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NEW CRITERIA FOR THE WEAK RADON-NIKODÝM
PROPERTY RELATED TO SET-VALUED OPERATORS

KEUN YOUNG LEE

ABSTRACT. In this paper, we deal with new equivalent
conditions for the localized weak Radon-Nikodým property
in dual Banach space related to set-valued operators. First,
we introduce the geometric definition of the weak Radon-
Nikodým property and the weakly fragmented set-valued
operator. Next, using the weakly fragmented mapping,
we reveal the relation between the weak Radon-Nikodým
property and the weakly single-valued operator. Finally,
using this relation and the concept of the exposed point,
the main theorem is given together with some applications.

1. Introduction and the main results. Several contributions to
the detection of copies of ℓ1 were made in the sixties by Pelczynski.
The following theorem is given by Pelczynski (see [10]).

Theorem 1.1. Let X be a separable Banach space. Then the following
are equivalent.

(a) X contains a copy of ℓ1.
(b) X∗ contains a copy of ℓ1([0, 1]).
(c) X∗ contains a copy of L1([0, 1]).

After this theorem, many mathematicians tried to characterize ℓ1 *
X and find a nonseparable dual Banach space which contains no ℓ1.
In 1973, James constructed a Banach space JT (called the James tree
space) that is separable, contains no ℓ1 and has nonseparable dual
(see [6, 8]). In 1974, Rosenthal provided the true understanding of
ℓ1’s absence by proving the following theorem (called Rosenthal’s ℓ1
theorem) [12].
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Theorem 1.2. (Rosenthal’s ℓ1 theorem). Each bounded sequence in
a Banach space X has a weakly Cauchy subsequence if and only if X
contains no isomorphic copy of ℓ1.

Shortly after Rosenthal’s ℓ1 theorem, a number of classical charac-
terizations were formulated, as follows.

Theorem 1.3. [3]. Each of the following statements characterizes
Banach space X that contains no copy of ℓ1.

(a) (Haydon). Each x∗∗ in X∗∗ is (weak∗-)measurable with respect to
each regular Borel probability measure on (BX∗ , weak∗).

(b) (Pelczynski). Every bounded linear T : L1 → X∗ is a Dunford-
Pettis operator.

(c) (Musial-Janika). For each finite complete measure space (Ω,Σ, µ)
and each µ-continuous X∗-valued countably additive vector measure
ν : Σ → X∗ of bounded variation, there exists a Pettis integrable
function f : Ω → X∗ such that ν(E) = P -

∫
E
f dµ for all E ∈ Σ.

(d) (Odell). Every weak∗ compact convex subsets of X∗ is the norm-
closed convex hull of its extreme points.

A Banach space satisfying Theorem 1.3 (c) is said to have the
weak Radon-Nikodým property (seen in [9]). In 1983, Saab and Saab
provided the geometrical characterization of the weak Radon-Nikodým
property for dual Banach spaces (see [15]). Furthermore, Riddle,
Saab and Uhl introduced the localized weak Radon-Nikodým property,
and they provided equivalent conditions for the localized weak Radon-
Nikodým property in dual Banach spaces.

Our aim in this paper is to provide new equivalent conditions for
the localized weak Radon-Nikodým property related to set-valued op-
erators and perturbed lower semicontinuous functions. In Section 2,
we fix notation and introduce basic properties of the set-valued oper-
ator. In Section 3, we prove basic theorems involving the notions of
the weak Radon-Nikodým property, weakly fragmented mappings, and
minimal weak∗-compact upper semicontinuous mappings. In Section 4,
we investigate the notions of weak∗-minimum and x∗∗-weak∗-strongly
exposed points where x∗∗ is in X∗∗ and then we establish our main
theorem.
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2. Preliminaries. Let X be a Banach space and Y a topological
space. A nonempty bounded subset A of X is said to be dentable
if, for every ε > 0, there exists an open half-space V in X such that
A ∩ V ̸= ∅ and diam (A ∩ V ) < ε, that is, for every ε > 0, there exist
x∗ ∈ X∗ and α > 0 such that the slice

S(x∗, A, α) = {x ∈ A : ⟨x∗, x⟩ > sup⟨x∗, A⟩ − α}

has diameter less than ε. A subset A of X is said to have the Radon-
Nikodým property if every nonempty bounded subset of A is dentable.
Also, a nonempty bounded subset A of X∗ is said to be weak∗-dentable
if, for every ε > 0, there exists a weak∗-open half-space V in X∗ such
that A ∩ V ̸= ∅ and diam (A ∩ V ) < ε, and a subset A of X∗ is said to
have the weak∗ Radon-Nikodým property (that is, the Radon-Nikodým
property) if every nonempty bounded subset of A is weak∗-dentable.
For more on these topics, we refer to the lecture notes by Bourgin [1]
and Phelps [11].

Let T : X → 2Y be a set-valued operator from X into nonempty
subsets of Y . The effective domain of T is the set dom (T ) = {x ∈ X :
T (x) ̸= ∅}. Then, T is upper semicontinuous at x ∈ X provided, for
any open V containing T (x), there is an open neighborhood U of x such
that T (U) ⊂ V . When Y is a linear topological space with topology
τ , an upper semicontinuous with nonempty τ -compact convex values is
called τ -cusco. The graph of T is denoted by

G(T ) = {(x, y) ∈ X × Y : y ∈ T (x)}.

We partially order these set-valued operators by the inclusion ordering
on their graphs. We will usually write T1 ⊂ T2 in place of G(T1) ⊂
G(T2). A cusco operator is said to be minimal if it does not properly
contain any other cusco operator. It is well known that a minimal τ -
cusco T : Z → 2Y from a topological space Z into a Hausdorff locally
convex linear topological space (Y, τ) satisfies the following minimality
properties (see, e.g., [4]).

(i) For any open set U in Z and any τ -open half-space V in Y with

T (U)∩V ̸= ∅ there exists a nonempty open set U
′ ⊂ U such that

T (U
′
) ⊂ V .

(ii) For any open set U in Z and any τ -closed convex set C in Y with

T (U) * C there exists a nonempty open set U
′ ⊂ U such that

T (U
′
) ∩ C = ∅.
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When Y is a Banach space, T is fragmented by norm if, for any
nonempty U in X and ε > 0, there is a nonempty open set U

′ ⊂ U
such that norm-diam (T (U

′
)) < ε. The following lemma provides a

relation between nonempty-valued fragmented mappings and single-
valued mappings (see, e.g., [7]).

Lemma. Let Z and X be Banach spaces, and let T : Z → 2X be
a nonempty-valued mapping fragmented by norm. Then, there exists a
dense Gδ subset D of Z such that, at each point of D, T is single-valued
and upper semicontinuous.

An extended real-valued function f : X → R ∪ {∞} is said to be
proper if its effective domain, i.e., the set dom (f) := {x ∈ X : f(x) <
∞}, is nonempty. Recall that f is τ -lower semicontinuous provided
{x ∈ X : f(x) ≤ r} is τ -closed in X for every r ∈ R. The conjugate of
a function f : X → R ∪ {∞} is the function f∗ given on X∗ by

f∗(x∗) := sup(x∗ − f) := sup{⟨x∗, x⟩ − f(x) : x ∈ X}.

Similarly, the conjugate of a function f : X∗ → R∪{∞} is the function
f∗ given on X by

f∗(x) := sup(x− f) := sup{⟨x∗, x⟩ − f(x∗) : x∗ ∈ X∗}.

The subdifferential of a convex function f : X → R ∪ {∞} is the
set-valued mapping ∂f : X → 2X

∗
given by

∂f(x) = {x∗ ∈ X∗ : ⟨x∗, y − x⟩ ≤ f(y)− f(x), ∀y ∈ X}.

The main property of the subdifferential mapping is the following
proposition.

Proposition. Let φ : X → R ∪ {∞} be proper convex weak-
lower semicontinuous. Then, the subdifferential mapping ∂φ is minimal
weak∗-cusco on int dom (φ), and the set A := {y ∈ Y : ∂φ(y) ∩X ̸= ∅}
is dense in dom (φ).

3. WRNP and weakly single-valuedness of minimal weak∗-
cusco. Let X and Y be Banach spaces and f a real valued function
on Y . For A ⊆ Y , the oscillation of f on A is the

O(f,A) = sup{|f(y)− f(x)| : x, y ∈ Y },
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and the oscillation of f at a point x ∈ Y is

O(f, x) = inf{O(f, U) : U ⊆ Y is open and x ∈ U}.

If K is a nonempty bounded subset of X∗, then a weak∗-open slice of
K is a set of the form

S(K,x, α) = {x∗ ∈ K : ⟨x∗, x⟩ > sup⟨x,K⟩ − α},

where x ∈ X, α > 0.

Definition 3.1. X∗ is said to have the weak Radon-Nikodým property
provided, for every nonempty weak∗-compact convex K of X∗, ε > 0
and x∗∗ ∈ X∗∗, there exists a weak∗-open half-space V in X∗ such that
K ∩ V ̸= ∅ and O(x∗∗,K ∩ V ) < ε, that is, there exists a weak∗-open
slice S of K such that O(x∗∗, S) < ε. We say that a weak∗-compact
convex K of X∗ has the weak Radon-Nikodým property if, for each
weak∗-compact convex M of K, ε > 0 and x∗∗ ∈ X∗∗, there exists a
weak∗-open slice S of M such that O(x∗∗, S) < ε.

Originally, Musial defined the vector integral version of the weak
Radon-Nikodým property as mentioned in the introduction. That is,
X has the weak Radon-Nikodým property, if for each finite complete
measure space (Ω,Σ, µ) and each µ-continuous X-valued countably
additive vector measure ν : Σ → X of bounded variation, there exists
a Pettis integrable function f : Ω → X such that ν(E) = P -

∫
E
f dµ

for all E ∈ Σ (see [9]). Also, Riddle, Saab and Uhl defined that a
nonempty subset K of X has the weak Radon-Nikodým property if,
for each finite complete measure space (Ω,Σ, µ) and each µ-continuous
X-valued countably additive vector measure ν : Σ → X of bounded
variation satisfying for all E ∈ Σ the inclusion ν(E) ∈ µ(E) ·K, there
exists a K-valued Pettis integrable function f : Ω → K such that

ν(E) = P −
∫
E

f dµ,

for all E ∈ Σ (see [1]). On the other hand, Saab and Saab proved
that Riddle’s definition of the weak Radon-Nikodým property for
dual Banach space X∗ is equivalent to Definition 3.1. Furthermore,
they showed that Riddle’s definition of the weak Radon-Nikodým
property for weak∗-compact convex subsets of X∗ is equivalent to that



1516 KEUN YOUNG LEE

of Definition 3.1 (see [13, 14, 15]). In this paper, we use Definition 3.1
for the geometrical advantage.

Remark 3.2. Generally, if X∗ has the Radon-Nikodým property, then
X∗ has the weak Radon-Nikodým property. However, the converse
is not true. For example, JT ∗ does not have the Radon-Nikodým
property but has the weak Radon-Nikodým property where JT is the
James tree space (see [6]).

Definition 3.3. A set-valued mapping T : Y → 2X is said to be weakly
fragmented if, for every nonempty open set U in Y and x∗ ∈ X∗ and any
ε > 0, there is a nonempty open set U

′ ⊂ U such that O(x∗, T (U
′
)) < ε.

Clearly, if T : Y → 2X is fragmented by norm, then T is weakly
fragmented. However, the converse is not true. After we prove a few
results, we give this counterexample. The following lemma shows that
nonempty-valued weakly fragmented mappings should be weakly single-
valued. It is derived from the analogous lemma of [7].

Lemma 3.4. Let T : Y → 2X be a nonempty-valued weakly fragmented
mapping and x∗ ∈ X∗. Then, there exists a dense Gδ subset D
of Y such that, at each point of D, x∗T is single-valued and upper
semicontinuous.

Proof. The essential idea of the proof comes from [11]. For each
k ∈ N, let

Vk =
∪{

U : U is an open subset of Y and O(x∗, T (U)) < 1/k
}
.

Clearly, every Vk is open. We claim that every Vk is dense in Y . Indeed,
let U be a nonempty open subset of Y and k ∈ N. Since T is a weakly
fragmented mapping, there is a nonempty open set U

′ ⊂ U such that
O(x∗, T (U

′
)) < 1/k. Then we have U

′ ⊂ Vk. This proves our claim.
Now let D =

∩∞
k=1 Vk. By the Baire category theorem, D is a dense

Gδ subset of Y . Take any y ∈ D and take any sequence of open
sets (Uk) such that y ∈ Uk and O(x∗, T (Uk)) < 1/k. Then we have
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T (y) ⊆
∩∞

k=1 T (Uk). It follows that

x∗T (y) ⊆
∞∩
k=1

x∗T (Uk).

Since limk→∞ O(x∗, T (Uk)) = 0, x∗T (y) is a singleton. Thus, there
exists a ∈ R such that {a} = x∗T (y) =

∩∞
k=1 x

∗T (Uk). For the second
part, take any ε > 0. Since {a} =

∩∞
k=1 x

∗T (Uk), there exists a k ∈ N
such that x∗T (Uk) ⊆ B(a, ε) where Uk is an open set containing y.
Hence, x∗T is upper semicontinuous on D. �

Now we are going to reveal the relation between the weak Radon-
Nikodým property and the weakly single-valuedness of minimal weak∗-
cusco.

Proposition 3.5. Let T : Y → 2X
∗
be minimal weak∗-cusco and

x∗∗ ∈ X∗∗. If there exists a weak∗-compact convex A with the weak
Radon-Nikodým property such that the set {y ∈ Y : T (y) ∩ A ̸= ∅} is
dense in Y , then there exists a dense Gδ subset D of Y such that, at
each point of D, x∗∗T is single-valued and upper semicontinuous.

Proof. By Lemma 3.4, we have enough to show that T is weakly
fragmented. Let U be any nonempty open set in Y . Define S : Y → 2X

∗

by S(y) = T (y)∩A. Since dom (S) is dense in Y , S(U)
w∗

is a nonempty
weak∗-compact convex subset of A. Since A has the weak Radon-
Nikodým property, there exists a weak∗-open half-space V in X∗ such

that S(U)
w∗

∩ V ̸= ∅ and O(x∗∗, S(U)
w∗

∩ V ) < ε. It is easy to
see that S(U) ∩ V ̸= ∅. By the minimality property (i) for T , there

exists a nonempty open set U
′ ⊂ U such that T (U

′
) ⊂ V . Take any

nonempty open set W ⊂ U
′
. Since S(W )∩ S(U)

w∗

̸= ∅ and S(U)
w∗

is
a weak∗ compact convex in X∗, by the minimality property (ii) for T ,

we have T (U
′
) ⊂ S(U)

w∗

. Hence, T (U
′
) ⊂ S(U)

w∗

∩ V , so we obtain

O(x∗∗, T (U
′
)) < ε. �

Remark 3.6. When Y is a nonempty open subset of a Banach space
Z in Proposition 3.5, it is also true because Y is a Baire space.
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The following theorem illustrates the counterexample as mentioned
in the discussion before Lemma 3.4. Recall that a Banach space X is
said to be an Asplund space, provided every continuous convex function
defined onX is Fréchet differentiable at each point of some dense subset
of X (that is, Gδ subset).

Theorem 3.7. Whenever X∗ has the weak Radon-Nikodým property
but not the Radon-Nikodým property, there exists a set-valued operator
T : X → 2X

∗
which T is weakly fragmented, but is not fragmented by

norm.

Proof. Suppose that X∗ has the weak Radon-Nikodým property but
not the Radon-Nikodým property; for example, X is the James tree
space. Hence, X is not Asplund, so there exists a real-valued convex
continuous function f on X where the set

A = {x ∈ X : f is Fréchet differentiable at x}

is not dense in X. Then there exists a nonempty open U in X such
that U ∩ A = ∅. Let ∂f : X → 2X

∗
be the subdifferential of f . Since

f is continuous, ∂f is a nonempty set-valued mapping. Suppose that
f is fragmented by norm. Then, as mentioned in the preliminaries,
there exists a dense Gδ subset D of X such that, at each point of D,
∂f is a single-valued mapping and upper semicontinuous. Since D is
a dense subset of X, there exists x0 ∈ D ∩ U such that ∂f is upper
semicontinuous at x0. Since ∂f(x0) is a singleton, ∂f is norm-to-norm
continuous at x0; hence, f is Fréchet differentiable at x0. It follows
that U ∩A ̸= ∅, so it is a contradiction.

Now we show that ∂f is weakly fragmented. Let U be a nonempty
open subset of X and ε > 0 and x∗∗ ∈ X∗∗. Since ∂f is minimal weak∗-
cusco, by a standard argument, we may assume that ∂f(U) is bounded.

By the Alaoglu theorem, co ∂f(U)
w∗

is the weak∗-compact convex
subset of X∗. Since X∗ has the weak Radon-Nikodým property, there

exists a weak∗-open half-space V in X∗ such that co ∂f(U)
w∗

∩ V ̸= ∅
and O(x∗∗, co ∂f(U)

w∗

∩V ) < ε. Then we have V ∩∂f(U) ̸= ∅. Indeed,
we choose x∗ ∈ V ∩co ∂f(U)

w∗

. Since V is a weak∗-open neighborhood
of x∗, there exists y∗ ∈ co ∂f(U) such that y∗ ∈ V and y∗ =

∑n
i=1 αix

∗
i

where each x∗
i is in ∂f(U) and

∑n
i=1 αi is a convex combination.
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Suppose that every x∗
i is not in V . Put K = co ∂f(U)

w∗

and

V = V (x, α) = {x∗ ∈ X∗ : ⟨x∗, x⟩ > sup
x∗∈K

⟨x∗, x⟩ − α}.

Since every x∗
i (x) ≤ supx∗∈K⟨x∗, x⟩ − α, we have

αix
∗
i ≤ αi( sup

x∗∈K
⟨x∗, x⟩ − α).

Then it follows that
n∑

i=1

αix
∗
i (x) ≤ sup

x∗∈K
⟨x∗, x⟩ − α;

hence, we obtain y∗(x) ≤ supx∗∈K⟨x∗, x⟩ − α, so it is a contradiction.
Thus, there exists one x∗

i such that x∗
i ∈ V . Therefore, we have

V ∩ ∂f(U) ̸= ∅. Then, by the minimality property (i) for ∂f , there

exists a nonempty open set U
′ ⊂ U such that ∂f(U

′
) ⊂ V . Clearly, we

have ∂f(U
′
) ⊂ co ∂f(U)

w∗

. Hence, ∂f(U
′
) ⊂ co ∂f(U)

w∗

∩ V , so we

obtain O(x∗∗, ∂f(U
′
)) < ε. �

By the proof of Theorem 3.7, we obtain the following corollary.

Corollary 3.8. Let T : Y → 2X
∗

be minimal weak∗-cusco and
x∗∗ ∈ X∗∗. If X∗ has the weak Radon-Nikodým property, then there
exists a dense Gδ subset D of Y such that, at each point of D, x∗∗T is
single-valued and upper semicontinuous.

4. Main theorem. Let K be a weak∗ compact convex subset of X∗

and x ∈ X. An extreme point x∗ of K is weak∗ exposed by x if, for
{x∗

n} ⊂ K,

⟨x∗
n, x⟩ −→ ⟨x∗, x⟩ = sup

y∗∈K
⟨y∗, x⟩

implies

x∗
n

w∗

−→ x∗.

Let x∗∗ be in X∗∗. An extreme point x∗ of K is x∗∗-weak∗ exposed by
x if, for {x∗

n} ⊂ K,

⟨x∗
n, x⟩ −→ ⟨x∗, x⟩ = sup

y∗∈K
⟨y∗, x⟩
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implies
x∗∗(x∗

n) −→ x∗∗(x∗).

Furthermore, an extreme point x∗ of K is an x∗∗-weak∗ exposed
point of K if there exists one x ∈ X which x∗ is x∗∗-weak∗ exposed by
x.

Remark 4.1. It is easy to see that x∗ is an x∗∗-weak∗ exposed point
of K if and only if, for every ε > 0, there exists a weak∗-open slice
S(K,x, a) of K with O(x∗∗, S) < ε (see [5]).

The following example shows that there exist x∗ ∈ X∗, x∗∗ ∈ X∗∗

and x ∈ X such that x∗ is x∗∗-weak∗ exposed by x but x∗ is not weak∗

exposed by x.

Example 4.2. Let X denote the Banach space c0. Then X∗ = ℓ1 and
X∗∗ = ℓ∞. Let en be the unit vectors in ℓ1 and

D1 = {en : n ≥ 3} ∪ {e1 + e2 + en : n ≥ 3}

and K the weak∗-closure of the convex hull of D1. Then, we
have that 0 ∈ K and is an extreme point of K. Let x∗∗ =
(−1, 1, 0, 0, 0, . . .). Then 0 is a x∗∗-weak∗ exposed point of K. Indeed,
consider x = (−1, 1, 0, 0, 0, . . .). Then, we have supy∗∈K⟨y∗, x⟩ = 0
because (−1, 1, 0, 0, 0, . . .)(y∗) = 0 for every y∗ ∈ D1. Since x = x∗∗,
we obtain that 0 is x∗∗-weak∗ exposed by x. However, 0 is not weak∗

exposed by x. To show this, we consider (e1 + e2 + en)n≥3 in K.
Since (e1 + e2 + en)(x) = (e1 + e2 + en)(−1, 1, 0, 0, 0, . . .) = 0, we have
(e1 + e2 + en)(x) → ⟨0, x⟩, but (e1 + e2 + en)(e1) 9 0; hence, 0 is not
weak∗ exposed by x.

Definition 4.3. For a proper lower semicontinuous f : X∗ → R∪{∞}
and y∗∗ ∈ X∗∗, the perturbed function f−y∗∗ is said to attain a weak∗-
minimum on X∗ if there exists x∗

0 ∈ X∗ such that, for every sequence
{x∗

n} ⊂ X∗,

f(x∗
n)− ⟨y∗∗, x∗

n⟩ −→ inf(f − y∗∗)
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implies

x∗
n

w∗

−→ x∗
0.

Necessarily, x∗
0 is the unique weak

∗-minimizer of f−y∗∗. Let x∗∗ ∈ X∗∗.
The perturbed function f − y∗∗ is said to attain a x∗∗-minimum on X∗

if there exists x∗
0 ∈ X∗ such that, for every sequence {x∗

n} ⊂ X∗,

f(x∗
n)− ⟨y∗∗, x∗

n⟩ −→ inf(f − y∗∗)

implies

x∗∗(x∗
n) −→ x∗∗(x∗

0).

Recall that f is said to be Gâteaux differentiable at x0 if there exists
a x∗ (denoted by ∇Gf(x0)) such that

∇Gf(x0) = lim
t→0+

f(x0 + tx)− f(x0)

t

for each x ∈ X. It is well known that if f is Fréchet differentiable at
x, then f is Gâteaux differentiable at x. However, the converse is not
true (see, e.g., [11]).

The following proposition shows that the weak∗-minimizer of the
perturbed function is related to the Gâteaux differentiability.

Proposition 4.4. Let f : X∗ → R∪ {∞} be proper lower semicontin-
uous and x0 ∈ int dom (f∗). The following are equivalent.

(a) ∂f∗ is single-valued at x0.
(b) f∗ is Gâteaux differentiable at x0.
(c) f − x0 attains a weak∗- minimum on X∗.

Proof. (a) ⇔ (b) is clear. And (b) ⇔ (c) can be proved from the
argument of [7, Proposition 4]. For completeness, we just provide
the proof of the (b) ⇒ (c) case. Let (x∗

n) be in X∗ such that
f(x∗

n) − ⟨x0, x
∗
n⟩ → inf(f − x0) = −f∗(x0). Since f∗ is Gâteaux

differentiable at x0, there exists an x∗ = ∇Gf
∗(x0) such that

∇Gf
∗(x0)(x) = lim

t→0+

f∗(x0 + tx)− f∗(x0)

t
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for each x ∈ X. We claim that (x∗
n) weak∗-converges to x∗. Let x be

in X and ε > 0. Then there exists δ > 0 such that if 0 < t < δ, then

0 ≤ f∗(x0 + tx)− f∗(x0)− ⟨x∗, tx⟩ ≤ εt.

For each n ∈ N, we choose real tn such that |⟨x∗
n − x∗, x⟩| ≤ ⟨x∗

n −
x∗, tnx⟩+ ε. Indeed, since x∗

n − x∗ is continuous on X, we can choose
real rn with |rn| ≤ 1 such that

|⟨x∗
n − x∗, x⟩| ≤ |⟨x∗

n − x∗, rnx⟩|+ ε.

We put tn = rn if ⟨x∗
n − x∗, rnx⟩ ≥ 0, −rn otherwise. Then we have

|⟨x∗
n − x∗, x⟩| ≤ ⟨x∗

n − x∗, tnx⟩+ ε. Now put sn = δtn for each n ∈ N.
By the definition of f∗, we have

⟨x∗
n, x0 + snx⟩ − f(x∗

n) ≤ f∗(x0 + snx)

for each n ∈ N. Since f(x∗
n) − ⟨x0, x

∗
n⟩ → −f∗(x0), we obtain

f(x∗
n) − ⟨x0, x

∗
n⟩ ≤ −f∗(x0) + δε for large n. Hence, for large n, we

have

δ|⟨x∗
n − x∗, x⟩| ≤ ⟨x∗

n − x∗, δtnx⟩+ δε

= ⟨x∗
n, x0 + sn⟩ − f(x∗

n)

+ f(x∗
n)− ⟨x∗

n, x0⟩ − ⟨x∗, snx⟩+ δε

≤ f∗(x0 + snx)− f∗(x0) + δε− ⟨x∗, snx⟩+ δε

≤ 3δε.

This proves our claim. �

Let K be a nonempty convex subset of X and x∗∗ ∈ X∗∗. Then the
indicator function δK , denoted by δK(x) = 0 if x ∈ K, = ∞ otherwise,
is a proper convex function which is lower semicontinuous if and only
if K is closed (see, e.g., [11]). The relationship between the x∗∗-weak∗

exposed point (the weak∗-exposed point) and the x∗∗-minimum (the
weak∗-minimum) is exhibited by the following lemma. The proof is
trivial.

Lemma 4.5. Let K be a weak∗ compact convex in X∗, and let x∗∗ be in
X∗. Then x∗ ∈ K is an x∗∗-weak∗ exposed point of K with x∗∗-weak∗

exposing functional x ∈ X if and only if δK −x attains a x∗∗-minimum
on X∗ at x∗. Furthermore, x∗ ∈ K is a weak∗ exposed point of K
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with weak∗ exposing functional x ∈ X if and only if δK − x attains a
weak∗-minimum on X∗ at x∗.

Now we are going to prove our main theorem. To obtain this result,
we need the well-known following theorem (see [2]). Note that, for any
ε > 0, the ε-subdifferential ∂ε is denoted by

∂fε(x) = {x∗ ∈ X∗ : ⟨x∗, y⟩ ≤ f(x+ y)− f(x) + ε, for all y ∈ X}.

Theorem 4.6 (Brøndsted-Rockafellar). Suppose that f is a convex
proper lower semicontinuous function on X. Then, given any point
x0 ∈ dom (f), ε > 0, λ > 0 and x∗

0 ∈ ∂εf(x0), there exist x ∈ dom (f)
and x∗ ∈ X∗ such that

x∗ ∈ ∂f(x), ∥x− x0∥ ≤ ε/λ, and ∥x∗ − x∗
0∥ ≤ λ.

Theorem 4.7. Let X and Y be Banach spaces, and let K be a
nonempty weak∗ compact convex subset of X∗. The following are
equivalent.

(a) For every minimal weak∗-cusco T : Y → 2X
∗
with {y ∈ Y : T (y) ∩

K ̸= ∅} dense in Y and x∗∗ ∈ X∗∗, there exists a dense Gδ subset
D of Y such that x∗∗T is single-valued and upper semicontinuous
at each point of D.

(b) For every proper convex weak-lower semicontinuous f : X →
R ∪ {∞} with dom (f∗) ⊂ K and x∗∗ ∈ X∗∗, there exists a dense
Gδ subset D of int dom (f) such that x∗∗∂f is single-valued and
upper semicontinuous at each point of D.

(c) For every proper lower semicontinuous f : X∗ → R ∪ {∞} with
dom (f) ⊂ K and x∗∗ ∈ X∗∗, there exists a dense Gδ subset D
of int dom (f∗) such that for each x ∈ D, f − x attains a x∗∗-
minimum.

(d) Every nonempty weak∗ compact convex subset of K has an x∗∗-
weak∗ exposed point of K.

(e) K has the weak Radon-Nikodým property.

Proof. (d) ⇒ (e) and (e) ⇒ (a) are clear by Proposition 3.5 and
Remark 4.1.

(a) ⇒ (b). We may assume that int dom (f) ̸= ∅. Observe that {x ∈
X : ∂f(x) ∩X∗ ̸= ∅} = {x ∈ X : ∂f(x) ∩K ̸= ∅}. Since f is a proper
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convex weak-lower semicontinuous, it follows from the preliminaries
that ∂f is minimal weak∗-cusco and {x ∈ X : ∂f(x) ∩K ̸= ∅} is dense
in X. Then, by (a), the conclusion follows.

(c) ⇒ (d). Let C be a nonempty weak∗ compact convex subset of
K and x∗∗ in X∗∗. Consider δC . Then δC : X∗ → R ∪ {∞} is proper
lower semicontinuous with dom (δC) = C ⊂ K and dom (δ∗C) = X. By
the assumption, there exists one x ∈ X such that δC − x attains a
x∗∗-minimum. By Lemma 4.4, there exists a x∗∗-weak∗ exposed point
of C.

(b) ⇒ (c). Let f : X∗ → R ∪ {∞} be proper lower semicontinuous
with dom (f) ⊂ K and x∗∗ ∈ X∗∗. We may assume that int dom (f∗)
is nonempty and x∗∗ ∈ BX∗∗ . Since f∗ : X → R ∪ {∞} is proper
weak-lower semicontinuous and dom (f∗∗) ⊂ codom (f) ⊂ K, by (b),
there exists a dense Gδ subset D of int dom (f∗) such that x∗∗∂f∗ is
single-valued and upper semicontinuous at each point of D. Let x ∈ D.
Now it is enough to show that f − x attains the x∗∗-minimum. That
is, we prove that there exists an x∗ ∈ X∗ such that, for every sequence
{x∗

n} ⊂ X∗,

f(x∗
n)− ⟨x, x∗

n⟩ −→ inf(f − x)

implies

x∗∗(x∗
n) −→ x∗∗(x∗).

Let ε > 0 be given. Consider a sequence {x∗
n} ⊂ X∗ such that

f(x∗
n)−⟨x, x∗

n⟩ → inf(f −x). Then we have f(x∗
n)−⟨x, x∗

n⟩ → −f∗(x).
Since x∗∗∂f∗ is upper semicontinuous at x, there exists δ > 0 such
that, if ∥x − y∥ < δ, then x∗∗∂f∗(y) ⊂ B(a, ε) where a = x∗∗∂f∗(x).
Then there exists an N ∈ N such that, if n > N , then

f(x∗
n)− ⟨x, x∗

n⟩ ≤ −f∗(x) + εδ.

Fix any n > N . We claim that x∗
n ∈ ∂εδf

∗(x). Indeed, let z be in X.
Since f∗(y) = sup{⟨y∗, y⟩ − f(y∗) : y∗ ∈ X∗} for every y ∈ X, we have
⟨x∗

n, x+ z⟩ − f(x∗
n) ≤ f∗(x+ z). Hence, we obtain

⟨x∗
n, z⟩ = ⟨x∗

n, x+ z⟩ − ⟨x∗
n, x⟩

≤ f∗(x+ z) + f(x∗
n)− f(x∗

n)− f∗(x) + εδ

= f∗(x+ z)− f∗(x) + εδ.
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This proves our claim. Now we consider x∗ ∈ ∂f∗(x). Then we are
going to prove that |x∗∗(x∗

n)−x∗∗(x∗)| < 2ε. Since f∗ is proper convex
lower semicontinuous on X and x∗

n ∈ ∂εδf
∗(x) and x ∈ dom (f∗), by

Brøndsted-Rockafellar theorem, there exist y ∈ dom (f∗) and (xn)∗ ∈
X∗ such that (xn)∗ ∈ ∂f∗(y), ∥x − y∥ ≤ εδ/ε, and ∥x∗

n − (xn)∗∥ ≤ ε.
Then, we have ∥x − y∥ < δ and |x∗∗(x∗

n − (xn)∗)| ≤ ε. Since
(xn)∗ ∈ ∂f∗(y) and x∗ ∈ ∂f∗(x), we obtain

|x∗∗(x∗)− x∗∗(xn)∗| = |a− x∗∗(xn)∗| < ε.

Hence, we have

|x∗∗(x∗
n − x∗)| ≤ |x∗∗(x∗

n − (xn)∗)|+ |x∗∗((xn)∗ − x∗)| ≤ 2ε.

This completes the proof. �

In the proof of (b) ⇒ (c), we showed the following fact that we state
as a proposition.

Proposition 4.8. Let K be a nonempty weak∗ compact convex subset
of X∗ and f : X∗ → R ∪ {∞} proper lower semicontinuous with
dom (f) ⊂ K and x∗∗ ∈ X∗∗. Suppose that there exists a dense Gδ

subset D of int dom (f∗) such that x∗∗∂f∗ is single-valued and upper
semicontinuous at each point of D. Then, for each x ∈ D, every
x∗ ∈ ∂f∗(x) is an x∗∗-minimizer of f − x.

Finally, we provide equivalent conditions for the weak Radon-
Nikodým property of a dual Banach space X∗. The proof is similar
to that of Theorem 4.6, and we use Remark 4.1 and Corollary 3.8.

Corollary 4.9. Let X and Y be Banach spaces. The following are
equivalent.

(a) For every minimal weak∗-cusco T : Y → 2X
∗
and x∗∗ ∈ X∗∗, there

exists a dense Gδ subset D of Y such that x∗∗T is single-valued
and upper semicontinuous at each point of D.

(b) For every proper convex weak-lower semicontinuous f : X → R ∪
{∞} and x∗∗ ∈ X∗∗, there exists a dense Gδ subset D of int dom (f)
such that x∗∗∂f is single-valued and upper semicontinuous at each
point of D.
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(c) For every proper lower semicontinuous f : X∗ → R ∪ {∞} and
x∗∗ ∈ X∗∗, there exists a dense Gδ subset D of int dom (f∗) such
that, for each x ∈ D, f − x attains a x∗∗-minimum.

(d) Every nonempty weak∗ compact convex subset of X∗ has a x∗∗-
weak∗ exposed point.

(e) X∗ has the weak Radon-Nikodým property.
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