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COMPUTATION OF FIXED POINT INDEX
AND ITS APPLICATIONS

HUI XING AND JINGXIAN SUN

ABSTRACT. In this paper, we make the nonlinear double
integral equation of Hammerstein type the background of the
research. Computation for the fixed point index of operators
such as A = K1F1K2F2 is given. As applications of the main
results, we investigate the existence of positive solutions to
the nonlinear double integral equation of Hammerstein type
and the boundary value problem for the system of elliptic
partial differential equations.

1. Introduction. Let E be a real Banach space with norm ∥·∥, and
let P ⊂ E be a cone of E. We define a partial ordering ≤ with respect
to P by x ≤ y if and only if y − x ∈ P . P is said to be normal if there
exists a positive constant N such that θ ≤ x ≤ y implies ∥x∥ ≤ N∥y∥,
where θ represents the zero element in E and the smallest N is called
the normal constant of P . P is called solid if it contains interior points,
i.e., P ̸= ∅. For the concepts and the properties about the cone we refer
to [2, 4, 17].

In this paper, we make the nonlinear double integral equation
of Hammerstein type as the background of the research and study
the computation of the fixed point index of the operators such as
A = K1F1K2F2 more systematically. As an application, the following
nonlinear double integral equation of Hammerstein type

(1.1) u(x) =

∫ 1

0

k1(x, y)f1

(
y,

∫ 1

0

k2(y, z)f2(z, u(z)) dz

)
dy,
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is investigated, where fi(x, u) : [0, 1] × [0,+∞) → [0,+∞), ki(x, y) :
[0, 1] × [0, 1] → [0,+∞), i = 1, 2. The theory of the fixed point in-
dex is one of the main methods in studying the existence of solutions
to the nonlinear operator equation. The study of the nonlinear Ham-
merstein integral equations was initiated by Hammerstein [7] in 1929.
Subsequently, a great number of papers dealing with the existence of
nontrivial solutions of Hammerstein integral equations have been pub-
lished, see for example, [9, 10, 18, 19, 20] and the references therein.
Yang and O’Regan [20] studied a system of nonlinear Hammerstein
integral equations:

(1.2)


u(x) =

∫ 1

0

k(x, y)f(y, u(y), v(y))dy,

v(x) =

∫ 1

0

k(x, y)g(y, u(y), v(y))dy.

The existence of positive solutions of (1.2) was obtained by using
topological methods and cone theory. Generally speaking, in order
to compute the fixed point index we usually change the systems of
differential equations into the nonlinear double integral equation of
Hammerstein type, see [8, 14].

In this paper, broader results are obtained when the nonlinear
operator is controlled by α homogeneous operator (which is broader
than the linear operator). To the best of our knowledge the papers
dealing with (1.1) are few when the nonlinear operator is controlled
by the α homogeneous operator. Many authors studied computation
for the fixed point index when the nonlinear operator is controlled by
the homogeneous operator or the linear operator [5, 8, 11], which
is different from the results of this paper. Motivated by the work
[5, 7, 8, 11, 14, 15, 18, 3, 19, 20], we obtained the results of this
paper.

The organization of this paper is as follows. In Section 2, some
useful preliminaries are presented. In Section 3, we give the results
of computation of the fixed point index of the operators such as
A = K1F1K2F2 more systematically. In Sections 4 and 5, we use the
main results of Section 3 to establish the existence of positive solutions
to the nonlinear double integral equation of Hammerstein type and the
positive solutions of the system of elliptic partial differential equations.
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2. Preliminaries. Suppose that X is a retract in Banach space E
and U is a bounded open set in X. Let A : U → X be a completely
continuous operator, which has no fixed point on ∂U (the boundary
of U with respect to X). Then we can define the fixed point index
i(A,U,X) of A over U with respect to X. (For example, every closed
convex subset is a retract.) One can refer to [4] for the definition and
properties of i(A,U,X).

2.1. Definitions.

Definition 2.1. [13]. Let P be a solid cone of E. The operator
A : P → P is a positive α homogeneous operator, if A satisfies
A(tx) = tαAx, for any t > 0 and α ∈ R+. In particular, when α = 1,
the operator A is called homogeneous operator.

Definition 2.2. [1]. Let P be a cone of E. The operator T : E → E
is called e-positive if there exists an element e ∈ P \ {θ}, such that, for
every u ∈ P \ {θ}, there are numbers α = α(u), β = β(u) > 0, such
that

αe < Tu < βe.

2.2. Lemmas.

Lemma 2.3. [12]. Let a, b be real numbers. Then

(i) |a+ b|µ ≤ |a|µ + |b|µ, for 0 ≤ µ ≤ 1;
(ii) |a+ b|µ ≤ 2µ−1(|a|µ + |b|µ), for µ > 1.

Lemma 2.4. [17]. Let Ω be a bounded open set of E with θ ∈ Ω.
Assume that A : P ∩ Ω → P is a completely continuous operator
satisfying

Ax ̸= µx, x ∈ P ∩ ∂Ω, µ ≥ 1.

Then we have i(A,Ω ∩ P, P ) = 1.

Lemma 2.5. [6]. Let Ω ⊂ E be a bounded open set with θ ∈ Ω.
Suppose A : Ω ∩ P → P is a completely continuous operator and has
no fixed points on ∂Ω ∩ P . If ∥Aw∥ ≤ ∥w∥, for all w ∈ ∂Ω ∩ P , then
i(A,Ω ∩ P, P ) = 1.
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Lemma 2.6. [17]. Suppose that A : P ∩ Ω → P is a completely
continuous operator. If there exist u∗ ∈ P and u∗ ̸= θ such that

x−Ax ̸= λu∗, x ∈ P ∩ ∂Ω, λ ≥ 0,

then we have i(A,Ω ∩ P, P ) = 0.

Lemma 2.7. [20]. If p : R+ → R+ is concave, then p(a + b) ≤
p(a) + p(b), for a ∈ R+ and b ∈ R+.

3. Main results. In order to compute the fixed point index of
operators such as A = K1F1K2F2, here we list the hypotheses to be
used later:

(H) LetK1,K2 : P → P be positive linear operators, F1, F2 : P → P
nonlinear operators, and A = K1F1K2F2 a completely continuous
operator.

Theorem 3.1. Assume that condition (H) holds. Let P be a normal
cone in E, the normal constant of P equal to 1. Suppose that G1 :
P → P is a positive α homogeneous increasing operator with 0 < α ≤ 1
and G2 : P → P is a positive β homogeneous increasing operator with
0 < αβ ≤ 1. If there exists wi > θ, i = 1, 2, such that :

(i) Fix ≤ Gix+ wi, for all x ∈ P ;
(ii) G1(x+ y) ≤ G1x+G1y, for all x, y ∈ P ;
(iii) C = K1G1K2G2, and for all x ∈ P\{θ},

(3.1) sup
∥x∥=1

∥Cx∥ <

{
∞, 0 < αβ < 1,
1, αβ = 1,

then i(A,P ∩ TR, P ) = 1, where TR = {x ∈ E : ∥x∥ ≤ R} for
sufficiently large R.

Remark. Let TR = {x ∈ E : ∥x∥ ≤ R} be a closed ball of center θ
and radius R. For sufficiently large R ≥ R0, Theorem 3.1 holds, where
R0 is defined in the following proof.
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Proof. By Definition 2.1, we have G1(tx) = tαG1x, G2(tx) = tβG2x,
and

C(tx) = K1G1K2G2(tx) = K1G1K2t
βG2x

= K1G1t
β(K2G2x) = K1(t

β)αG1K2G2x

= (tβ)αK1G1K2G2x = tαβK1G1K2G2x

= tαβCx.

(3.2)

When 0 < αβ < 1, C is an αβ homogeneous operator. By condition
(iii), there exists a constant M such that sup∥x∥=1 ∥Cx∥/∥x∥ < M .

Letting 0 < δ < min{1,M}, we have M/δ > 1. For sufficiently large
t > (M/δ)1/(1−αβ), by (3.2), we have

(3.3) sup
∥x∥=1

∥Ctx∥
∥tx∥

= tαβ−1 · sup
∥x∥=1

∥Cx∥
∥x∥

< tαβ−1 ·M < δ.

Letting u = tx in (3.3), when t is large enough, we have

(3.4) sup
u∈P\{θ}

∥Cu∥
∥u∥

< δ.

When αβ = 1, C is a homogeneous operator. By condition (iii), we
have sup∥x∥=1 ∥Cx∥/∥x∥ < 1. It follows from (3.2) that

(3.5) sup
∥x∥=1

∥Csx∥
∥sx∥

= sup
∥x∥=1

s∥Cx∥
s∥x∥

< 1.

In (3.5), when s is large enough, letting u = sx, then

(3.6) sup
u∈P\{θ}

∥Cu∥
∥u∥

< 1.

By conditions (i), (ii) and (iii), we have

Ax = K1F1K2F2x ≤ K1G1K2F2x+K1w1

≤ K1G1K2(G2x+ w2) +K1w1

= K1G1(K2G2x+K2w2) +K1w1

≤ K1G1K2G2x+K1G1K2w2 +K1w1

= Cx+ w0,

(3.7)
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where w0 = K1G1K2w2 +K1w1. Select

R0 >
∥w0∥
1− δ

.

Let
TR0 = {x ∈ E : ∥x∥ < R0}.

Set H(t, u) = u− tAu. Next, we prove

(3.8) H(t, u) = u− tAu ̸= θ, for all t ∈ [0, 1], u ∈ ∂TR0 ∩ P.

Assume on the contrary that there exists a u0 ∈ ∂TR0 ∩ P with
∥u0∥ = R0 and t0 ∈ [0, 1] such that u0 − t0Au0 = θ. For 0 < αβ < 1,
by (3.7), we have

(3.9) u0 ≤ t0Cu0 + t0w0 ≤ Cu0 + w0,

since P is the normal cone with normal constant 1. By (3.4) and (3.9),
we have

(3.10) ∥u0∥ ≤ ∥Cu0∥+ ∥w0∥ ≤ δ∥u0∥+ ∥w0∥.

By (3.10), we have ∥u0∥ ≤ ∥w0∥/(1− δ), which contradicts ∥u0∥ =
R0 > ∥w0∥/(1− δ). By Lemma 2.4, for sufficiently large R > R0, we
have i(A,P ∩TR, P ) = 1. When αβ = 1, since P is a normal cone with
the normal constant 1, by (3.6) and (3.7), we have

∥Au∥ ≤ ∥Cu∥+ ∥w0∥ ≤ ∥u∥.

For sufficiently large R ≥ ∥u∥ ≥ ∥Au∥, by Lemma 2.5, we have
i(A,P ∩ TR, P ) = 1. The proof has been completed. �

Corollary 3.2. Let P be a normal cone of E, the normal constant of
P equal to 1 and A : P → P a completely continuous operator. If there
exists a positive α homogeneous increasing operator B : P → P with
0 < α ≤ 1 and there exists u0 ∈ P such that :

(i) Ax ≤ Bx+ u0, for all x ∈ P ;
(ii) for all x ∈ P\{θ},

(3.11) sup
∥x∥=1

∥Bx∥ <

{
∞, 0 < αβ < 1,
1, αβ = 1,
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then i(A,P∩TR, P ) = 1, where TR = {x ∈ E : ∥x∥ ≤ R} for sufficiently
large R.

Proof. In the proof of Theorem 3.1, set C = B, w0 = u0, which
completes the proof. �

Theorem 3.3. Assume that condition (H) holds and the operator A
has no fixed point on P ∩∂Tr for r > 0, where Tr = {x ∈ E : ∥x∥ ≤ r}.
Suppose that G1 : P → P is a positive α homogeneous increasing
operator and G2 : P → P is a positive β homogeneous increasing
operator such that:

(i) Fix ≥ Gix, i = 1, 2, for all x ∈ P ∩ T r;
(ii) for αβ ∈ (0, 1), there exist u∗ ∈ P\{θ} and a real number δ > 0

such that Cu∗ ≥ δu∗, where C = K1G1K2G2,

then i(A,P ∩ Tr, P ) = 0 for sufficiently small r.

Remark. Let Tr = {x ∈ E : ∥x∥ ≤ r} be a closed ball of center θ
and radius r. For 0 < r ≤ r0, Theorem 3.3 holds, where r0 is introduced
in the following proof.

Proof. We divide the proof into two steps.

Step 1: It follows from (3.2) that C is a positive αβ homogeneous
operator. By conditions (i) and (ii), we have

(3.12) Ax = K1F1K2F2x ≥ K1F1K2G2x ≥ K1G1K2G2x = Cx.

Step 2: By condition (ii), when αβ < 1, Cu∗ ≥ δu∗. When
0 < δ < 1, δ1/(1−αβ) < 1 is obvious. Let 0 < t < δ1/(1−αβ), we
have Ctu∗ = tαβCu∗ ≥ tαβδu∗ ≥ tu∗. Setting tu∗ = v∗, we have
Cv∗ ≥ v∗. When δ ≥ 1, we have Cu∗ ≥ δu∗ ≥ u∗. Setting u∗ = v∗,
we have Cv∗ ≥ v∗. Since u∗ ∈ P\{θ}, when δ > 0, there exists a
v∗ ∈ P\{θ} such that Cv∗ ≥ v∗. Letting D = {u ∈ E : u ≥ v∗}, we
have d = d(θ,D) > 0. When 0 < r0 < d, for x ∈ P , ∥x∥ ≤ r0, we have
that x /∈ D and x ̸≥ v∗. Let Tr0 = {x ∈ E : ∥x∥ ≤ r0}. Next, we prove

(3.13) x−Ax ̸= λv∗, for all x ∈ P ∩ ∂Tr0 , λ ≥ 0.
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We assume on the contrary that there exists x0 ∈ P ∩∂Tr0 with λ0 > 0
(since A has no fixed point on P ∩ ∂Tr0), such that

(3.14) x0 −Ax0 = λ0v
∗.

By (3.14), we have x0 = Ax0+λ0v
∗ ≥ λ0v

∗. Setting λ∗ = sup{λ : x0 ≥
λv∗}, we have that λ∗ ≥ λ0 > 0 and x0 ≥ λ∗v∗. Since x0 ̸≥ v∗, we
have 0 < λ∗ < 1. By (3.12) and (3.14), we have x0 ≥ Ax0 ≥ Cx0. C is
an increasing operator, therefore, Cx0 ≥ Cλ∗v∗. Since C is a positive
αβ homogeneous operator and 0 < αβ < 1, we have

x0 = Ax0 + λ0v
∗ ≥ Cx0 + λ0v

∗

≥ Cλ∗v∗ + λ0v
∗ = (λ∗)αβCv∗ + λ0v

∗

≥ λ∗Cv∗ + λ0v
∗ ≥ λ∗v∗ + λ0v

∗

= (λ∗ + λ0)v
∗.

(3.15)

This contradicts the above definition of λ∗. For sufficiently small r such
that 0 < r < r0, we have i(A,P ∩ Tr, P ) = 0. �

Theorem 3.4. In Theorem 3.3, condition (ii) is substituted for the
following condition:

(ii
′
) for αβ = 1, there exists u∗ ∈ P\{θ} such that Cu∗ ≥ u∗, where
C = K1G1K2G2.

Then the conclusion of Theorem 3.3 still holds.

Proof. It follows from the proof of Theorem 3.3 that Ax ≥ Cx. By
condition (ii

′
), when αβ = 1, C is a positive homogeneous operator

with Cu∗ ≥ u∗. Let Tr = {x ∈ E : ∥x∥ ≤ r}. Next, we prove

(3.16) x−Ax ̸= λu∗, x ∈ P ∩ ∂Tr, λ ≥ 0.

By the same argument as Step 2 of the proof of Theorem 3.3, we have
i(A,P ∩ Tr, P ) = 0. �

Corollary 3.5. Let Ω be a bounded open set in E with θ ∈ Ω and
A : P ∩Ω → P a completely continuous operator. If there exist another
Banach space E1, a cone P1 in E1, a positive α homogeneous operator
B : P → P with 0 < α < 1, a linear operator N : P → P1, an
increasing operator L : P1 → P1 and a real number δ > 0 such that :
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(i) NAx ≥ NBx, for all x ∈ P ∩ Ω;
(ii) there exist u∗ ∈ P\{θ} and a non-negative integer n such that

NBnu∗ ≥ δNu∗, Nu∗ ̸= θ;
(iii) NBx ≡ LNx, for all x ∈ P ;
(iv) A has no fixed point on P ∩ ∂Tr.

Then i(A,P ∩Tr, P ) = 0, where Tr = {x ∈ E : ∥x∥ ≤ r} for sufficiently
small r.

Remark. Let Tr = {x ∈ E : ∥x∥ ≤ r} be a closed ball of center
θ and radius r. For sufficiently small r > 0 and r < r0, Theorem 3.3
holds, where r0 is introduced in the following proof.

Proof. Since B is a positive α (0 < α < 1) homogeneous operator, it
follows from 0 < δ < 1 that δ1/(1−αn) < 1. Setting 0 < t < δ1/(1−αn),
by condition (ii), we have

NBntu∗ = NBn−1tαBu∗

= NBn−2tα
2

B2u∗ = Ntα
n

Bnu∗

= tα
n

NBnu∗ ≥ tα
n

Nδu∗

≥ tNu∗ = Ntu∗.

(3.17)

Set tu∗ = v∗. By (3.17), we have NBnv∗ ≥ Nv∗. When δ ≥ 1,
NBnu∗ ≥ Nδu∗ ≥ Nu∗. Set u∗ = v∗, we have NBnv∗ ≥ Nv∗.
Since u∗ ∈ P\{θ}, when δ > 0, there exists v∗ ∈ P\{θ}, such that
NBnv∗ ≥ Nv∗. Let D = {u ∈ E : u ≥ v∗} and d = d(θ,D) > 0. When
0 < r0 < d, x ∈ P , ∥x∥ ≤ r0, we have that x /∈ D; hence, x ̸≥ v∗.

Next, we will prove

(3.18) x−Ax ̸= λv∗, for all x ∈ P ∩ ∂Tr0 , λ ≥ 0.

We assume on the contrary that there exist x0 ∈ P ∩ ∂Tr0 and λ0 > 0
(since A has no fixed point on P ∩ ∂Tr0) such that

(3.19) x0 −Ax0 = λ0v
∗.

By (3.19), we have Nx0 = NAx0 + λ0Nv∗ ≥ λ0Nv∗. Letting
λ∗ = sup{λ : Nx0 ≥ λNv∗}, it is evident that λ∗ ≥ λ0 > 0 and
Nx0 ≥ λ∗Nv∗. Since x0 ̸≥ v∗ and Nx0 ̸≥ Nv∗, we have 0 < λ∗ < 1.
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By condition (i) and (3.19), we have Nx0 ≥ NAx0 ≥ NBx0. By
condition (iii), we have

(3.20) NBx0 = LNx0 ≥ LNBx0 ≥ NB2x0.

For any non-negative integer i, by (3.20) we have NBix0 ≥ NBi+1x0.
Therefore, NBx0 ≥ NBnx0. By condition (iii), for x ∈ P , we have
NBnx = LnNx. Since B is a positive α homogeneous operator with
0 < α < 1, we have 0 < αn < 1 and NBnv∗ ≥ Nv∗. Hence, we have

Nx0 = NAx0 + λ0Nv∗ ≥ NBx0 + λ0Nv∗

≥ NBnx0 + λ0Nv∗ = LnNx0 + λ0Nv∗

≥ LnNλ∗v∗ + λ0Nv∗ = NBnλ∗ + λ0Nv∗

= (λ∗)α
n

NBnv∗ + λ0Nv∗ ≥ λ∗NBnv∗ + λ0Nv∗

≥ λ∗Nv∗ + λ0Nv∗ = (λ∗ + λ0)Nv∗.

(3.21)

This contradicts the above definition of λ∗. For sufficiently small r ≤ r0,
by Lemma 2.6, we have i(A,P ∩ Tr, P ) = 0. �

Corollary 3.6. Let Ω be a bounded open set in E with θ ∈ Ω and
A : P ∩ Ω → P a completely continuous operator. If there exist a
positive α homogeneous increasing operator B : P → P with 0 < α < 1,
u∗ ∈ P\{θ} and real number δ > 0 such that :

(i) Ax ≥ Bx, for all x ∈ P ∩ Ω;
(ii) Bu∗ ≥ δu∗;
(iii) A has no fixed points on P ∩ ∂Tr, where Tr = {x ∈ E : ∥x∥ ≤ r}.

Then i(A,P ∩ Tr, P ) = 0 for sufficiently small r.

Proof. In the proof of Theorem 3.3, let C = B, which completes the
proof. �

4. The application for the nonlinear double integral equa-
tion of Hammerstein type. Next, we use the main results of Sec-
tion 3 to study the nonlinear double integral equation of Hammerstein
type

(4.1) u(x) =

∫ 1

0

k1(x, y)f1

(
y,

∫ 1

0

k2(y, z)f2(z, u(z)) dz

)
dy = Au(x).
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Let E = C[0, 1], fi(x, u) : [0, 1] × [0,+∞) → [0,+∞), ki(x, y) :
[0, 1] × [0, 1] → [0,+∞), i = 1, 2. P = {u ∈ C[0, 1] : u(x) ≥ 0, for
all x ∈ [0, 1]}. Next we investigate the existence of the solution to
the nonlinear integral equation (4.1). For convenience, we make the
following assumptions:

(H1) There exist α ∈ (0, 1] and β ∈ (0,∞) satisfying αβ ∈ (0, 1),
a1(x) > 0, a2(x) > 0, b1(x) ≥ 0, b2(x) ≥ 0 and a1(x), a2(x), b1(x) and
b2(x) ∈ C[0, 1] such that

f1(x, u) ≤ a1(x)u
α + b1(x), for all x ∈ [0, 1], u ≥ 0,

f2(x, u) ≤ a2(x)u
β + b2(x), for all x ∈ [0, 1], u ≥ 0.

We define the Nemytskii operators G1, G2 : P → P , which are
determined by uα and uβ respectively, and

G1u
α(x) = g1(x, u

α(x)), x ∈ [0, 1],

G2u
β(x) = g2(x, u

β(x)), x ∈ [0, 1],

where g1, g2 : [0, 1]× [0,+∞) → [0,+∞).

(H2) There exist α1 ∈ (0,+∞), d1(x), d2(x) ∈ C[0, 1] and d1(x) ≥ 0,
d2(x) ≥ 0 such that

f1(x, u) ≥ d1(x)u
α1 , for all x ∈ [0, 1], 0 ≤ u ≤ s,

f2(x, u) ≥ d2(x)u
1/α1 , for all x ∈ [0, 1], 0 ≤ u ≤ r,

where r and s are sufficiently small positive constants with s ≤ r as
long as the operator A has no fixed point on P ∩ ∂Tr for r > 0, where
Tr = {x ∈ E : ∥x∥ ≤ r}.

(H3) There exist α2 ∈ (0,+∞), α2β2 ∈ (0, 1), m1(x), m2(x) ∈
C[0, 1] and continuous functions m1(x) ≥ 0 and m2(x) ≥ 0 such that

f1(x, u) ≥ m1(x)u
α2 , for all x ∈ [0, 1], 0 ≤ u ≤ s,

f2(x, u) ≥ m2(x)u
β2 , for all x ∈ [0, 1], 0 ≤ u ≤ r,

where r and s are sufficiently small positive constants, and 0 < s ≤
r < d = d(θ,D). Here D = {u ∈ E : u ≥ v∗ = v∗(α2, β2, δ, u

∗), v∗ ∈
P\{θ}} and δ, u∗ are defined in the following condition (H5).
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(H4) There exists u∗ ∈ P\{θ} such that B1u
∗ ≥ u∗, where B1 is a

homogeneous operator

B1u(x) =

∫ 1

0

k1(x, y)d1(y)

(∫ 1

0

k2(y, z)d2(z)u
1/α1(z) dz

)α1

dy.

(H5) There exists u∗ ∈ P\{θ} and real number δ > 0 such that
B2u

∗ ≥ δu∗, where B2 is a α2β2 homogeneous operator

B2u(x) =

∫ 1

0

k1(x, y)m1(y)

(∫ 1

0

k2(y, z)m2(z)u
β2(z)dz

)α2

dy.

Theorem 4.1. Suppose that (H1), (H2) and (H4) are satisfied. Then
equation (4.1) has at least one positive solution.

Proof. It is evident that A : P → P is completely continuous. We
divide the proof into the following two steps.

Step 1: By (H1), Lemma 2.3 (1) and Lemma 2.7, we have

Au(x) =

∫ 1

0

k1(x, y)f1

(
y,

∫ 1

0

k2(y, z)f2(z, u(z)) dz

)
dy

≤
∫ 1

0

k1(x, y)

(
a1(y)(

∫ 1

0

k2(y, z)f2(z, u(z))dz)
α + b1(y)

)
dy

=

∫ 1

0

k1(x, y)a1(y)

(∫ 1

0

k2(y, z)f2(z, u(z)) dz

)α

dy

+

∫ 1

0

k1(x, y)b1(y)) dy(4.2)

≤
∫ 1

0

k1(x, y)a1(y)

(∫ 1

0

k2(y, z)(a2(z)u
β(z) + b2(z)) dz

)α

dy

+

∫ 1

0

k1(x, y)b1(y) dy

=

∫ 1

0

k1(x, y)a1(y)

(∫ 1

0

k2(y, z)(a2(z)u
β(z) + b2(z)) dz

)α

dy

+

∫ 1

0

k1(x, y)b1(y) dy

≤
∫ 1

0

k1(x, y)a1(y)

(∫ 1

0

k2(y, z)a2(z)u
β(z) dz

)α

dy
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+

∫ 1

0

k1(x, y)a1(y)

(∫ 1

0

k2(y, z)b2(z) dz

)α

dy

+

∫ 1

0

k1(x, y)b1(y) dy

= Cu(x) + u0,

where

u0 =

∫ 1

0

k1(x, y)a1(y)

(∫ 1

0

k2(y, z)b2(z) dz

)α

dy+

∫ 1

0

k1(x, y)b1(y) dy,

C is an αβ homogeneous operator with the following form:

(4.3) Cu(x) =

∫ 1

0

k1(x, y)a1(y)

(∫ 1

0

k2(y, z)a2(z)u
β(z) dz

)α

dy,

and

G1(K2G2u(y) +K2w2) = a1(y)

(∫ 1

0

k2(y, z)(a2(z)u
β(z) + b2(z)) dz

)α

≤ a1(y)

(∫ 1

0

k2(y, z)a2(z)u
β(z) dz

)α

+ a1(y)

(∫ 1

0

k2(y, z)b2(z) dz

)α

= G1K2G2u(y) +G1K2w2.

(4.4)

By (4.3), we have

∥Cu∥ = max
x∈[0,1]

|Cu(x)|

= max
x∈[0,1]

∣∣∣∣ ∫ 1

0

k1(x, y)a1(y)

(∫ 1

0

k2(y, z)a2(z)u
β(z) dz

)α

dy

∣∣∣∣.
(4.5)

It is evident that sup∥u∥=1 ∥Cu∥ < +∞. It follows from (4.2), (4.4)

and (4.5) that conditions (i), (ii) and (iii) of Theorem 3.1 are satisfied.
Therefore, i(A,P ∩ TR, P ) = 1.

Step 2: By (H2), there exists r > 0, for 0 ≤ u ≤ r and every y ∈ [0, 1]

such that
∫ 1

0
k2(y, z)f2(z, u(z)) dz ≤ s and the operator A has no fixed
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point on P ∩ ∂Tr, we have

Au(x) =

∫ 1

0

k1(x, y)f1

(
y,

∫ 1

0

k2(y, z)f2(z, u(z)) dz

)
dy

≥
∫ 1

0

k1(x, y) d1(y)

(∫ 1

0

k2(y, z)f2(z, u(z)) dz

)α1

dy

≥
∫ 1

0

k1(x, y) d1(y)

(∫ 1

0

k2(y, z)d2(z)u
1/α1(z) dz

)α1

dy

= B1u(x),

(4.6)

where

B1u(x) =

∫ 1

0

k1(x, y) d1(y)

(∫ 1

0

k2(y, z)d2(z)u
1/α1(z) dz

)α1

dy.

It is evident that B1 is a homogeneous operator. By (4.6) and condition
(H4), the conditions of Theorem 3.4 are satisfied. Therefore, i(A,P ∩
Tr, P ) = 0. Applying the additivity of the fixed point index, we have

i(A, (TR\T r) ∩ P, P ) = i(A, TR ∩ P, P )− i(A, T r ∩ P, P ) = 1.

Hence, equation (4.1) has at least one positive solution. �

Theorem 4.2. Suppose that (H1), (H3) and (H5) are satisfied. Then
equation (4.1) has at least one positive solution.

Proof. We divide the proof into the following two steps.

Step 1: Step 1 of the proof of Theorem 4.1 still holds.

Step 2: By (H3) and (H5), there exist r > 0 and v∗ ∈ P\{θ}
for 0 ≤ u ≤ r < d = d(θ,D) and every y ∈ [0, 1] such that∫ 1

0
k2(y, z)f2(z, u(z)) dz ≤ s. We have

Au(x) =

∫ 1

0

k1(x, y)f1

(
y,

∫ 1

0

k2(y, z)f2(z, u(z)) dz

)
dy

≥
∫ 1

0

k1(x, y)m1(y)

(∫ 1

0

k2(y, z)f2(z, u(z)) dz

)α2

dy

≥
∫ 1

0

k1(x, y)m1(y)

(∫ 1

0

k2(y, z)m2(z)u
β2(z) dz

)α2

dy

= B2u(x).

(4.7)
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B2u(x) =

∫ 1

0

k1(x, y)m1(y)

(∫ 1

0

k2(y, z)m2u
β2(z) dz

)α2

dy.

B2 is an α2β2 homogeneous operator. By (4.7) and (H5), the conditions
of Theorem 3.3 are satisfied. Letting Tr = {x ∈ E : ∥x∥ ≤ r}, we have
i(A,P ∩ Tr, P ) = 0. Applying the additivity of the fixed point index,
we have

i(A, (TR\T r) ∩ P, P ) = i(A, TR ∩ P, P )− i(A, T r ∩ P, P ) = 1.

Hence, equation (4.1) has at least one positive solution. �

5. The application for the coupled system of elliptic partial
differential equations. We study the following system of elliptic
partial differential equations

(5.1)

 Lu = f(x, v) in Ω,
Lv = g(x, u) in Ω,
Bu = 0, Bv = 0 on ∂Ω,

where Ω is a bounded convex open domain in Rn and ∂Ω ∈ C2+µ with
0 < µ < 1, and L is a uniformly elliptic operator in Ω and defined as
follows:

Lu = −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u,

where aij(x) = aji(x), aij(x), bi(x), c(x) ∈ Cµ(Ω) and c(x) ≥ 0. There
exists a constant λ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ λ|ξ|2, for all x ∈ Ω,

where ξ = (ξ1, ξ2, . . . , ξn) ∈ Rn. B is the boundary operator and has
the following form:

Bu = b(x)u+ d
∂u

∂ν
,

where b(x) ∈ C1+µ(∂Ω) and ν ∈ C1+µ is an outward vector of ∂Ω, and
suppose that one of the following occurs:

(i) d = 0 and b(x) ≡ 1;

(ii) d = 1 and b(x) ≡ 0;
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(iii) d = 1 and b(x) > 0.

Let f(x, v) : Ω×R+ → R+ and g(x, u) : Ω×R+ → R+ be continuous,
f(x, 0) ≡ 0, g(x, 0) ≡ 0. We suppose that

(A1) lim
v→+∞

sup
x∈Ω

f(x, v)

vα
= 0, lim

u→+∞
sup
x∈Ω

g(x, u)

uβ
= 0,

(A2) lim
v→0+

inf
x∈Ω

f(x, v)

vα2
= ∞, lim

u→0+
inf
x∈Ω

g(x, u)

uβ2
= ∞,

where α and β are defined by (H1), α2 and β2 are defined by (H3) in
Section 4.

Remark 5.1. In order to study the existence of solutions of (5.1),
we consider the boundary value problem of the linear elliptic partial
differential equation

(5.2)

{
Lu(x) = v(x) x ∈ Ω,
Bu(x) = 0 x ∈ ∂Ω.

For every v ∈ Cµ(Ω), we denote by Kv the unique solution of the linear
boundary value problem (5.2). Let (Kv)(x) = uv(x), x ∈ Ω, where
K : Cµ(Ω) → C2+µ(Ω) is a linear completely continuous operator, for
details see [1]. For the nonlinear elliptic boundary value problem (5.1),
we define the Nemytskii operators

(F1v)(x) = f(x, v(x)), (F2u)(x) = g(x, u(x)), x ∈ Ω.

Remark 5.2. In Section 4, let E = C(Ω) and P = {u ∈ C(Ω) : u(x) ≥
0, for all x ∈ Ω}; Theorem 4.1 and Theorem 4.2 still hold.

Theorem 5.3. Suppose that the conditions (A1) and (A2) are satisfied.
Then (5.1) has at least one positive solution (u, v) ∈ C2(Ω)× C2(Ω).

Proof. It follows from Remark 5.1 that (u, v) ∈ C2(Ω) × C2(Ω) is
the solution of boundary value problem (5.1) if and only if (u, v) ∈
C(Ω)× C(Ω) is the solution of the system of integral equations

(5.3)


u(x) =

∫
Ω

k1(x, y)f(y, v(y)) dy,

v(x) =

∫
Ω

k2(x, y)g(y, u(y)) dy,
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where ki(x, y) : Ω×Ω → R+, i = 1, 2, are Green functions. It is evident
that the nonlinear integral equations system (5.3) is equivalent to the
following nonlinear double integral equation of Hammerstein type:

(5.4) u(x) =

∫
Ω

k1(x, y)f

(
y,

∫
Ω

k2(y, z)g(z, u(z)) dz

)
dy.

Let

(5.5) Au(x) =

∫
Ω

k1(x, y)f

(
y,

∫
Ω

k2(y, z)g(z, u(z)) dz

)
dy.

By Remark 5.1, we have A = K1F1K2F2, and the maximum principle
(e.g., [16]) implies that K1 and K2 are positive linear operators. It
is easily seen that A : P → P is completely continuous from (5.5)
and Remark 5.1. Next we show that the operator A has at least one
fixed point. By condition (A1), there exist α, β ∈ (0, 1) and a1(x) ≥ 0,
a2(x) ≥ 0, b1(x) ≥ 0, b2(x) ≥ 0 such that:

f(x, v) ≤ a1(x)v
α + b1(x), for all x ∈ Ω, v ≥ 0,

g(x, u) ≤ a2(x)u
β + b2(x), for all x ∈ Ω, u ≥ 0.

By Step 1 of the proof of Theorem 4.1 and Remark 5.2, we have that
i(A,P ∩ TR, P ) = 1.

It follows from (A2) that there exist α2 ∈ (0,+∞), α2β2 ∈ (0, 1),
m1(x) ≥ 0, m2(x) ≥ 0 and sufficiently small r > 0 and s ∈ (0, r) such
that

f(x, v) ≥ m1(x)v
α2 , for all x ∈ Ω, 0 ≤ v ≤ s,

g(x, u) ≥ m2(x)u
β2 , for all x ∈ Ω, 0 ≤ u ≤ r.

Let Tr = {u ∈ E|∥u∥ ≤ r}. Since g(z, 0) ≡ 0 and the continuity of
g(z, u), we have∫

Ω

k2(y, z)g(z, u(z)) dz ≤ s, for all 0 ≤ u ≤ r, y ∈ Ω.
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Therefore, we have

Au(x) =

∫
Ω

k1(x, y)f(y,

∫
Ω

k2(y, z)g(z, u(z)) dz) dy

≥
∫
Ω

k1(x, y)m1(y)

(∫
Ω

k2(y, z)g(z, u(z)) dz

)α2

dy

≥
∫
Ω

k1(x, y)m1(y)

(∫
Ω

k2(y, z)m2(z)u
β2(z) dz

)α2

dy

= B2u(x),

where

B2u(x) =

∫
Ω

k1(x, y)m1(y)

(∫
Ω

k2(y, z)m2(z)u
β2(z) dz

)α2

dy.

It is easily seen that B2 : P → P is an α2β2 homogeneous operator.
From [1, Lemma 5.3], we have K1 and K2 are linear completely
continuous operators and e-positive. By Definition 2.2, there exist
α > 0, e ∈ P\{θ} such that

B2e =

∫
Ω

k1(x, y)m1(y)

(∫
Ω

k2(y, z)m2(z)e
β2dz

)α2

dy

=

∫
Ω

k1(x, y)v
∗dy

≥ αe,

(5.6)

where

v∗ = m1(y)

(∫
Ω

k2(y, z)m2(z)e
β2(z) dz

)α2

̸≡ 0.

For condition (H5) of Theorem 4.2, let α = δ. By (5.6), we have
B2e ≥ δe. The conditions (H1), (H3) and (H5) are satisfied. We have
i(A,P ∩ Tr, P ) = 0. Therefore, equation (5.1) has at least one positive
solution (u, v) ∈ C2(Ω)× C2(Ω). �
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