∣∣X1

∣∣ logd−1
+

∣∣X1

∣∣ < ∞.

Furthermore, if (3.2) holds, then c = EX1.

The proof will be based on the Borel-Cantelli lemmas for random
events with multidimensional indices, which we recall for completeness.

Lemma 3.2. Set (Ω,F , P ) to be a probability space and {An ∈ F , n ∈
Nd} to be a family of events. Denote {An, i.o.} =

∩
n∈Nd

∪
k�n Ak.

Then:

(a) if
∑

n∈Nd P (An) < ∞, then P (An, i.o.) = 0,

(b) if the events (An)n∈Nd are pairwise independent and∑
n∈Nd

P (An) = ∞,

then P (An, i.o.) = 1.
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Proof. The proof of (a) is standard, while (b) is a special case of [5,
Lemma 3.3]. �

With such preparations done, we proceed to the proof of the main
result of this section.

Proof of Theorem 2. From (3.1), it follows that Xn/|n| →max 0,
almost surely. Thus, by standard arguments and Lemma 3.2 (b), we
get: ∑

n∈Nd

P (
∣∣Xn

∣∣ ≥ |n|) =
∑
n∈Nd

P (
∣∣X1

∣∣ ≥ |n|) < ∞,

which is equivalent to (3.2) by [2, Lemma 2.1].

To prove the sufficiency of (3.2), let us note that, in [1], it is proved
that

(3.3)
1

|n|
∑
k≤n

Xk →min EX1.

We shall combine this result with our Theorem 2.1 to prove (3.1). For
the sake of completeness let us recall some main steps of the proof from
[1].

We may, and do, assume that Xn = 0; otherwise, one may prove
the result for the nonnegative (X+

n = max{Xn, 0}) and nonpositive

(X−
n = max{−Xn, 0}) parts of the random variables separately. Let us

set Yk = XkI[Xk ≤ |k|]. It is easy to see that∑
n∈Nd

P (Yn ̸= Xn) =
∑
n∈Nd

P (X1 > |n|) < ∞,

since the summability of
∑

n∈Nd P (X1 > |n|) is equivalent to EX1

logd−1
+ X1 < ∞. Thus, by Lemma 3.2, the almost sure limiting behavior

of 1/|n|
∑

k≤n Xk is the same as of 1/|n|
∑

k≤n Yk.

Let α > 1 be fixed and define an Etemadi sequence by k(n) =
([αn1 ], . . . , [αnd ]), n = (n1, . . . , nd) ∈ Nd. By the standard arguments,
for each ε > 0, we get:∑

n∈Nd

P

(∣∣∣∣ 1

|k(n)|
∑

i≤k(n)

(
Yi − EYi

) ∣∣∣∣ ≥ ε

)
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≤ 1

ε2

∑
n∈Nd

1

|k(n)|2
∑

i≤k(n)

EY 2
i

≤ C
∑
i∈Nd

EY 2
i

∑
{n∈Nd:k(n)≥i}

1

|k(n)|2

≤ C
∑
i∈Nd

EY 2
i

|i|2

= C
∞∑
k=1

d(k)

k2
EX2

1 I
[
X1 ≤ k

]
≤ C

∞∑
i=0

( ∞∑
k=i+1

d(k)

k2

)
EX2

1 I
[
i < X1 ≤ i+ 1

]
≤ C

∞∑
i=0

logd−1(i+ 1)

i+ 1
EX2

1 I
[
i < X1 ≤ i+ 1

]
≤ C

∞∑
i=0

EX1 log
d−1
+ X1I

[
i < X1 ≤ i+ 1

]
≤ C · EX1 log

d−1
+ X1 < ∞.

In the above,
d(k) := card {n ∈ Nd : |n| = k},

and we have used the bound

∞∑
k=i+1

d(k)

k2
≤ C · log

d−1(i+ 1)

i+ 1
.

Also, note that the constant C may be different in the consecutive
inequalities. Therefore, we have proved that, for each α > 1

(3.4)
1

|n|
∑
i≤n

(
Yi − EYi

)
−→Eα,max 0, almost surely,

i.e., (3.4) holds for ω ∈ Ωα such that P (Ωα) = 1. Now, let us take
A to be a countable set of real numbers greater than 1 and such that
inf A = 1. Since, for ω ∈

∩
α∈A Ωα, (3.4) holds, then by Theorem 2.1,
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we have

(3.5)
1

|n|
∑
i≤n

(
Yi − EYi

)
−→max 0, almost surely.

Moreover, by 1/|n|
∑

i≤n EYi →max EX1 and by the equivalence of

(Xn)n∈Nd and (Yn)n∈Nd we get (3.1), and the proof is complete. �

Remark 3.3. From the method of the proof of Theorem 3.1, it follows
that the main results in [4] hold in the sense n →max ∞, not only as
n →min ∞.

Remark 3.4. With some obvious modification, we can replace the
assumption of pairwise independence in Theorem 3.1, by pairwise
negative quadrant dependence (see [6] for the single-index case).
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