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NON-SYNTHETIC DIAGONAL OPERATORS ON THE
SPACE OF FUNCTIONS ANALYTIC

ON THE UNIT DISK

KATE OVERMOYER AND STEVEN M. SEUBERT

ABSTRACT. Examples are given of continuous operators
of functions analytic on the unit disk having the monomials
as eigenvectors which fail spectral synthesis (that is, which
have closed invariant subspaces which are not the closed
linear span of collections of eigenvectors). Examples include
the diagonal operator having as eigenvalues an enumeration
of Z×iZ ≡ {m+in : m,n ∈ Z} and diagonal operators having

as eigenvalues enumerations of {n1/pe2πij/3p : 0 ≤ j < p}
where p is an integer at least 2.

1. Introduction. A vector x in a complete metrizable topological
vector space X is said to be cyclic for a continuous linear operator
T : X → X if the closed linear span of the orbit {Tnx : n ≥ 0} of x
under T is all of X. Operators which have a cyclic vector are said to
be cyclic. For example, the function f(t) ≡ 1 on [0, 1] is cyclic for the
operator T : g(t) → tg(t) of multiplication by t on the Banach space
C([0, 1]) of continuous functions on [0, 1] by virtue of the Weierstrass
approximation theorem.

A closed subspace M of X is invariant for T : X → X if Tx ∈ M
whenever x ∈ M . Examples of invariant subspaces include the closed
linear span of eigenvectors for T , if any exist, and more generally,
the closed linear spans ∨{Tnx : n ≥ 0} of orbits {Tnx : n ≥ 0} of
vectors x ∈ X. Hence, a vector x is cyclic for T if and only if the
smallest closed invariant subspace for T containing x is all of X. The
importance of cyclic vectors derives from the long-standing study of
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invariant subspaces of operators and the approximation theorems they
yield.

If H is a Hilbert space with an orthonormal basis {en} and D : H →
H is a continuous linear operator, we say D is a diagonal operator with
eigenvalues {λn} ⊂ C if D(en) = λnen for all n ≥ 0. That is, D is a
diagonal operator if every basis element en is an eigenvector for D. It is
well known that a diagonal operator on a Hilbert space is cyclic if and
only if its eigenvalues are distinct. In this case, a necessary condition
for a vector

∑∞
n=0 anen in H to be cyclic for D is that an ̸= 0 for all

n ≥ 0. It might seem reasonable to expect that the converse is true;
however, this need not always be the case as seen in Theorem 1.1.

A cyclic diagonal operator T : X → X acting on a complete
metrizable topological vector space is said to admit spectral synthesis
or to be synthetic if the closed invariant subspaces for T consist only of
spaces spanned by the eigenvectors they contain. A necessary condition
for T to admit spectral synthesis is that the eigenvectors for T have
closed linear span equalling all of X. The following is a list of some
conditions equivalent to a cyclic diagonal operator acting on a separable
Hilbert space to admit spectral synthesis. For a more complete list see,
for example, [16, Lemma 6].

Theorem 1.1. Let H be a separable complex Hilbert space and let D be
any bounded linear operator on H for which there exists an orthonormal
basis {en} for H and a sequence {λn} of complex numbers for which
Den = λnen for all n ≥ 0. Then {λn} is bounded. Moreover, D is
cyclic if and only if λm ̸= λn for all m ̸= n, and in this case, the
following are equivalent :

(i) D admits spectral synthesis,
(ii) a vector x is cyclic for D if and only if ⟨x, en⟩ ̸= 0 for all n,
(iii) there does not exist a sequence {ωn} of complex numbers in ℓ1,

not all zero, for which
∑∞

n=0 ωnλ
k
n ≡ 0 for all k ≥ 0,

(iv) there does not exist a sequence {ωn} of complex numbers in ℓ1,
not all zero, for which the exponential series

∑∞
n=0 ωne

λnz ≡ 0
on the complex plane,

(v) the weakly closed algebra generated by D and the identity is the
commutant of D, and

(vi) there does not exist a bounded complex domain Ω such that
sup {|f(z)| : z ∈ Ω} = sup {|f(z)| : z ∈ Ω ∩ {λn}} for all f bounded
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and analytic on Ω.

If, in addition, the λn lie in the open unit disk and accumulate only on
the unit circle, then conditions (i)–(vi) are equivalent to

(vii) not almost every point of the unit circle is in the non-tangential
cluster set of {λn}.

Regarding condition (iii) of Theorem 1, in 1921 Wolff [28] gave the
first example of a bounded sequence {λn} of distinct complex numbers
and a sequence {ωn} of complex numbers in ℓ1, not all zero, for which
0 ≡

∑
ωnλ

k
n for all k ≥ 0. Wolff’s example generates cyclic diagonal

operators on ℓ2 which fail spectral synthesis. Since 1921, the study
of cyclic operators and invariant subspaces of diagonal operators on a
separable Hilbert space has enjoyed a long and rich history (see, for
example, [2, 17, 18, 20, 21, 25, 26, 28]). This study has been
extended to include cyclic diagonal operators acting on spaces other
than a Hilbert space or Banach space. Two such examples are the space
H(C) of entire functions and the space H(D) of functions analytic on
the open unit disk D ≡ {z ∈ C : |z| < 1} (see, for example, the
papers of Deters, Marin, Seubert and Wade [3, 4, 5, 16, 23, 24]).
When endowed with the topology of uniform convergence on compacta,
H(C) and H(D) are examples of complete metrizable topological vector
spaces. We say that a continuous linear operator D on either H(C) or
H(D) is a diagonal operator with eigenvalues {λn} if D(zn) = λnz

n

for all n ≥ 0, that is, D is a diagonal operator if each monomial is an
eigenvector for D.

The purpose of this paper is to provide classes of examples of
cyclic diagonal operators acting on the space H(D) which fail spectral
synthesis.

The background information, details of which can be found in
[4], is as follows. By the radius of convergence formula, a function
f(z) =

∑∞
n=0 anz

n is in H(D) if and only if lim supn→∞ |an|1/n ≤ 1.
It follows that a linear map D for which D(zn) = λnz

n for all
n ≥ 0 defines a continuous linear operator on H(D) if and only if
lim supn→∞ |λn|1/n ≤ 1. In particular, there exist diagonal operators
on H(D) whose eigenvalues are unbounded.

An analogue of Theorem 1.1 (i)–(iv) for diagonal operators on H(D)
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to admit spectral synthesis was obtained by Deters and Seubert in [4,
Theorem 3]. In this paper, the analogue of condition (iv) will be used
extensively; thus, we state it here.

Theorem 1.2. Let D be the cyclic diagonal operator on H(D) having
distinct eigenvalues {λn}. If {λn/n : n ≥ 1} is bounded, then D admits
spectral synthesis if and only if there does not exist a sequence {ωn}
of complex numbers, not identically zero, for which lim sup |ωn|1/n < 1
and 0 ≡

∑∞
n=0 ωne

λnz for all z in the open ball B(0, ϵ) where ϵ ≡
[ln (1/ lim sup |ωn|1/n)]/[sup{|λn|/n}].

Throughout this paper, the same technique will be used to establish
all of the main results. A general outline of the technique is as follows.
The details for each result will be provided in the respective proofs. Let
D be a diagonal operator having eigenvalues {λn}. In each example
presented in this paper, {λn} will satisfy inf{α :

∑∞
n=1 1/|λn|α < ∞} >

1; hence, any entire function S(λ) having simple zeros at λn has order
ρ > 1 [1]. It then follows that there exist constants α, β > 0, for
which |S(λ)| > αeβ|λ|

ρ

whenever λ avoids a disjoint collection of balls
B(λn, rn). Invoking the residue theorem yields

∞∑
n=0

eλnz
/
S′(λn) = lim

r→∞

∫
Cr

(eλz/S(λ)) dλ = 0

for appropriately chosen contours Cr which avoid the balls B(λn, rn).
Applying Lemma 1.3, stated below, it will follow that

lim sup
n→∞

|ωn|1/n < 1 where ωn ≡ 1/S′(λn).

Hence, 0 ≡
∑∞

n=0 ωne
λnz for all z near the origin. By Theorem 1.2, D

fails to admit spectral synthesis on H(D).

Lemma 1.3. Let f and g be functions analytic on an open set con-
taining the closed ball B(ω, r) = {z : |z − ω| ≤ r}. If f has a unique

zero in B(ω, r) at ω, if g has no zeros in B(ω, r), and if |f(z)| ≥ |g(z)|
whenever |z − ω| = r, then |f ′(ω)| ≥ |g(ω)|/r.

This lemma follows immediately by applying the maximum principle
to the function z → (z − ω)g(z)/[rf(z)].
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2. Example of a non-synthetic diagonal operator on H(D).
In this section, we show that the diagonal operator D having as
eigenvalues an enumeration of the integer lattice points Z × iZ ≡
{m + in : m,n ∈ Z} fails to admit spectral synthesis as an operator
acting on H(D), the space of functions analytic on the unit disk D.

We let Cj denote the square with vertices ±(j + ij) and ±i(j + ij),
for all j ≥ 0, and define {λk} to be the enumeration of Z×iZ defined by
beginning on the positive real line and moving counterclockwise around
larger and larger squares Cj . In this way,

λ0 = 0; λ1 = 1; λ2 = 1 + i;

λ3 = i; λ4 = −1 + i; λ5 = −1;

λ6 = −1− i; λ7 = −i; λ8 = 1− i;

λ9 = 2; . . . λ24 = 2− i; λ25 = 3 . . . .

There are a total of (2j + 1)2 integer lattice points on or inside the
square Cj . Hence, there are exactly 8j points on Cj . Therefore, λk

is on the square Cj if and only if 1 + 4j(j − 1) ≤ k ≤ 4j(j + 1)

and j ≤ |λk| ≤
√
2j. From this, it follows that {λk/k : k ≥ 1} is

bounded and lim sup |λk|1/k ≤ 1. Thus, the diagonal operatorD having
eigenvalues {λk} is continuous on both H(C) and H(D) [4, Lemma 1].

Define the function

S(z) = zΠ′
(
1−

(
z

m+ in

))
e(z/(m+in)+z2/(2(m+in)2));

(in this context, Π′ indicates that the product is taken over all integers
m and n except when m = 0 = n). This is the Weierstrass σ-function
having zeros at the integer lattice points Z × iZ (see, [27, Chapter
XX]). For each r ∈ Z+, we let Cr denote the square passing through
the points ±(r+1/2) and ±i(r+1/2) and having horizontal and vertical
sides. For any complex number λ on any square Cr, the distance
d(λ) ≡ inf{|λ − λk| : λk ∈ Z × iZ} from λ to any point in Z × iZ
is at least 1/2. Since |S(λ)| ≥ Cd(λ)eπ|λ|

2/2 where C is a positive
constant [22, page 108], it follows that limr→∞

∫
Cr

(eλz/S(λ))dλ = 0

for every complex number z. Moreover, by the residue theorem,∫
Cr

(eλz/S(λ)) dλ =
∑

{k:|λk|<r}

eλkz/S′(λk).
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Thus,
∑∞

k=0 ωke
λkz = 0 for all z ∈ C where ωk ≡ 1/S′(λk).

Whenever |z − λk| = 1/2, we have

|S(z)| ≥ Cd(λ)eπ|z|
2/2 ≥ (1/2)Ceπ(|λk|−1/2)2/2

≥ c1e
π|λk|2 ≥ ce−π|λk|2/2eπ|λk|2eπ|λk|2

≥ ce−π|λk|2/2eπ|z||λk|

≥ |ceπ(zλk−|λk|2/2)|.

Then, applying Lemma 1.3 with f(z) = S(z), ω = λk, r = 1/2, and

g(z) = ce(π(zλk−|λk|2/2)), it follows that

|S′(λk)| ≥ 2|g(λk)| = c1e
π|λk|2/2

for all points λk ∈ Z × iZ where c1 is a positive constant. Since
j2 ≤ |λk|2 ≤ 2j2 whenever 1 + 4j(j − 1) ≤ k < 4j(j + 1), it follows
that lim supk→∞ |ωk|1/k < 1. Hence, the diagonal operator D having
eigenvalues Z×iZ fails spectral synthesis as an operator acting onH(D)
by Theorem 1.2.

However, since S(z) has order 2 and type π/2, it follows that D
admits spectral synthesis as an operator acting on the space of entire
functions H(C) [5, Theorem 3].

3. A class of non-synthetic operators on H(D). In this section,
we prove that, for any integer p ≥ 2, the diagonal operator having
as eigenvalues 3p copies of the sequence n1/p placed on the 3p rays
{z ∈ C : arg z = 2πij/3p} for 0 ≤ j < 3p, fails to admit spectral
synthesis as an operator acting on H(D). This result, combined with
the results of the previous section, suggest that the synthesis of a
diagonal operator depends not only on the growth of its eigenvalues,
but also how they are distributed throughout the complex plane. For
instance, the diagonal operator having as eigenvalues {

√
n} admits

spectral synthesis [23]; however, the main result of this section shows
that the diagonal operator having as eigenvalues {

√
neπij/3 : 0 ≤ j < 6}

consisting of six copies of the sequence {
√
n} on six rays, fails to admit

synthesis.

We need to establish a protocol for enumerating the eigenvalues {λk}
of the diagonal operator D to ensure that the operator D is continuous,
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that is, lim sup |λk|1/k ≤ 1. Thus, we will require that any enumeration
of {λk} of the set of points of the form {ane2πij/p : 0 ≤ j < p} where
{an} is an increasing sequence of positive numbers and p is a positive
integer, be such that {|λk|} is non-decreasing. Such an enumeration
is always obtained by listing the points of the set by starting on the
positive real axis and traversing circles of increasing radii an in the
counter-clockwise direction.

Theorem 3.1. The diagonal operator D acting on H(D) having eigen-
values {n1/pe2πij/3p : 0 ≤ j < p} fails spectral synthesis whenever p is
an integer at least 2.

Proof. Let {λk} be an enumeration as established in the previous
paragraph. Define the entire function f(z) ≡ Π∞

n=1(1− (z/n3)) having

simple zeros only at {n3}. For every 0 < ϵ < π/
√
3, there exists

an Rϵ ∈ R such that |f(reiθ)| ≥ e(π/
√
3−ϵ)r1/3 for r ≥ Rϵ and

reiθ /∈ E ≡ ∪∞
n=1B(n3, n2) [14, pages 94–95].

The entire function S(z) ≡ f(z3p) has simple zeros only at {λk}. Fix
k large enough so that |λk| ≥ Rϵ, and choose rk so that B(λk, rk)∩{λk :

m ∈ N} = {λk}. Then, |S(z)| ≥ e(π/
√
3−ϵ)|z|p for all |z − λk| = rk.

Applying Lemma 1.3 with f(z) = S(z), g(z) = e(π/
√
3−ϵ)zp

, r = rk and
ω = λk, we obtain

|S′(λk)| ≥ e(π/
√
3−ϵ)|λk|p/rk.

Consider |λk| = m1/p for some m ∈ N such that 3p(m − 1) ≤
k < 3pm. Hence, |S′(λk)|1/k ≥ e(π/

√
3−ϵ)1/(3p)/r

1/(3pm)
k . Hence,

lim supk→∞ |1/S′(λk)|1/k ≤ 1/e(π/
√
3−ϵ)1/(3p) < 1. Thus, if ωk ≡

1/S′(λk) for all k, lim sup |ωk|1/k < 1.

For each r ∈ R, define Cr ≡ {z ∈ C : |z| = r̂} where r̂ =
(1/2)((r + 1)1/p + r1/p). Then, for each r such that Cr̂3p ∩ E = ∅
and for each z ∈ C, by the residue theorem,

1

2πi

∫
Cr

(eλz/S(λ)) dλ =
∑

{k:|λk|≤r̂}

(eλkz/S′(λk)).

Since the open balls B(n3, n2) are pairwise disjoint there exists an
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increasing sequence {rn} such that Cr̂n
3p ∩ E = ∅. Thus,∣∣∣∣ ∫

Cr

(eλz/S(λ)) dλ

∣∣∣∣ ≤ (2πr̂er̂|z|)/(e(π/
√
3−ϵ)r̂p) −→ 0

as r → ∞. Hence,
∞∑
k=0

ωke
λkz ≡ 0.

Therefore, by Theorem 1.2, D fails to admit spectral synthesis on
H(D). �

The statement of Theorem 3.1 requires that p ≥ 2. If p = 1, the
technique used in this paper for establishing failure to admit spectral
synthesis cannot be used. The eigenvalues would be an enumeration
{λk} of {ne2πij/3}; hence,

inf

{
α :

∞∑
k=1

1/|λk|α < ∞
}

= 1.

Thus, any entire function having simple zeros at {λk} would have order
equal to one, and appropriate bounds could not be obtained using the
techniques of this paper. It is not known by the authors if this diagonal
operator admits spectral synthesis or not.

Theorem 3.1 can be easily extended to include diagonal operators
having as eigenvalues b copies of {na/b} placed on the b rays {z ∈ C :
arg z = 2πij/b} for 0 ≤ j < b for certain rational powers a/b smaller
than 1, as stated in the following corollary.

Corollary 3.2. The diagonal operator D acting on H(D) having
eigenvalues {na/be2πij/b : 0 ≤ j < b} fails synthesis whenever a and
b are integers for which b > a > 2.

Notice that, in Theorem 3.1, the eigenvalues came from taking roots
of the sequence {an} ≡ {n3}, and the proof relied on estimating the
entire function with simple zeros at {an}. This result can be generalized
by using the zeros {an} of an entire function f(z) having certain
properties. The estimates involved in this case rely heavily on the
work of Levin (see [14, 15]) involving the growth of entire functions
based on the distribution of the zeros. Following Levin’s method, we
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define two conditions guaranteeing that the zeros {an} are separated.
We say {an} satisfies condition (C) if there exists a d > 0 such that

the closed balls {B(an, d|an|1−ρ/2) : n ∈ N} are pairwise disjoint, and
{an} satisfies condition (C′) if {an} is non-decreasing and there exists
a d > 0 such that |an+1| − |an| > d|an|1−ρ, where the closed balls

{B(an, d|an|1−ρ) : n ∈ N} are pairwise disjoint. In these definitions, ρ
represents the order of the entire function having simple zeros at {an}
(see, for example [1]).

Theorem 3.3. Let f(z) be an entire function of order ρ ∈ (0, 1/2)
whose zeros {an} are all positive real numbers and are all simple. If

(i) {an} satisfies either Condition (C) or (C′),

(ii) limr→∞
n(r)
rρ ∈ (0,∞), where n(r) =

∑
{n:|an|≤r} 1,

and q is any integer greater than 1/ρ, then the diagonal operator D on

H(D) with eigenvalues {a1/qn e2πij/q : 0 ≤ j < q} fails to admit spectral
synthesis.

The proof of Theorem 3.3 follows the same technique outlined in the
final paragraph of Section 1 and invoked in the proofs in Section 2 and
Theorem 3.1. Therefore, only an outline is provided (complete details
can by found in [19, pages 50–52]). Define S(λ) to be an entire function
with zeros only at the points {λk} where {λk} is an enumeration of

{a1/qn e2πij/q : 0 ≤ j < p}. Applying the residue theorem, we obtain

lim
r→∞

∫
Cr

(eλz/S(λ)) dλ = lim
∑

{k:λk∈C0
r}

(eλkz/S′(λk))

=
∞∑
k=0

ωke
λkz,

where Cr are appropriately chosen contours which avoid the pairwise
disjoint balls obtained by Condition (C) or (C′). Observing that
S(λ) = f(λq) and that |f(reiθ)| ≥ eϵr

ρ

for r large enough and some
ϵ > 0 [14, page 96], we obtain that

lim
r→∞

∫
Cr

(eλz/S(λ)) dλ = 0.
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Applying Lemma 1.3 to f(z) = S(z), g(z) = eϵ|z|
ρq

, ω = λk, and an
appropriately chosen r, we obtain

lim sup
k→∞

|ωk|1/k = lim sup |1/S′(λk)|1/k < 1.

Thus, by Theorem 1.2, D fails to admit spectral synthesis on H(D).
Observe that Theorem 3.1 is an elementary version of Theorem 3.3;

however, we have included both in this paper as Theorem 3.1 provides
more concrete and familiar examples.

An example of a diagonal operator that would fail to admit spectral
synthesis under the conditions of Theorem 3.3, but not Theorem 3.1,
would be one having as eigenvalues q copies of {np + np−1} placed
symmetrically on q rays, where p is a rational number smaller than 1
and q is an integer greater than 1/p.

4. Remarks. A sequence {λn} is said to be absolutely representing,
if every entire function f(z) can be represented as

f(z) =

∞∑
n=0

ane
λnz for some {an}.

Numerous necessary and sufficient conditions for {λn} to be absolutely
representing can be found in the papers of Leont’ev [10, 11, 12, 13]

and Korobĕinik [6, 7, 8, 9], for example. Many of these results require
{λn/n} to be bounded, and, in some cases, are equivalent to an operator
admitting spectral synthesis.

In Theorem 3.1, it is required that the eigenvalues consist of 3p copies
of n1/p and in Theorem 3.3 it is required that the eigenvalues consist

of q copies of each a
1/q
n . In fact, it is possible to exclude some of the

points from both Z× iZ and {n1/pe2πij/3p : 0 ≤ j < p} and still obtain
non-synthetic operators as long as the estimate on the entire function

S(z) still has the form |S(z)| > αeβ|z|
2

. It may be possible to determine
a minimum number of copies needed to obtain an operator which fails
to admit spectral synthesis, and, if so, it is likely to be smaller than
either of these conditions.

Another avenue for future work on this topic is to determine whether

the eigenvalues can be required to be close to the points a
1/q
n rather

than having to be the exact points. Work by Levin, for example [14,
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page 98], can be used to obtain some results in this regard. However,
more general results may be possible.
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