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WEIERSTRASS EQUATIONS FOR ALL ELLIPTIC
FIBRATIONS ON THE MODULAR K3 SURFACE

ASSOCIATED TO Γ1(7)

ODILE LECACHEUX

ABSTRACT. We show that there are 20 elliptic fibra-
tions, up to isomorphism, on the modular K3 surface associ-
ated to the modular group Γ1(7).

1. Introduction. The aim of this paper is to determine all the
elliptic fibrations with section up to isomorphism, on the modular
surface S associated to Γ1(7) and give for each fibration a Weierstrass
model.

We prove the following theorem:

Theorem 1.1. There are 20 elliptic fibrations with section up to
isomorphism, on the ellipic modular surface associated to the modular
group Γ1(7).

They are listed in Table 2 with the rank and torsion of their Mordell-
Weil group. The list consists of 1 fibration of rank 0, 18 fibrations of
rank 1 and 1 fibration of rank 2. Among them, five are semi-stable with
seven singular fibers, and two of them have the same type of singular
fibers but are not isomorphic.

Starting from the elliptic fibration with base curve the modular curve
X1(7), we gave, in a previous paper [8], ten elliptic fibrations with
elliptic parameters belonging to a multiplicative group.

In this paper, using the lattice-theoretic description of the elliptic
fibrations, (Kneser-Nishiyama method) we prove the theorem in the
first part (Sections 1–7). Nishiyama’s results provide the type of
singular fibers, the rank and torsion. In the second part of the paper we
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will give explicit elliptic parameters and Weierstrass equations for the
remaining fibrations, using explicit computation of divisors of functions
and Elkies’s 2 and 3-neighbor method [9, 17].

In [5], Elkies gave a list of negative integers for which there is a
unique K3 surface X over Q with Néron-Severi group of rank 20 and
discriminant −D consisting entirely of classes of divisors defined over
Q. For D = −7, he gave the explicit model of an elliptic fibration

y2 = x3 − 75x− (64t+ 378 + 64/t)

with E8(= II∗) fibers at t = 0 and t = ∞ and an A1(= I2) fiber at
t = −1. For this fibration, the Mordell-Weil group has rank 1 and no
torsion. We recover Elkies’s result, (parameter h from Table 3).

2. Elliptic fibrations. Let k be an algebraically closed field, and
let C be a smooth curve over k. An elliptic surface S over C is a smooth
projective surface S with an elliptic fibration over C means that we have
a surjective morphism f : S → C such that all but finitely many fibers
are smooth curves of genus 1 and no fiber contains an exceptional curve
of the first kind (that is, S → C is relatively minimal). Moreover, we
will assume f has a section, that is, a smooth morphism s : C → S such
that f ◦ s = idC . Let E be the generic fiber; then E can be regarded as
an elliptic curve over K := k(C), the section s corresponding to the O
of the elliptic curve. The group E(K) of K rational points of E can be
identified with the group of sections of f . We also require that S have
at least one singular fiber, so, by the Mordell-Weil theorem, E(K) is
finitely generated. If S is a K3 surface, then the base curve C is P1

and K = k(t).

The Néron-Severi group NS(S) of S, the group of divisors modulo
algebraic equivalence, becomes an integral lattice of finite rank ρ(S)
with respect to the intersection pairing (ρ(S) is called the Picard
number of S). Let T denote the sublattice (the trivial lattice) of NS(S)
generated by the zero section (O) and the irreducible components of
fibers. More precisely, the trivial lattice is the orthogonal sum

T = ⟨O,F ⟩ ⊕v∈σ Tv,

where O denotes the zero section, F the general fiber, σ the points
of C corresponding to the reducible singular fibers and Tv the lattice
generated by the fiber components except the zero component.
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The map P → (P )modT induces a group isomorphism:

E(K) ≃ NS(S)/T.

3. Lattices and root lattices. For general definitions concerning
lattices, we refer to [4, 11].

A lattice is a free abelian group L of finite rank with a non-degenerate
symmetric bilinear pairing b : L × L → Z. The lattice is even if

b(x, x) ∈ 2Z. The pairing b extends to a symmetric bilinear form b̃ on

L⊗Q. The signature of b is defined to be that of b̃. For every integerm,
we denote by L[m] the lattice obtained from a lattice L by multiplying
the values of its bilinear form by m.

If S is a subset of L we call the orthogonal complement of S the
sublattice S⊥ = {x ∈ L, b(x, v) = 0, for all v ∈ S}. A submodule S ⊂ L
is called primitive if the quotient L/S is torsion free. The primitive

closure of S in L, denoted S
L
, is defined by {v ∈ L | there exists k ̸=

0 ∈ Z, kv ∈ S}. A homomorphism of lattices f : S → S′ is a
homomorphism of abelian groups such that b′(f(x), f(y)) = b(x, y)
for all x, y ∈ S. An injective homomorphism of lattices is called an
embedding ; an embedding i is called primitive if the quotient S′/i(S)
is torsion free.

The dual lattice of L is defined by

L∗ = Hom (L,Z) = {x ∈ L⊗Q | ∀v ∈ L, b (v, x) ∈ Z}

and the discriminant group GL is the finite group L∗/L. If L∗ = L
the lattice is called unimodular. The bilinear form on L induces a
symmetric bilinear form called the discriminant bilinear form bL :
GL ×GL → Q/Z.

If L is even, then bL is the symmetric bilinear form associated to
qL : GL → Q/2Z, with qL(x+L) = b(x, x) + 2Z. Then qL is called the
discriminant quadratic form.

Let L be a negative-definite lattice (respectively positive-definite),
a root a is an element of L satisfying b(a, a) = −2 (respectively
b(a, a) = 2). The sublattice of L generated by the roots is called the
root type of L and denoted by Lroot. If a is a root, the isometry
Ra(x) = x + b(x, a)a is called the reflection associated to a. The
subgroup of reflections associated to roots is the Weyl group of L.
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Notation 3.1. If L is a lattice, and x ∈ L∗, we denote by x the element
x+ L in L∗/L.

3.1. Lattices An. If (e0, e1, . . . , en) is the canonical basis of Rn+1, we
can represent An as the lattice

An =

{
(x0,x1, . . . , xn) ∈ Zn+1

∣∣∣ n∑
i=0

xi = 0

}
.

We take {εi = ei − ei−1|i = 1, 2, . . . , n} as a basis of the lattice An.
The roots of An are then the n(n+ 1) vectors ek − ej k ̸= j.

Let

α1 =
n−1∑
r=0

er
n+ 1

− nen
n+ 1

.

Then
A∗

n/An = ⟨α1⟩ ≃ Z/(n+ 1)Z.

3.2. Lattices Dn. If (e1, . . . , en) is the canonical basis in Rn, we can
represent Dn as the lattice

Dn =

{
(x1, x2, . . . , xn) ∈ Zn+1,

n∑
i=1

xi ≡ 0 mod 2

}
.

The lattice Dn is an even lattice. We will use the basis

δ1 = −e1 − e2, δ2 = e1 − e2, . . . , δn = en−1 − en.

The roots are the 2n(n− 1) vectors ±ei ± ek.

Let δ̃1 = (1/2)
∑n

i=1 ei. Then δ̃1 is in D∗
n.

If n is even, then 2δ̃1 ∈ Dn; for all k, we have ek ∈ D∗
n and

ek − δ̃1 /∈ Dn. Then we have

D∗
n/Dn ≃ (Z/2Z)2 =

{
0, δ̃1, ek, δ̃1 + ek

}
.

If n is odd, then 2δ̃1 /∈ Dn, and

D∗
n/Dn ≃ Z/4Z = ⟨δ̃1⟩.
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3.3. Lattice E6. We can represent E6 as a lattice in R8 generated by
the six vectors γi

γ1 =
1

2
(e1 + e8)−

1

2

7∑
i=2

ei, γ2 = e1 + e2, γi = ei−1 − ei−2,

3 ≤ i ≤ 6.

If η6 = −(1/3)(2γ1 + 3γ2 + 4γ3 + 6γ4 + 5γ5 + 4γ6), then

E∗
6/E6 = ⟨η6⟩ ≃ Z/3Z.

3.4. Lattice E7. We can represent E7 as a lattice in R8 generated by
the six vectors γi, 1 ≤ i ≤ 6, and γ7 = e6 − e5.

If η7 = (3/2)(η6 + γ7), then

E∗
7/E7 = ⟨η7⟩ ≃ Z/2Z.

3.5. Lattice E8. The lattice E8 is the unimodular lattice represented
in R8 by points with coordinates xi satisfying

8∑
i=1

xi ∈ 2Z, xi − xj ∈ Z, 2xi ∈ Z.

4. Nishiyama and Nikulin’s results. Nishiyama [14] has classi-
fied all possible Jacobian fibrations (fibrations with a section) on some
singular K3 surface, i.e., K3 surface of Picard number 20. We summa-
rize the main points of Nishiyama’s construction.

Denote by T(S) the transcendental lattice of S, i.e., the orthogonal
complement of NS(S) in the unimodular lattice H2(S,Z) with respect
to the cup-product,

T(S) = NS(S)⊥ ⊂ H2(S,Z).

Since ρ(S) = 20, T(S) is an even lattice of rank 22 − ρ(S) = 2 and
signature (2, 0) and T(S)[−1] is an even negative-definite lattice.

By Nikulin’s result ([13, Theorem 1.12.4]), T(S)[−1] admits a
primitive embedding into the unimodular lattice E8[−1].

We define M as the orthogonal complement of T(S)[−1] in E8[−1].
By construction,M is a negative-definite lattice of rank 6. By Nikulin’s
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result ([13, Proposition 1.5.1]) the discriminant forms satisfy

qT(S) = −qNS(S), qM = −qT(S)[−1].

For each elliptic fibration f : S → P1 of S with a section O, we
define an even unimodular lattice of signature (1, 1) generated by the
zero section O and the general fiber F , called the hyperbolic lattice
U . The orthogonal complement lattice of U in the Néron-Severi group
NS(S) is called the frame and is denotedW (S). Since U is unimodular,
we have NS(S) = U ⊕W (S). The frame is a negative definite even
lattice of rank ρ(S) − 2 = 18. From Nishiyama’s result [14, Lemma
6.3], the discriminant groups GT(S) and GW (S) are isomorphic and
qW (S) = −qT(S).

From Nikulin’s result ([13, Corollary 1.6.2]) there exists a unimod-
ular overlattice L of M ⊕W (S) such that the embeddings of M and

W (S) in L are primitive, and M⊥
L = W (S) and W (S)⊥L = M . In our

case, L is a unimodular lattice of rank 24. Such a lattice is called a
Niemeier lattice, and there are only 24 different Niemeier lattices up
to isometry ([12]). A Niemeier lattice L is determined by its root type
Lroot. They are listed in Table 4.

Conversely, if there is a primitive embedding of M in a Niemeier
lattice, there is an elliptic fibration whose properties will be specified
in the following paragraphs.

From now on, we are interested in the K3 elliptic modular surface
with base curve the modular curve X1(7) (for equations, see (9.1)
below).

The Gram matrix of T(S) is ([6, Table 1])(
2 1
1 4

)
.

From Nishiyama’s computations [14, page 311], we get

M [−1] = A6.

So M =M root, and we can apply Nishiyama’s result: M is primitively
embedded in L if and only if M is primitively embedded in Lroot [14,
page 344].
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5. Primitive embeddings of A6.

Lemma 5.1. Up to the action of the Weyl group, there is at most one
primitive embedding i of A6 into An,Dm,Ek.

(i) The primitive embeddings i(A6) of A6 into An and n ≥ 6, up to
the action of group W (An), are uniquely given as

i(A6) = ⟨ε1, ε2, . . . , ε6⟩.

Moreover, the root lattice of i(A6)
⊥ in An is isometric to An−7,

for n > 7 and 0 if n ≤ 7.
(ii) The primitive embeddings i(A6) of A6 into Dm and m ≥ 7, up to

the action of group W (Dm), is uniquely given as

i(A6) = ⟨δ2, δ3, . . . , δ7⟩.

Moreover, the root lattice of i(A6)
⊥ in Dm is isometric to

Dm−7, for m > 7 and 0 if m ≤ 7.
(iii) The primitive embeddings i(A6) of A6 into Ek = ⟨ηi, i = 1, . . . , k⟩

and k ≥ 7, up to the action of group W (Ek), is uniquely given as

i(A6) = ⟨η2, η3, . . . , η7⟩.

Table 1. Niemeier lattices.

Name Lroots L/Lroots Name Lroots L/Lroots

α D24 Z/2Z ν A2
9 ⊕ D6 Z/2Z× Z/10Z

β D16 ⊕ E8 Z/2Z ξ D4
6 (Z/2Z)4

γ E3
8 0 o A3

8 (Z/3Z)3
δ A24 Z/5Z π A2

7 ⊕ D2
5 Z/4Z× Z/8Z

ε D2
12 (Z/2Z)2 ρ A4

6 (Z/7Z)2
ζ A17 ⊕ E7 Z/6Z σ A4

5 ⊕ D4 Z/2Z×(Z/6Z)2
η D10 ⊕ E2

7 (Z/2Z)2 τ D6
4 (Z/2Z)6

θ A15 ⊕ D9 Z/8Z υ A6
4 (Z/5Z)3

ι D3
8 (Z/2Z)3 ϕ A6

3 (Z/4Z)4
κ A2

12 Z/13Z χ A12
2 (Z/3Z)6

λ A11 ⊕ D7 ⊕ E6 Z/12Z ψ A24
1 (Z/2Z)12

µ E4
6 (Z/3Z)2 ω Leech Λ24
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Moreover, the root lattice of i(A6)
⊥ in Ek is 0 for k = 7, isometric

to A1 for k = 8.

In other cases, A6 cannot be embedded.

Proof. We use Nishiyama’s results [14, Lemmas 4.1, 4.2 and 4.3] to
give the embeddings. Then, using the roots of each of lattices An and
Dm, we can compute which roots are in i(A6)

⊥. For Ek, see Nishiyama
[14, Corollary 4.4]. �

6. All the fibrations. All the fibrations are obtained in embedding
A6 in one factor of Lroot. The results are gathered in the Table 2. In
each case A6 is embedded in the factor of Lroot listed first. This first
factors are successively An, Dm and Ek.

The following results [14, Lemma 6.1 and definitions] allow us
to obtain some properties of the fibration derived from a primitive
embedding of A6 in L.

Lemma 6.1.

(i) The type ⊕v∈σTv of a fibration is isomorphic to the typeW (S)root.
(ii) The Mordell-Weil group of a fibration is isomorphic to

W (S)

W (S)root
.

(iii) The torsion in the Mordell-Weil group is isomorphic to

(W (S)root)

W (S)root

where (W (S)root) is the primitive closure of W (S)root in W (S).

In all cases of Table 2, the rank of the Mordell-Weil group is > 0
except for Lroot = A4

6. Moreover, the rank is one except for Lroot = D3
8

(parameter t) for which the rank is 2. Finally the second column of
Table 2 returns to equations of Tables 3 and 4.
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Table 2. All the elliptic fibrations.

First case of Lemma 1 parameter Singular fibers Torsion
ρ : A4

6 d 3I7, 3I1 (Z/7Z)
π : A2

7 ⊕ D2
5 u I8, 2I

∗
1 , 2I1 (Z/4Z)

o : A3
8 r I2, 2I9, 4I1 (Z/3Z)

ν : A2
9 ⊕ D6 k I3, I10, I

∗
2 , 3I1 (Z/2Z)

λ : A11 ⊕ D7 ⊕ E6 s I5, I
∗
3 , IV

∗, 2I1 0
χ : A2

12 w I6, I13, 5I1 0
θ : A15 ⊕ D9 p I9, I

∗
5 , 4I1 0

ζ : A17 ⊕ E7 a I11, III
∗, 4I1 0

A24 g I18, 6I1 0
Second case

λ : D7 ⊕ A11 ⊕ E6 m I12, IV
∗, 4I1 (Z/3Z)

ι : D3
8 t 2I∗4 , 4I1 (Z/2Z)

θ : D9 ⊕ A15 b 2I2, I16, 4I1 (Z/4Z)
η : D10 ⊕ E2

7 n I4, 2III
∗, 2I1 (Z/2Z)

ϵ : D2
12 q I∗1 , I

∗
8 , 3I1 (Z/2Z)

β : D16 ⊕ E8 l I∗5 , II
∗, 3I1 0

D24 e I∗13, 5I1 0
Third Case
ζ : E7 ⊕ A17 f I18, 6I1 (Z/3Z)
η : E2

7 ⊕ D10 c III∗, I∗6 , 3I1 (Z/2Z)
β : E8 ⊕ D16 o I2, I

∗
12, 4I1 (Z/2Z)

γ : E3
8 h I2, 2II

∗, 2I1 0

7. Torsion.

7.1. Methods. Let M be a primitive embedding of A6 in Lroot, M
the orthogonal complement ofM in Lroot, and letW be the orthogonal
complement of M in L.

From elementary algebra, we have the following properties

(i) M = Lroot ∩W so W/M =W/Lroot ∩W ,
(ii) from the canonical surjection L� L/Lroot we get the injection

W/M ↩→ L/Lroot,
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(iii) since L/Lroot is finite, W/M is also finite of order iW,M and

i2W,N detW = detM,

(iv) from the canonical surjection W �W/M we have the injection

Wroot/Wroot ∩M ↩→W/M.

From definitions we have Mroot = Wroot, and from Nishiyama’s
results

(a) detW = detM = 7,

(b) M/Mroot is torsion free, so Mroot
M

=Mroot.

Finally, we have the equality Wroot ∩M = Mroot ∩M = Mroot
M
.

So, we have an injection

Wroot/Wroot ↩→W/M.

7.2. Computations. Let Lroot = A⊕B with a primitive embedding
of A6 in an indecomposable root lattice A, and let B be a direct sum
of the root lattices. If M1 is the orthogonal complement of A6 in A,
then M = M1 ⊕B and Mroot = (M1)root ⊕B.

Since W/M is a finite group, we have r := rankW − rankWroot =
rankM1− rank (M1)root. We use the generators of L/Lroot given in [4]
as elements of L∗

root/Lroot.

7.3. A = An. If n ≥ 7, we have rank (M1)− rank (M1)root = (n− 6)−
(n− 7) = 1 and Wroot = An−7 ⊕B.

SinceWroot is an overlattice ofWroot, it can be viewed as a subgroup
of W ∗

root/Wroot = A∗
n−7/An−7 ⊕B∗/B. Moreover, using the injection

Wroot/Wroot ↩→ L∗
root/Lroot ↩→ A∗

n/An ⊕B∗/B,

we see that the first component of u ∈Wroot/Wroot is of order dividing
n−6 and n+1, so dividing 7. In all cases, treated n+1 is never divided
by 7, so we have an injection

Wroot/Wroot ↩→ B∗/B.

Conversely, if x ∈ L/Lroot, represented by (u, v) with u ∈ A∗/A, v ∈
B∗/B, then (u, v) ∈Wroot/Wroot if and only if u = 0.
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(i) If n = 6, then Lroot = A4
6; thus, the rank is 0 and detM = 73.

Since detW = 7 then |W/M |2 = detM/detW = 72. Then the
torsion group is cyclic of order 7.

(ii) If n = 7 and Lroot = A2
7 ⊕ D2

5, then the group L/Lroot is
of order 32 isomorphic to Z/8Z× Z/4Z, with two generators
chosen as (α1, α1, δ1, 2 δ1) and (2α1, 4α1, δ1, δ1). Enumerating
all the elements, we see that only 4 elements have 0 as the first
component: 0, x = (0, 4α1, 2δ1, 2δ1), y = (0, 6α1, δ1, 3δ1),−y.
Since 2y = x, the torsion group is cyclic of order 4.

(iii) If n = 8 and Lroot = A3
8, then the group L/Lroot is isomorphic

to Z/9Z × Z/3Z generated by the three elements: (α1, α1, 4α1),
(α1, 4α1, α1), and (4α1, α1, α1). Enumerating all the elements, we
see that only three elements have the first component equal to 0.
So the torsion group is cyclic of order 3.

(iv) If n = 9 and Lroot = A2
9 ⊕ D6, then the group L/Lroot is of order

20 generated by (2α1, 4α1, 0), (5α1, 0, δ̃1), (0, 5α1, δ̃1 + e2). Only
two elements have a first component equal to 0 so the torsion
group is cyclic of order 2.

(v) For n = 11, 12, 15, 17, 24, only one element has a first component
equal to 0, so the torsion group is trivial.

7.4. A = Dm. For m > 9, we have (M1)root = Dm−7, and we can

see (M1)root/(M1)root as a subgroup of D∗
m−7/Dm−7. Since m and

m− 7 do not have the same parity, the first component of elements of
Wroot/Wroot in L/Lroot is in a fixed group of order 2.

(i) If m = 7 and Lroot = D7⊕A11⊕E6, we have (M1)root = 0, and so
the rank is 1 and the first component of elements of Wroot/Wroot

in L/Lroot is 0. Moreover, L/Lroot is cyclic of order 12 generated

by (δ̃1, α1, η6). Since δ̃1 is of order 4, there are three elements
with first component equal to 0. Thus, the torsion group is equal
to Z/3Z.

(ii) If m = 8 and Lroot = D3
8, the lattice M1 is of rank 2 and

(M1)root = 0, so the rank is 2. As for m = 7, we have to
consider elements with first component equal to 0. The group

L/Lroot ≃ (Z/2Z)3 is of order 8 generated by r1 = (δ̃1, δ2,δ2),

r2 = (δ2, δ̃1δ2) and r3 = (δ2, δ2,δ̃1) with δ̃1 = (1/2)
∑8

i=1 ei and
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δ2 = e2. Only r2 + r3 has the desired property, so the torsion
group is equal to Z/2Z.

(iii) For m = 9 and Lroot = D9 ⊕ A15, we have (M1)root = A2
1, so

the rank is 1. The first factor of Wroot/Wroot is a subgroup of
D∗

9/ D9; this last group is cyclic of order 4. It can also be viewed
as a subgroup of the order 4 cyclic group D∗

9/D9. Since L/Lroot

is cyclic of order 8 generated by (δ1, 2α1) with δ1 of order 4,
Wroot/Wroot is cyclic of order 4 generated by 2(δ1, 2α1).

(iv) For the remaining casesm = 10, 12, 16, 24, we have to consider the

quotient D∗
m/Dm = {0, δ̃1, ei, δ̃1 + ei}. We know that 2ei ∈ Dm.

Moreover, if we consider the primitive embedding of A6 in Dm,
i(A6) = ⟨δ2, δ3, . . . , δ7⟩ with δi+1 = ei − ei+1, then (M1)root =
⟨e8+e9, δ9, . . . , δm⟩. If we choose i = 8, we can see that 2e8 ∈ Dm

and, for all k, kδ̃1 /∈ (M1)root and k(δ̃1 + ei) /∈ (M1)root. So, for
these four cases, an element of L/Lroot belongs to Wroot/Wroot if
and only if the first component is 0 or ei. After examination of
each case m = 10, 12, 16, 24 we can complete the table.

7.5. A = Ek.

(i) Lroot = E7 ⊕ A17. In that case L/Lroot is cyclic of order 6
generated by (η7, 3α1). Since (M1)root = 0, the elements of
Wroot/Wroot have their first component equal to 0, soWroot/Wroot

is of order 2.
(ii) Lroot = E2

7 ⊕ D10. The group L/Lroot previously described is,
after permutation, isomorphic to (Z/2Z)2. The non zero elements
are (η7, 0, u), (0, η7, u

′) and (η7, η7, u
′′). Since (M1)root = 0,

only (0, η7, u
′) belongs to Wroot/Wroot, so the torsion group is

of order 2.
(iii) Lroot = E8 ⊕ D16. The group L/Lroot is isomorphic to Z/2Z,

generated by υ = (0, δ̃1) and 2υ ∈ Wroot, so the torsion group is
of order 2.

(iv) Lroot = E3
8. Then L/Lroot = 0, so the torsion group is 0.

8. Computations of Weierstrass models. We will use the fol-
lowing proposition ([15, pages 559–560] or [16, Proposition 12.10]).

Proposition 8.1. Let S be a K3 surface and D an effective divisor
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on S that has the same type as a singular fiber of an elliptic fibration.
Then S admits a unique elliptic fibration with D as a singular fiber.
Moreover, any irreducible curve C on S with D.C = 1 induces a section
of the elliptic fibration.

If S is a K3 surface, an elliptic fibration f : S → P1 with a section 0
defines a non constant function t, with t = f(z) for z ∈ S; the function
t is called the elliptic parameter. Then the generic fiber E has a
Weierstrass equation on k(t). The parameter t is unique only up to
linear fractional transformations. From Proposition 1, to construct a
fibration, we need one effective divisor D. We call such a divisor an
elliptic divisor. In practice, however, we need two divisors D1 and D2,
one for t = 0 and the other for t = ∞, as in the next proposition.

Proposition 8.2. Let S be a K3 surface and f : X → P1 an elliptic
fibration of elliptic parameter t. Let ∆ be a set of components of
singular fibers included in f−1(W ) where W is a finite subset of P1

and δ a finite set of sections. Suppose D1 and D2 are two elliptic
divisors of the same new fibration with supports contained in ∆ ∪ δ. If
we write Di = δi + ∆i with δi the sum of sections and ∆i the sum of
components of singular fibers, then δ1 − δ2 is the divisor of a function
u0 on the generic fiber E(k(t)) and a parameter of the new fibration
can be chosen as the function u = u0

∏
ti∈W (t− ti)

ai where ai ∈ Z.

Proof. In the new fibration, there is a function u with divisorD1−D2

so D1 and D2 belong to the same class in NS(S). As the class of
∆1 − ∆2 is in T , then δ1 and δ2 are in the same class in NS(S)/T .
Using the isomorphism between NS(S)/T and E(k(t)), it follows that
δ1 − δ2 is the divisor of a function u0 on E(k(t)). �

9. Equations.

9.1. Previous results. We recall some notation and results from [8].
We start with the elliptic modular surface

(9.1) Y2 + (1 + d− d2)XY + (d2 − d3)Y = X 3 + (d2 − d3)X 2

and the elliptic fibration

(X ,Y, d) 7−→ d,
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where A = (0, 0) is a 7-torsion point. Moreover, at d = 1, 0,∞, we have
singular fibers of type I7. The components of singular fibers of type
I7 at d ∈ 0, 1,∞ are denoted by Θd,j , j = 0, 1, . . . , 6, and the Coxeter
graph of sections and Θd,j components can be drawn as below.

..

Θ1,0

.

Θ1,1

.

Θ1,2

. Θ1,3.

Θ1,4

.

Θ1,5

.

Θ1,6

.

Θ∞,0

. Θ∞,1.

Θ∞,2

.

Θ∞,3

.

Θ∞,4

.

Θ∞,5

.

Θ∞,6

.

0

.

A

.

2A

.

3A

.

4A

.

5A

.

6A

.

Θ0,0

.

Θ0,1

.

Θ0,2

.

Θ0,3

.

Θ0,4

.

Θ0,5

.

Θ0,6

Using the birational transformation

u =
Y
X 2

, v = −X + d2 − d3

Y

with inverse

X =
d (d− 1)

u+ v − uv
, Y =

u d2 (d− 1)2

(u+ v − uv)2
,

we obtain the equation

(9.2) d(d− 1)uv = (uv − u− v)(1 + d(uv − u− v))
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or

(9.3) (uv − u− v)(dv − 1)(du− 1) = d(d− 1)uv(u− 1)(v − 1).

In [8], we give fibrations with elliptic parameter in the multiplicative
group generated by

∏
= {u, v, u− 1, v− 1, ud− 1, vd− 1, d, d− 1}. Let

us recall the divisors of functions of
∏
,

div(u) =
(0) + (5A)− 2(6A)−Θ1,6 −Θ0,4 − 2Θ0,5 −Θ0,6

+2Θ∞,0 +Θ∞,1 −Θ∞,3 +Θ∞,5 + 2Θ∞,6

div(v) =
(0)− 2(A) + (2A)−Θ1,1 −Θ0,1 − 2Θ0,2 −Θ0,3

+2Θ∞,0 + 2Θ∞,1 +Θ∞,2 −Θ∞,4 +Θ∞,6

div(u− 1) =
(A) + (4A)− 2(6A) + Θ1,1 +Θ1,2 +Θ1,3 +Θ1,4 −Θ1,6

+Θ0,1 +Θ0,2 −Θ0,4 − 2Θ0,5 −Θ0,6 −Θ∞,3

div(v − 1) =
(3A) + (6A)− 2(A)−Θ1,1 +Θ1,3 +Θ1,4 +Θ1,5 +Θ1,6

+Θ0,5 +Θ0,6 −Θ0,1 − 2Θ0,2 −Θ0,3 −Θ∞,4

div(du− 1) =
(2A) + (3A)− 2(6A) + Θ1,1 + 2Θ1,2 + 2Θ1,3 +Θ1,4 −Θ1,6

−Θ0,5 −Θ∞,2 − 2Θ∞,3 −Θ∞,4

div(dv − 1) =
(4A) + (5A)− 2(A) + Θ1,3 + 2Θ1,4 + 2Θ1,5 +Θ1,6 −Θ1,1

−Θ0,2 −Θ∞,3 − 2Θ∞,4 −Θ∞,5

We show in [8] that k = (d− 1)/(u− 1) is an elliptic parameter for
an elliptic fibration with reducible fibers of types I10, I

∗
2 and I3 at,

respectively, k = ∞, 0,−1 represented in Figure 1. The reducible fiber
of type I3 has three components: Θ1,2, Θ1,3 and Γ. More precisely,
from k = −1, we have the parametrization of Γ

u =
v (2v − 1)

v2 − v + 1
, v, d =

v − 2

v2 − v + 1
.
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So we can say the divisor of k + 1 is equal to:

− (A)−(4A)−Θ0,1−Θ0,2−Θ∞,0−Θ∞,1−Θ∞,2−Θ∞,4−Θ∞,5−Θ∞,6

+Θ1,2 +Θ1,3 + Γ

and also compute the divisor of d+ u− 2 = (k + 1)(u− 1).

We add the function k + 1 to the set of functions
∏

and compute
new fibrations as in [8] using Proposition 2, with parameters in the
multiplicative group generated by

∏
∪{k + 1}. In this section, hori-

zontal and vertical divisors always refer to the fibration of parameter
k.

We start from the fibration of parameter k with the three Weierstrass
equations

Y 2 + (k + 1)(k − 2)(X + k2)Y = (X + k2)(X + k2 − 1)(X + k2 + k3),

Y 2 + (k + 1)(k − 2)Y x = x(x− 1)(x+ k3),

y2 + k(k + 1)yx = x(x+ k)(x− k2)

where x = X + k2 and y = Y − (k + 1)x.

For this calculation, we choose

X = (k + 1)
(v − 1)d

u− 1
, X + k2 =

v(1 + d(uv − u− v))

u(u− 1)
,

X + k2 + k = (k + 1)
vd− 1

u− 1
,

Y + (k2 − 1)x = (k + 1)
d(vd− 1)v

u(u− 1)
.

The zero section Ok corresponds to the component Θ1,1, the section
(2A) gives a two-torsion section T = (X = −k2, Y = 0), the section
(5A) corresponds to Pk = (X = Y = −k − k2).

We draw graphs (Figure 1) of reducible fibers of type I10, I
∗
2 and I3

at k = ∞, 0,−1; we also draw on the graphs some sections (0k, T, Pk)
from the fibration of parameter k.
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..
Θ∞,4

.
Θ∞,5

.
Θ∞,6

.
Θ∞,0

.
Θ∞,1

.

(A)

.
Θ∞,2

.
(4A)

.
Θ0,1

.
Θ0,2

. k = ∞.

Θ1,5

.

Θ1,0

.

Θ1,6

.

Θ0,5

.

(6A)

.

Θ0,6

.

k = 0

.

Θ0,4

.

Θ1,2

.

Θ1,3

.

Γ

.

k = −1

.

Θ1,1

.

= 0k

.

T = (2A)

.

Pk = (5A)

.

(3A)

Figure 1. Fibration of parameter k.

9.2. A first set.

9.2.1. Fibration of parameter w. Let w− and w+ be the two divisors
of types I13 and I6

w− = (A) + Θ1,1 +Θ1,0 +Θ1,6 + (6A) + Θ0,5

+Θ0,4 + (2A) + Θ∞,1 +Θ∞,2 + (4A) + Θ0,1 +Θ0,2

w+ = (5A) + Θ∞,6 +Θ∞,5 + (3A) + Θ1,3 + Γ.

The horizontal divisor of w+ − w− is (5A) + (3A) − (2A) − Θ1,1

= Pk + (3A)− T −Ok and corresponds to the horizontal divisor of the
function

w0 =
Y + (k2 − 1)x

x
.

Considering the previous list of divisors and the divisor of k+1, we can
choose w = (w0)/k. Using the transformation Z = (x− k2)/x, we get
an equation of bidegree 2 in Z and k. After transformation, we obtain
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the following Weierstrass equation

(9.4) y′
2
+ (w2 − w + 1)y′x′ − wy′ = x′

2
(x′ − w).

9.2.2. Fibration of parameter a. We consider the two divisors of types
I11 and III∗

a+ = Γ +Θ1,3 + (3A) + Θ0,6 +Θ0,5 +Θ0,4 + (2A) + Θ∞,1 +Θ∞,0

+Θ∞,6 + (5A)

a− = (4A) + 2Θ0,1 + 3Θ0,2 + 4 (A) + 3Θ1,1 + 2Θ1,0 +Θ1,6 + 2Θ∞,4

The horizontal divisor of a+ is δ1 = (3A) + T + Pk, the horizontal
divisor of a− is δ2 = 3Θ1,1 and δ1 − δ2 is the horizontal divisor of the
function a0 equal to Y − (k+1)x = y. From the equation in k, x, y, we
can calculate the divisor of a0, then, choosing a = (a0/k

2), we obtain
a function with divisor a+ − a− and

(9.5) a =
(du− 1) (dv − 1) (d− 2 + u)

(u− 1)
2
(d− 1)

2 .

..
Θ∞,5

.
Θ∞,6

.
Θ∞,1

.

(A)

.
Θ∞,2

.
(4A)

.
Θ0,1

.
Θ0,2

.

Θ1,0

.

Θ1,6

.

Θ0,5

.

(6A)

.

k = 0

.

Θ0,4

.

Θ1,3

.

Γ

.

k = −1

.

Θ1,1

.

(2A)

.

(5A)

.

(3A)

Figure 2. Fibration of parameter w.
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..
Θ∞,4

.
Θ∞,6

.
Θ∞,0

.
Θ∞,1

.

(A)

.
(4A)

.
Θ0,1

.
Θ0,2

. k = ∞.

Θ1,0

.

Θ1,6

.

Θ0,5

.

(6A)

.

Θ0,6

.

Θ0,4

.

Θ1,3

.

Γ

.

Θ1,1

.

T

.

Pk

.

(3A)

Figure 3. Fibration of parameter a.

Then, we have the equation

a20 + k(k + 1)a0x = x(x+ k)
(
x− k2

)
.

Setting k2z = x and k = 1/(zQ) follows an equation of bidegree 2 in z
and Q. After classical transformations

X ′ =
(x+ k)

k2
, Y ′ =

(x+ k)a

kx
,

then, we obtain

Y ′2 +
a+ 1

a
Y ′X ′ + Y ′ = X ′(X ′2 −X ′ − a),

or also, with y′ = (Y ′/a3), x′ = (X ′/a2),

(9.6) y′2 + (a+ 1) y′x′ + a3y′ = x
(
x′2 − a2x− a5

)
.

Moreover, we can compute the divisors of X ′ and Y ′ since we have the
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formulas

X ′ =
(d− 2 + u)(dv − 1)

(d− 1)2
(9.7)

Y ′ =
(d− 2 + u)

2
(dv − 1)u(v − 1)

(d− 1)
3
v (u− 1)

.(9.8)

So we can deduce that the 0 section (= 0a) of the fibration of parameter
a is (6A) and that Θ1,4 corresponds to Pa = (x′ = 0, y′ = 0) and
−Pa = (0,−a3).

9.3. An elliptic divisor and a part of another elliptic divisor.
In the following example, to determine the elliptic parameter, we use
the fact that an elliptic curve has no function with a single simple pole.

9.3.1. Fibration of parameter b. Let b− be the effective divisor

Θ0,1 + (4A) + Θ∞,2 +Θ∞,1 +Θ∞,0 +Θ∞,6 +Θ∞,5 +Θ∞,4

+ (A) + Θ1,1 +Θ1,0 +Θ1,6 + (6A) + Θ0,5 +Θ0,6 +Θ0,0,

which represents a singular fiber of type I16 of a fibration of parame-
ter b. The horizontal divisor of b− is Θ1,1+Θ0,0 = 0k+(Pk+T ). We see
on the graph that Θ0,3 · b− = 0, so the component Θ0,3 = (−2Pk + T )
is part of another singular fiber of this new fibration. There is a
unique function (up to constant in C(k)) on E(C(k)) with divisor
−0k − (Pk + T ) + (−2Pk + T ) + (3Pk). This function b0 is equal to
(Y + (k − 1)X + k4 − k2)/X, and so b is equal to b0k

r. At k = ∞,
we have a singular fiber of type I10. Let K = 1/k, Y = (Y1/K

6) and
X = (X1/K

4). Then b0 = (Y1 −X1(K −K2) +K2 −K4)/(K2X1).
We must have a simple pole at Θ∞,4; the component is obtained after
blowing X1 = KX2, Y1 = KY2, so b = b0K, r = −1 and

b =
Y + (k − 1)X + k4 − k2

Xk
.

We eliminate Y between the Weierstrass equation in Y,X and the
definition of b. Setting X = k2U , we get an equation in k and U
of bidegree 2. After transformation, we obtain a Weierstrass form

Y 2 − b(b− 3)Y X = X(X − 1)2.
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We see that there is a singular fiber at b = 0 of type I2 with components
the two sections (−2Pk+T ) and (3Pk), since the two sections (−2Pk+
T ) and (3Pk) are intersecting in k = 1/2.

We also find

b =
(du− 1) (dv − 1) (uv − u− v + d) (−u− v + 2uv)

(u− 1)
2
d (v − 1)

2
(d− 1)uv

.

9.3.2. Fibration of parameter p. Let us define the divisor p− corre-
sponding to a singular fiber of type I∗5

p− = Θ1,5 +Θ1,0 + 2Θ1,6 + 2(6A) + 2Θ0,5 + 2Θ0,6 + 2(3A) + 2Θ∞,5

+Θ∞,4 +Θ∞,6.

The divisor

R2 = Θ1,2 + (2A) + Θ∞,1 +Θ∞,2 + (4A) + Θ0,1 +Θ0,2 +Θ0,3

is orthogonal to p− and is a part of another singular fiber.

The horizontal divisor of −p−+R2 is −2(3A)+(2A)+Θ0,3 and thus
is equal to −2(−Pk + T ) + T + (−2Pk + T ). It is the horizontal divisor
of the function

p0 =
(−k2Y +

(
X + k2 + k3

) (
k2 +X

)
)

X2
.

We can choose p = p0k
r(k + 1)s. As for b at k = ∞, we get r = −1,

and p must have a zero on Θ1,2 so s = 1. Therefore,

p =
(k + 1)(−k2Y +

(
X + k2 + k3

) (
k2 +X

)
)

kX2

is a parameter of a new fibration with a singular fiber of type I∗5 and
another of type I9.

We obtain the following Weierstrass equation

y21 +

(
1 +

1

p

)
y1x1 −

1

p
= x21(x1 + (p− 1)).

Note that

p =
(dv − 1) (du− 1)

2
(−u− v + 2uv)

(u− 1)
2
(d− 1) d2 (v − 1)

2
uv

.
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9.4. Fibrations in families of K3 surfaces. Our K3 surface is also
obtained by specializing the parameter of two families of K3 surfaces.
Each of these families has an elliptic fibration valid for all members of
the family (see also [2, 3, 7]). Let K be a parameter.

We start with the first family

(SK) y2 = x3 + (t+
1

t
+K)x2 + x

with singular fibers in general of type 2I∗4 , 4I1, a two-torsion point and
two points of abscissae (x = −t3, x = −t). We can verify that n = x/t
is an elliptic parameter of a new fibration with singular fibers 2III∗, I4,
a two-torsion section and equation

Y 2 = X3 +KX2 +
(n+ 1)

2

n
X.

From [8], the case we are interested in is K = 9/4 (see also Table 3).

From SK , we can recover the fibration of parameter b with b′ = y/x
and b = b′ − 3/2. The two singular fibers of type I∗4 , the 0-section and
the two-torsion section give in the new fibration a singular fiber of type
I16. A Weierstrass equation for this fibration is

y′2 + (b′2 −K)y′x′ = x′(x′ − 1)2.

If K is a square, K = j2, we can recover a fibration with one fiber of
type IV ∗ and one of type I12. The Weierstrass equation of the fibration
of parameter n can be transformed in

y′′2 − 2j n y′′x′′ = x′′3 − (n+ 1)2n3x′′,

and then with a new parameter equal to y′′/(x′′(n+ 1)) we can recover
for K = 9/4 the fibration of parameter m of [8].

9.4.1. Fibration of parameter q. From the fibration of parameter n
and the Weierstrass equation

Y 2 = X3 +X2K +
(n+ 1)2

n
X,

define X = q as a new parameter. This corresponds to an elliptic
fibration with two singular fibers of type I∗8 , I

∗
1 and equation

y2 = x3 + q(Kq + 2 + q2)x2 + q2x.
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For K = 9/4, we obtain the result for our modular surface.

9.4.2. Fibration of parameter l. From the fibration of parameter n
and Weierstrass equation

Y 2 = X3 +X2K +
(n+ 1)2

n
X,

let l = X/n be a new parameter. Then we have an elliptic fibration
with two singular fibers of types I∗5 and II∗ of equation

y2 = x3 +

(
1

l
+K

)
x2 + 2x+ l.

For K = 9/4, we obtain the result for our modular surface.

9.4.3. Fibration of parameter o. Let K ′ be a parameter, we look at
the second family of elliptic K3 surfaces

(S′
K′) Y 2 = X3 +K ′X2 +

h2 − 2h+ 1

h
.

Our K3 surface corresponds to K ′ = −15/4 (cf., Table 3). This
elliptic surface has two singular fibers of type II∗, at h = 0, h = ∞
and a singular fiber of type I2. Taking X to be a new parameter, we
get an elliptic fibration with two singular fibers of types I∗12, I2 and
equation

y2 = x3 + (o3 +K ′o2 − 2)x2 + x.

For K ′ = −(15)/4, we have a new fibration of our modular surface.

9.4.4. Fibration of parameter f . Starting with the fibration of param-
eter o

y2 = x3 + (o3 +K ′o2 − 2)x2 + x,

we take f = y/xo as a new parameter. Using the transformations

x = Y ′, o =
1− Y ′

X ′ ,

we obtain a new fibration with Weierstrass equation

Y ′2 + (−K ′ + f2)X ′Y ′ − Y ′ = X3.
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For K ′ = −15/4, we have a new fibration of our modular surface with
one singular fiber of type I18 and six singular fibers of type I1.

9.5. The two last fibrations. From now on, the terms ‘horizontal’
and ‘vertical’ refer to the fibration of parameter a.

..

(4A)

.

Θ0,1

.

(A)

.

Θ0,2

.

Θ1,1

.

Θ1,0

.

Θ1,6

.

a = ∞

.

Θ∞,4

.

(3A)

.

Θ1,3

.

Γ

.

(5A)

.

Θ∞,6

.

Θ∞,0

.

Θ∞,1

.

(2A)

.

Θ0,4

.

Θ0,5

.

a = 0

.

Θ0,6

.

0a = (6A)

.

Pa = Θ1,4

Figure 4. From fibration of parameter a to fibration of parameter g.

9.5.1. Fibration of parameter g. Let

g− = (4A) + Θ0,1 +Θ0,2 + (A) + Θ1,1 +Θ1,0 +Θ1,6 + (6A)

+ Θ0,5 +Θ0,4 + (2A) + Θ∞,1 +Θ∞,0 +Θ∞,6 + (5A)

+ Γ + Θ1,3 +Θ1,4.

This divisor corresponds to a singular fiber of type I18. The horizontal
divisor of g− is equal to (6A) + Θ1,4 = 0a + Pa. No component of the
Coxeter graph is in the orthogonal of g−. From previous computations
and equation (9.6) we see we can choose as parameter for this new
fibration g = (y′ + a3)/(ax′)+ sa+ r/a, with (r, s) ∈ C2. First we look
at the singular fiber of type I11 at a = 0 to determine r
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Using the three blow ups x′ = aX1, y
′ = aY1; x′ = a2X2,

y′ = a2Y2 and x′ = a3(−1 + X3) , y′ = a3Y3 in the equation (9.6),
we determine that the section −Pa intersects Θ∞,1. So, the component
Θ∞,1 corresponds to Y3 +X3 ≡ 0 mod a.

The component Θ0,6 corresponds to x′ = aX1 and y′ = aY1 with
Y1 ≡ 0 mod a, so (y′ + a3)/(x′a) has no pole on this component and
then r = 0.

We look now at the singular fiber of type III∗ at a = ∞ to determine
s. Let a = 1/ã, x′ = x/ã4, y′ = y/ã6. The equation becomes

(9.9) y2 + ã (ã+ 1) yx+ ã3y = x
(
x2 − ã2x− ã3

)
.

The function (y′ + a3)/(ax′) + sa is then equal to (y + ã3)/(ãx) + s/ã.
The components Θ1,6 and (4A) obtained after blowing up x = ãx1, y =
ãy1 correspond to Y 2

1 Z1 ≡ 0 mod ã with x1 = (X1/Z1), y1 = (Y1/Z1)
and are simple poles of the function (y + ã3)/(ãx).

We need to choose s such that the component Θ∞,4 is not a pole
for y + ã3ãx+ s/ã. An easy way is to calculate divisors of y/(ãx) and
ã3/(ãx) from X ′ and Y ′ using u, v (9.7) and (9.5). We can see that
Θ∞,4 is not a pole for y/(ãx) and neither for ã3/(ãx), so s = 0 and

g =
y + ã3

ãx
=
y′ + a3

ax′
.

If Y ′′ = X ′a and X ′′ = a, we have the Weierstrass equation for this
new fibration

(9.10) Y ′′2 − (g2 + g + 1)X ′′Y ′′ − gY ′′ = X ′′3 − (g + 1)X ′′2 +X ′′.

9.5.2. Fibration of parameter e. In Figure 5, we surround a singular
fiber of type I∗13 corresponding to a divisor e−.

e− = (3A) + Θ1,4+

2(Θ1,3 + Γ + (5A) + Θ∞,6 +Θ∞,0 +Θ∞,1 + (2A)

+ Θ0,4 +Θ0,5 + (6A) + Θ1,6 +Θ1,0 +Θ1,1 + (A))

+ Θ0,2 +Θ∞,4.
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We see the horizontal divisor of e− is Pa + 20a, so we can choose a
parameter e of the type (y′ + a3)/(a2x′)+ s(x/a2)+ma2+ ta+ r/a2+
w/a.

As seen above, the two functions (y′ + a3)/(a2x′) and x/a2 have
simple poles on Θ0,6, so r = 0. On this component y′ = a2X2

1 mod a2

and x′ = aX1, so w = 0 and s = −1. Using again the previous results
for Θ∞,4 obtained for g, we see that x/a2 has a simple pole at Θ∞,4

and then m = 0.

Using (9.7) and the transformation (u, v) 7→ (X ,Y), we can prove
the section (4A) is not a pole for [(y′ + a3)/(a2x′)]−x/a2, so t = 0 and

e =
y′ + a3

a2x′
− x

a2

is a parameter for the last fibration. Notice that we also have e =
(Y ′′ − g)/X ′′. Letting X ′′ = z+(g/e), we have an equation of bidegree

..

(4A)

.

Θ1,6

.

Θ∞,4

.

(3A)

.

Θ1,3

.

Γ

.

(5A)

.

Θ∞,6

.

Θ∞,0

.

Θ∞,1

.

(2A)

.

Θ0,4

.

Θ0,5

.

Θ0,6

.

0a = (6A)

.

Pa = Θ1,4

Figure 5. From fibration of parameter a to fibration of parameter e.
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2 in g, z. With usual transformation we obtain a Weierstrass equation
(9.11)

Y 2+

(
(e+ 2) (e− 1)X

e
+1

)
Y =

(
X+

e− 1

e2

)(
X2−e

(
e2+e+1

)
X−e2

)
.

Table 3. Previous results from [8].

Weierstrass Equation Singular fibers Torsion tor. generator x-coord
Rank inf. generator x-coord

y2+(1+d−d2)yx Z/7Z 0

+(d2−d3)y 3I7, 3I1
= x3+(d2−d3)x2 0 –

y2+vyx−(v−1)2v2y 2I∗1 , I8, 2I1 Z/4Z 0

= x3−(v−1)2vx2 1 −v(v − 1)

y2+k(k+1)yx I10, I∗2 , I3, 3I1 Z/2Z 0
=x(x+k)(x−k2) 1 −k

y2−m(m−3)yx I12, IV ∗, 4I1 Z/3Z 0
+m2y=x3 1 −m+ 1

y2+syx 0 –
+s3 (1− s) y IV ∗, I5, I∗3 , 2I1

=x3+s(1−s)x2 1 0

y2+
(
2t2+t+2

)
yx 2I∗4 , 4I1 Z/2Z 0

=x(x−1)(x−t4) 2 1,−t3

y2−(r2−r+1)yx 2I9, I2, 4I1 Z/3Z 0
+r3y=x3 1 r

y2=x3+ 9
4
n2x2 2III∗, I4, 2I1 Z/2Z 0

+(n+1)2 n3x 1 n3 (n+ 1)

y2=x3− 15
4
x2h2 2II∗, I2, 2I1 0 –

+(h− 1)2h5 1 1
9
(h−1)2

(
h2−7h+1

)
y2=x3+c

(
− 15

4
c+1

)
x2 III∗, I∗6 , 3I1 Z/2Z 0

−c5x 1 − c(2c−1)2

(c+1)2

All the results are summarized in Tables 3 and 4. For each fibration,
x-coordinate of torsion points and generators of Mordell-Weil group
are given in the last column. Most of the points are obtained from
transformations giving the Weierstrass equations; the others follow
from a direct calculation. Using results of [18] or [16, Section 11],
we calculate the heights of these points and deduce they are generators
since the discriminant of NS(S) is 7.
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Table 4. Other fibrations.

Weierstrass Equation Singular fibers Torsion tor. generator x-coord
Rank inf. generator x-coord

y2+(w2−w+1)yx−wy I13, I6, 5I1 0 –
= x3 − wx2 1 0

y2 + (a+ 1)yx+ a3y I11, III∗, 4I1 0 –
= x(x2 − a2x− a5) 1 0

y2 − b(b− 3)yx I16, 2I2, 4I1 1 1

= x(x− 1)2 Z/4Z (b− 1)2

y2 + (p+ 1)yx− p2y I∗5 , I9, 4I1 0 –
= x3 + p2(p− 1)x2 1 0

y2 = x3+q(q2+ 9
4
q+2)x2 I∗8 , I

∗
1 , 3I1 1 −q(q + 1)2

+q2x

y2 = x3 + l(1 + 9
4
l)x2 II∗, I∗5 , 3I1 0 –

+2l4x+ l7 1 l3(l− 1)

y2=x3+(o3− 15
4
o2−2)x2 I∗12, I2, 4I1 Z/2Z 0

+x 1 1
9
(o−1)2(o−3)2

y2+( 15
4
+f2)yx−y = x3 I18, 6I1 Z/3Z 0

1 4
(4f2−9)

(4f2+3)2

y2 + (g2 + g + 1)yx+ gy I18, 6I1 0 –

= x(x2 − (g + 1)x− 1) 1 0

y2=x3− 1
4
(e+1) 0 –

(4e2−e+3)x2 I∗13, 5I1
+1

2
(−4e2+e+1)x+ 5

4
−e 1 − e−1

e2
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