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ABSTRACT. In the topological classification of phase
portraits no distinctions are made between a focus and a
node and neither are they made between a strong and
a weak focus or between foci of different orders. These
distinctions are however important in the production of limit
cycles close to the foci in perturbations of the systems.
The distinction between the one direction node and the
two directions node, which plays a role in understanding
the behavior of solution curves around the singularities at
infinity, is also missing in the topological classification.

In this work we introduce the notion of geometric equiv-
alence relation of singularities which incorporates these im-
portant purely algebraic features. The geometric equivalence
relation is finer than the topological one and also finer than
the qualitative equivalence relation introduced in [19]. We
also list all possibilities we have for finite and infinite singu-
larities, taking into consideration these finer distinctions, and
introduce notation for each one of them.

In this work we give the classification theorem and bifur-
cation diagram in the 12-dimensional parameter space, using
the geometric equivalence relation, of the class of quadratic
systems according to the configuration of singularities at in-
finity of the systems. Our classification theorem, stated in
terms of invariant polynomials, is an algorithm for comput-
ing the geometric configurations of infinite singularities for
any family of quadratic systems, in any normal form.
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1. Introduction and statement of main results. We consider
here differential systems of the form

(1)
dx

dt
= p(x, y),

dy

dt
= q(x, y),

where p, q ∈ R[x, y], i.e., p, q are polynomials in x, y over R. We
call the degree of a system (1) the integer m = max(deg p, deg q). In
particular, we call quadratic a differential system (1) with m = 2.

The study of the class of quadratic differential systems has proved
to be quite a challenge since hard problems formulated more than a
century ago are still open for this class. The complete characterization
of phase portraits for real quadratic vector fields is not known, and
attempting to topologically classify these systems, which occur rather
often in applications, is a very complex task. This family of systems
depends on 12 parameters but, due to the group action of real affine
transformations and time homotheties, the class ultimately depends on
5 parameters. This is still a large number of parameters and, for the
moment, only subclasses depending on at most three parameters were
studied globally. On the other hand, we can restrict the study of this
class by focusing on specific global features of the class. We may thus
focus on the global study of singularities and their bifurcation diagram.
The singularities are of two kinds: finite and infinite. The infinite
singularities are obtained by compactifying the differential systems on
the sphere or on the Poincaré disk (see [15]).

The global study of quadratic vector fields in the neighborhood
of infinity was initiated by Nikolaev and Vulpe in [22] where they
topologically classified the singularities at infinity in terms of invariant
polynomials. Schlomiuk and Vulpe used geometrical concepts defined
in [27], and also introduced some new geometrical concepts in [28],
in order to simplify the invariant polynomials and the classification.
To reduce the number of phase portraits in half in both cases the
topological equivalence relation was taken to mean the existence of
a homeomorphism carrying orbits to orbits and preserving or reversing
the orientation. In [3], the authors topologically classified (adding
also the distinction between nodes and foci) the whole quadratic class
according to configurations of their finite singularities.

The goal of our present work is to go deeper into these classifications
by using a finer equivalence relation. In the topological classification, no
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distinction was made among the various types of foci or saddles, strong
or weak, of various orders. However, these distinctions, of algebraic
nature, are very important in the study of perturbations of systems
possessing such singularities. Indeed, the maximum number of limit
cycles which can be produced close to the weak foci in perturbations
depends on the orders of the foci. For these reasons, we shall include
these distinctions in the new classification.

There are also three kinds of nodes as we can see in Figure 1 below
where the local phase portraits around the singularities are given.

FIGURE 1. Different types of nodes.

In the three phase portraits of Figure 1 the corresponding three
singularities are stable nodes. These portraits are topologically equiv-
alent, but the solution curves do not arrive at the nodes in the same
way. In the first case, any two distinct non-trivial phase curves arrive
at the node with distinct slopes. Such a node is called a star node. In
the second picture all non-trivial solution curves excepting two of them
arrive at the node with the same slope, but the two exception curves
arrive at the node with a different slope. This is the generic node with
two directions. In the third phase portrait all phase curves arrive at
the node with the same slope.

We recall that the first and the third types of nodes could produce
foci in perturbations, and the first type of nodes is also involved in
the existence of invariant straight lines of differential systems. For
example, it can easily be shown that, if a quadratic differential system
has two finite star nodes, then necessarily the system possesses invariant
straight lines of total multiplicity 6.

Furthermore, a generic node may or may not have the two excep-
tional curves lying on the line at infinite. This leads to two different
situations for the phase portraits. For this reason, we split the generic
nodes at infinite into two types.
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The finer equivalence relation, introduced later in this article, takes
into account such distinctions.

The distinctions among the nilpotent and linearly zero singularities
finite or infinite can also be refined, as will be seen in Section 4. Such
singularities are usually called degenerate singularities.

In this article, we introduce for planar polynomial vector fields the
geometric equivalence relation for singularities, finite or infinite. This
equivalence relation is finer than the qualitative equivalence relation
introduced by Jian and Llibre in [19] since it distinguishes among the
foci of different orders and among the various types of nodes. This
equivalence relation also induces a finer distinction among the more
complicated degenerate singularities.

To distinguish among the foci (or saddles) of various orders we use
the algebraic concept of Poincaré-Lyapunov constants. We call strong
focus (or strong saddle) a focus (or saddle) with non-zero trace of the
linearization matrix at this point. Such a focus (or saddle) will be
considered to have the order zero. A focus (or saddle) with trace zero
is called a weak focus (weak saddle). For details on Poincaré-Lyapunov
constants and weak foci we refer to [20].

For the nodes in Figure 1 the distinction is also made by algebraic
means: the linearization matrices at these nodes and their eigenvalues.

The finer distinctions of singularities are algebraic in nature. In fact,
the whole bifurcation diagram of the global configurations of singular-
ities, finite and infinite, in quadratic vector fields and more generally
in polynomial vector fields, can be obtained by using only algebraic
means, among them, the algebraic tool of invariant polynomials.

Algebraic information may not be significant for the local phase
portrait around a singularity. For example, topologically there is no
distinction between a focus and a node or between a weak and a strong
focus. However, as indicated before, algebraic information plays a
fundamental role in the study of perturbations of systems possessing
such singularities.

In [11] Coppel wrote:

Ideally one might hope to characterize the phase portraits of quadratic

systems by means of algebraic inequalities on the coefficients. However,

attempts in this direction have met with very limited success... .
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This proved to be impossible to realize. Indeed, Dumortier and
Fiddelers [14] and Roussarie [25] exhibited examples of families of
quadratic vector fields which have non-algebraic bifurcation sets.

Although we now sense that, in trying to understand these systems,
there is a limit to the power of algebraic methods, these methods have
not been used far enough. In this work, we go one step further in using
them.

The following are legitimate questions:

How much of the behavior of quadratic (or more generally polynomial)
vector fields can be described by algebraic means? How far can we go
in the global theory of these vector fields by using mainly algebraic
means?

For certain subclasses of quadratic vector fields the full description
of the phase portraits as well as of the bifurcation diagrams can be
obtained using only algebraic tools. Examples of such classes are:

• the quadratic vector fields possessing a center [23, 26, 36, 38];
• the quadratic Hamiltonian vector fields [1, 4];
• the quadratic vector fields with invariant straight lines of total
multiplicity at least four [29, 30];

• the planar quadratic differential systems possessing a line of
singularities at infinity [31];

• the quadratic vector fields possessing an integrable saddle [5].
• the family of Lotka-Volterra systems [32, 33], once we assume
Bautin’s analytic result saying that such systems have no limit
cycles;

In the case of other subclasses of the quadratic class QS, such as the
subclass of systems with a weak focus of order 3 or 2 (see [2, 20]) the
bifurcation diagrams were obtained by using an interplay of algebraic,
analytic and numerical methods. These subclasses were of dimensions
2 and 3 modulo the action of the affine group and time rescaling.
No four-dimensional subclasses of QS were studied so far, and such
problems are very difficult due to the number of parameters as well
as the increased complexities of these classes. On the other hand, we
propose to study the whole class QS according to the configurations
(see further below) of the singularities of systems in this whole class.
In this paper we do this, but only for singularities at infinity.
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To define the notion of configuration of singularities at infinity we
distinguish two cases:

1) If we have a finite number of infinite singular points we call
configuration of singularities at infinity, the set of all these sin-
gularities is each endowed with its own multiplicity together
with their local phase portraits endowed with additional geo-
metric properties involving the concepts of tangent, order and
blow-up equivalences to be defined in Section 4 and using the
notations described in Section 5.

2) If the line at infinity Z = 0 is filled up with singularities, in
each one of the charts at infinity X ̸= 0 and Y ̸= 0, the
system is degenerate and we need to do a rescaling of an
appropriate degree of the system, so that the degeneracy be
removed. The resulting systems have only a finite number of
singularities on the line Z = 0. In this case we call configuration
of singularities at infinity the set of all points at infinity (they
are all singularities) on which we single out the singularities
of the “reduced” system, taken together with their local phase
portraits as in the previous case.

The goal of this article is to classify the configurations of singularities
at infinity of planar quadratic vector fields using the finer geometric
equivalence relation which is defined in Section 4. In what follows, ISPs
is a shorthand for “infinite singular points.” We obtain the following:

Main theorem.

(A) The configurations of singularities at infinity of all quadratic vec-
tor fields are classified in Diagrams 1–4 according to the geometric
equivalence relation. Necessary and sufficient conditions for each
one of the 167 different equivalence classes can be assembled from
these diagrams in terms of 27 invariant polynomials with respect
to the action of the affine group and time rescaling, given in Sec-
tion 7.

(B) Diagrams 1–4 actually contain the bifurcation diagram in the 12-
dimensional space of parameters, of the global configurations of
singularities at infinity of quadratic differential systems.

The geometrical meaning of some of the conditions given in terms
of invariant polynomials in Diagrams 1–4 appear in Diagrams 5–7.
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This work can be extended so as to include the complete geometrical
classification of all global configurations of singular points (finite and
infinite) of quadratic differential systems.

The following corollary results from the proof of the Main theorem
gathering all the cases in which the polynomials defining the differential
systems are not coprime (degenerated systems).

Corollary 1.1. There exist exactly 30 topologically distinct phase
portraits around infinity for the family of degenerate quadratic systems,
given in Figure 7. Moreover, necessary and sufficient conditions for the
realization of each one of these portraits are given in the Diagrams 1–4.
These are the cases occurring for µi = 0 for every i ∈ {0, 1, 2, 3, 4}.

The invariants and comitants of differential equations used for prov-
ing our main results are obtained following the theory of algebraic in-
variants of polynomial differential systems, developed by Sibirsky and
his disciples (see for instance [6, 10, 24, 35, 37]).

2. Some geometrical concepts. We assume that we have an
isolated singularity p. Suppose that in a neighborhood U of p there
is no other singularity. Consider an orbit γ in U defined by a solution
Γ(t) = (x(t), y(t)) such that limt→∞ Γ(t) = p (or limt→−∞ Γ(t) = p).

For a fixed t, consider the unit vector C(t) = (
−−−−−→
Γ(t)− p)/∥

−−−−−→
Γ(t)− p∥.

Let L be a semi-line ending at p. We shall say that the orbit γ is
tangent to a semi-line L at p if limt→∞ C(t) = p (or limt→∞ C(t) = p)
exists and L contains this limit point on the unit circle centered at p.
In this case, we may also say that the solution curve Γ(t) tends to p
with a well-defined angle, which is the angle between the positive x-
axis and the semi-line L measured in the counter-clockwise sense. A
characteristic orbit at a singular point p is the orbit of a solution curve
Γ(t) which tends to p with a well-defined angle. A characteristic angle
at a singular point p is the well-defined angle in which a solution curve
Γ(t) tends to p. The line through p with this well-defined angle is called
a characteristic direction.

If a singular point has an infinite number of characteristic directions,
we will call it a star-like point.
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DIAGRAM 1. Configurations of ISPs in the case η > 0.

It is known that the neighborhood of any singular point of a poly-
nomial vector field, which is not a focus or a center, is formed by a
finite number of sectors which could only be of three types: parabolic,
hyperbolic and elliptic (see [15]). It is also known that any degenerate
singular point can be desingularized by means of a finite number of
changes of variables, called blow-ups, into elementary singular points
(for more details see also [15] or Section 3).
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DIAGRAM 1 (continued): Configurations of ISPs in the case η > 0.

DIAGRAM 2. Configurations of ISPs in the case η < 0.

Consider the three singular points given in Figure 2. All three are
topologically equivalent, and their neighborhoods can be described as
having two elliptic sectors and two parabolic ones. But we can easily
detect some geometric features that distinguish them. For example,
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DIAGRAM 3. Configurations of ISPs in the case η = 0, M̃ ̸= 0.

(a) and (b) have three characteristic directions and (c) has only two.
Moreover, in (a), the solution curves of the parabolic sectors are tangent
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DIAGRAM 3 (continued): Configurations of ISPs in the case η = 0, M̃ ̸= 0.

to only one characteristic direction and in (b) they are tangent to
two characteristic directions. All these properties can be determined
algebraically.

The usual definition of a sector is of a topological nature, and it is
local with respect to a neighborhood around the singular point. We
introduce a new definition of a local sector which is of an algebraic
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DIAGRAM 3 (continued): Configurations of ISPs in the case η = 0, M̃ ̸= 0.

FIGURE 2. Some topologically equivalent singular points

nature and which distinguishes the systems of Figure 2.

We will call borsec (contraction of border and sector) any orbit



FROM TOPOLOGICAL TO GEOMETRICAL EQUIVALENCE 41

DIAGRAM 4. Configurations of ISPs in the case η = 0, M̃ = 0.
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FIGURE 3. Local phase portrait of a degenerate singular point.

of the original system which carried on through consecutive stages
of the desingularization ends up as an orbit of the phase portrait in
the final stage which is either a separatrix or a representative orbit
of a characteristic angle of a node or of a saddle-node in the final
desingularized phase portrait.

Using this concept of borsec, we define a geometric local sector
with respect to a neighborhood V as a region in V delimited by two
consecutive borsecs. For example, a semi-elementary saddle-node can
be topologically described as a singular point having two hyperbolic
sectors and a single parabolic one. But, if we add the borsec which is
any orbit of the parabolic sector, then the description would consist of
two hyperbolic sectors and two parabolic ones. This distinction will be
critical when trying to describe a singular point like the one in Figure 3
which topologically is a saddle-node but qualitatively (in the sense of
[19]) is different from a semi-elementary saddle-node.

Generically, a geometric local sector will be defined by two consecu-
tive borsecs arriving at the singular point with two different well-defined
angles. If the sector is parabolic, then the solutions can arrive at the
singular point with one of the two characteristic angles, and this is ge-
ometrical information that can be revealed with the blow-up. It may
also happen that orbits arrive at the singular point in every angle inside
the sector. We will call such a sector a star-like parabolic sector, and it
will be denoted by P ∗.

If the sector is elliptic, then, generically, the solutions inside the
sector will depart from and arrive at the singular point in both char-
acteristic angles. It may also happen that orbits arrive at the singular
point in every angle inside the sector. Such a sector will be called a
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star-like elliptic sector and will be denoted by E∗.

There is also the possibility that two borsecs defining a geometric
local sector tend to the singular point with the same well-defined angle.
Such a sector will be called a cusp-like sector which can either be
hyperbolic, elliptic or parabolic, respectively, denoted by Hf, Ef and
Pf.

Moreover, in the case of parabolic sectors we want to include infor-
mation as to whether the orbits arrive tangent to one or to the other

borsec. We distinguish the two cases by
x
P if they arrive tangent to

the borsec limiting the previous sector in clock-wise sense or
y
P if they

arrive tangent to the borsec limiting the next sector. In the case of a
cusp-like parabolic sector, all orbits must arrive with only one slope,

but the distinction between
x
P and

y
P is still valid because it occurs

at some stage of the desingularization, and this can be algebraically
determined. Thus, complicated degenerate singular points like the two

we see in Figure 4 may be described as
y
PE

x
P HHH (case (a)) and

E
x
PfHH

y
PfE (case (b)), respectively.

FIGURE 4. Two phase portraits of degenerate singular points.

A star-like point can either be a node or something much more
complicated with elliptic and hyperbolic sectors included. In case there
are hyperbolic sectors, they must be cusp-like. Elliptic sectors can
either be cusp-like or star-like. So, some special angles will be relevant.
We will call special characteristic angle any well defined angle in which
a unique solution curve does not tend to p (that is, either none or more
than one solution curve tends to p within this well-defined angle). We
will call special characteristic direction any line such that at least one
of the two angles defining it is a special characteristic angle.



44 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

3. The blow-up technique. To draw the phase portrait around
an elementary hyperbolic singularity of a smooth planar vector field we
just need to use the Hartman-Grobman theorem. For an elementary
non-hyperbolic singularity the system can be brought by an affine
change of coordinates and time rescaling to the form dx/dt = −y+ . . .,
dy/dt = x + · · · , and it is well known that in this case the singularity
is either a center or a focus. One way to see this is by Poincaré-
Lyapounov theory. In the quadratic case we can actually determine
using the Poincaré-Lyapounov constants if it is a focus or a center so
the local phase portrait is known. For higher order systems, we have the
center-focus problem: we can only say that the phase portrait around
the singularity is of a center or of a focus but we cannot determine with
certainty which one of the two it is.

In the case of a more complicated singularity, such as a degenerate
one, we need to use the blow-up technique. This is a well-known
technique but, since it plays such a crucial role in this work and also in
order to make this article as self-contained as possible, we shall briefly
describe it here. Another reason for describing this technique is because
we are going to use it in a slightly modified (actually simplified) way
so as to lighten the calculations. For this modified way to be perfectly
clear, we show below that it is in complete agreement with the usual
blow-up procedure.

The idea behind the blow-up technique is to replace a singular point
p by a line or by a circle on which the “composite” degenerate singu-
larity decomposes (ideally) into a finite number of simpler singularities
pi. For this idea to work we need to construct a new surface on which
we have a diffeomorphic copy of our vector field on R2\{p}, or at least
on the complement of a line passing through p, and whose associated
foliation with singularities extends also to the circle (or to a line) which
replaces the point p on the new surface.

One way to do this is by using polar coordinates. Clearly, we
may assume that the singularity is placed at the origin. Consider the
map ϕ : S1 × R → R2 defined by ϕ(θ, r) 7→ (r cos θ, r sin θ). This
map is a diffeomorphism for r ∈ (0,∞) and for r ∈ (−∞, 0) onto
R2\{(0, 0)}, but ϕ−1(0, 0) is the circle S1×{0}. This application defines
a diffeomorphic vector field on the upper part of the cylinder S1 × R.
In fact, this is the passing to polar coordinates. The resulting smooth
vector field extends to the whole cylinder just by allowing r to be
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negative or zero. This full vector field on the cylinder has either a
finite number of singularities on the circle (this occurs when the initial
singular point is nilpotent) or the circle is filled up with singularities
(when we start with a linearly zero point). In this latter case, we need
to make a time rescaling T = rst of the vector field with an adequate
s to obtain a finite number of singularities. The map ϕ collapses the
circle on the cylinder (and hence the singularities located on this circle)
to the origin of coordinates in the plane. In case the phase portraits
around the singularities on the circle can be drawn then the inverse
process of blowing down the upper side of the cylinder completed with
the circle allows us to draw the portrait around the origin of R2. In case
the singularities on the circle are still degenerate we need to repeat the
process a finite number of times. This is guaranteed by the theorem of
desingularization of singularities (see [9, 12])

The blow-up by polar coordinates is simple, leading to a simple
surface (the cylinder), on which a diffeomorphic copy of our vector
field on R2\{(0, 0)} extends to a vector field on the full cylinder. The
origin of the plane “blows-up” to the circle ϕ−1(0, 0) on which the
singularity splits into several simpler singularities. The visualization of
this blow-up is easy. But this process has the disadvantage of using the
transcendental functions: cos and sin and, in case several such blow-ups
are needed, this is computationally very inconvenient.

It would be more advantageous to use a construction involving
rational functions. More difficult to visualize, this algebraic blow-up
is computationally simpler, using only rational transformations. To
blow-up a point of the plane means to replace the point with a line
(directional blow-up) and to construct a manifold playing the role of
the cylinder in the preceding case. The point is replaced by a line with
the change (x, y) → (x, zx). Then the surface will not be a cylinder
but an algebraic surface.

We start with a polynomial differential system (1) with a degenerate
singular point at the origin (0, 0), and we want to do a blow-up
in the direction of the y-axis so as to split the singularity at the
origin into several singularities on the axis x = 0. In order to do
this correctly we must be sure that x = 0 is not a characteristic
direction. In this case, we have p(x, y) = p1(x, y) + · · · + pn(x, y)
and q(x, y) = q1(x, y) + · · · + qn(x, y) where pi(x, y) and qi(x, y) (for
i = 1 . . . , n) are the homogeneous terms involving xryl with r + l = i
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of p and q. We call the starting degree of (1) the positive integer m
such that pm(x, y)2 + qm(x, y)2 ̸= 0, but pi(x, y)

2 + qi(x, y)
2 = 0 for

i = 0, 1, . . . ,m− 1.

Then, we define the Polynomial of Characteristic Directions as
PCD(x, y) = ypm(x, y) − xqm(x, y) where m is the starting degree
of (1). In case PCD(x, y) ̸≡ 0, the factorization of PCD(x, y) gives
the characteristic directions at the origin. So, in order to be sure that
the y-axis is not a characteristic direction, we only need to show that x
is not a factor of PCD(x, y). In case it is, we need to do a linear change
of variables which moves this direction out of the vertical axis and does
not move any other characteristic direction into it. If all the directions
are characteristic, i.e., PCD(x, y) ≡ 0, then the degenerate point will
be star-like, and at least two blow-ups must be done to obtain the
desingularization. In any case there are no degenerate star-like singular
points in quadratic systems. So, the number of characteristic directions
is finite, and the possibility exists to make such a linear change. We will
use changes of the type (x, y) → (x + ky, y) where k is some number
(usually 1). It seems natural to call this linear change a k-twist as
the y-axis gets twisted with some angle depending on k. It is obvious
that the phase portrait of the degenerate point which is studied cannot
depend upon the set of k’s used in the desingularization process.

Once we are sure that we have no characteristic direction on the
y-axis we do the directional blow-up (x, y) = (X,XY ). This change
preserves invariant the axis y = 0 (Y = 0 after the change) and replaces
the singular point (0, 0) with a whole vertical axis. The old orbits which
arrived at (0, 0) with a well-defined slope s now arrive at the singular
point (0, s) of the new system. Studying these new singular points, one
can determine the local behavior around them and their separatrices
which, after the blow-down, describe the behavior of the orbits around
the original singular point up to geometrical equivalence (for definition
see next section). Often one needs to do a tree of blow-up’s (combined
with some translation and/or twists) if some of the singular points
which appear on X = 0 after the first blow-up are also degenerate.

4. Equivalence relations for singularities of planar polyno-
mial vector fields. We first recall the topological equivalence relation
as it is used in most of the literature. Two singularities p1 and p2 are
topologically equivalent if there exist open neighborhoods N1 and N2
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of these points and a homeomorphism Ψ : N1 → N2 carrying orbits to
orbits and preserving their orientations. To reduce the number of cases,
by topological equivalence we shall mean here that the homeomorphism
Ψ preserves or reverses the orientation. This second notion is also used
sometimes elsewhere in the literature (see [2, 19]).

In [19], Jiang and Llibre introduced another equivalence relation for
singularities which is finer than the topological equivalence:

We say that p1 and p2 are qualitatively equivalent if i) they are
topologically equivalent through a local homeomorphism Ψ; and ii) two
orbits are tangent to the same straight line at p1 if and only if the
corresponding two orbits are tangent to the same straight line at p2.

We say that two simple finite nodes, with the respective eigenvalues
λ1, λ2 and σ1, σ2, of a planar polynomial vector field are tangent equiv-
alent if and only if they satisfy one of the following three conditions:
a) (λ1−λ2)(σ1−σ2) ̸= 0; b) λ1−λ2 = 0 = σ1−σ2 and both linearization
matrices at the two singularities are diagonal; c) λ1−λ2 = 0 = σ1−σ2

and the corresponding linearization matrices are not diagonal.

We say that two infinite simple nodes P1 and P2 are tangent equiv-
alent if and only if their corresponding singularities on the sphere are
tangent equivalent and, in addition, in case they are generic nodes, we
have (|λ1| − |λ2|)(|σ1| − |σ2|) > 0 where λ1 and σ1 are the eigenvalues
of the eigenvectors tangent to the line at infinity.

Finite and infinite singular points may either be real or complex.
In case we have a complex singular point we will specify this with
the symbols c⃝ and c⃝ for finite and infinite points, respectively. We
point out that the sum of the multiplicities of all singular points of a
quadratic system (with a finite number of singular points) is always
7. (Here, of course, we refer to the compactification on the complex
projective space P2(R) of the foliation with singularities associated to
the complexification of the vector field.) The sum of the multiplicities
of the infinite singular points is always at least 3; more precisely, it is
always 3 plus the sum of the multiplicities of the finite points which
have gone to infinity.

We use here the following terminology for singularities:

(i) We call elemental a singular point with its both eigenvalues not
zero;
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(ii) We call semi-elemental a singular point with exactly one of its
eigenvalues equal to zero;

(iii) We call nilpotent a singular point with both its eigenvalues zero
but with its Jacobian matrix at that point not identically zero;

(iv) We call intricate a singular point with its Jacobian matrix iden-
tically zero.

The intricate singularities are usually called in the literature linearly
zero. We use here the term intricate to indicate the rather complicated
behavior of phase curves around such a singularity.

Roughly speaking, a singular point p of an analytic differential
system χ is a multiple singularity of multiplicity m if p produces m
singularities, as closed to p as we wish, in analytic perturbations χε

of this system, and m is the maximal such number. In polynomial
differential systems of fixed degree n we have several possibilities for
obtaining multiple singularities.

i) A finite singular point splits into several finite singularities in n-
degree polynomial perturbations.

ii) An infinite singular point splits into some finite and some infinite
singularities in n-degree polynomial perturbations.

iii) An infinite singularity splits only in infinite singular points of
the systems in n-degree perturbations. In all these cases we can
give a precise mathematical meaning using the notion of intersection
multiplicity at a point p of two algebraic curves.

We will say that two foci (or saddles) are order equivalent if their
corresponding orders coincide.

Semi-elemental saddle-nodes are always topologically equivalent.

To define the notion of geometric equivalence relation of singularities
we first define the notion of blow-up equivalence, necessary for nilpotent
and intricate singular points. We start by having a degenerate singular
point p1 at the origin of the plane (x0, y0) with a finite number of
characteristic directions. We define an ε-twist as a k-twist with k small
enough so that no characteristic direction (or special characteristic
direction in case of a star point) with negative slope is moved to positive
slope. Then, if x0 = 0 is a characteristic direction, we do an ε-twist.
After the blow-up (x0, y0) = (x1, y1x1), the singular point is replaced
by the straight line x1 = 0 in the plane (x1, y1). The neighborhood of
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the straight line x1 = 0 in the projective plane obtained identifying the
opposite infinite points of the Poincaré disk is a Möebius band M1.

The straight line x1 = 0 will be invariant and may be formed by
continuous of singular points. In that case, with a time change, this
degeneracy may be removed and the y1-axis will remain invariant.

Now we have a number k1 of singularities located on the axis x1 = 0.
We do not include the infinite singular point at the origin of the local
chart U2 at infinity (Y ̸= 0) because we already know that it does not
play any role in understanding the local phase portrait of the singularity
p1. We can then list the k1 singularities as p1,1, p1,2, . . . , p1,k1 with
decreasing order of the y1 coordinate. The p1,i is adjacent to p1,i+1 in
the usual sense, and p1,k1 is also adjacent to p1,1 on the Möebius band.

Assume now we have a degenerate singular point p1 at the origin of
the plane (x0, y0) with an infinite number of characteristic directions.
Then if x0 = 0 is a special characteristic direction, we do an ε-twist.
After the blow–up (x0, y0) = (x1, y1x0) the singular point is replaced
by the straight line x1 = 0 in the plane (x1, y1). The neighborhood of
the straight line x1 = 0 in the projective plane obtained identifying the
opposite infinite points of the Poincaré disk is a Möebius band M1.

Let p2 be another degenerate singularity located at the origin of
another plane (x0, y0).

The next definition works whether the singular points are star-like
or not.

We say that p1 and p2 are one step blow-up equivalent if modulus a
rotation with center p2 (before the blow-up) and a reflection (if needed)
we have:

(i) the cardinality k1 from p1 equals the cardinality k2 from p2;
(ii) we can construct a homeomorphism ϕ1

p1
: M1 → M2 such that

ϕ1
p1
({x1 = 0}) = {x1 = 0}, ϕ1

p1
sends the points p1,i to p2,i, and

the phase portrait in a neighborhood U of the axis x1 = 0 is
topologically equivalent to the phase portrait on ϕ1

p1
(U);

(iii) ϕ1
p1

sends an elemental (respectively semi-elemental, nilpotent
or intricate) singular point to an elemental (respectively semi-
elemental, nilpotent or intricate) singular point;

(iv) ϕ1
p1

sends a contact point to a contact point.
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Assuming p1,j and ϕ1
p1
(p1,j) = p2,j are both intricate or both

nilpotent, then the process of desingularization (blow-up) must be
continued.

We do exactly the same study we did before for p1 and p2 now
for p1,j and p2,j . We move them to the respective origins of the planes
(x1, y1) and (x1, y1), and we determine whether they are one step blow-
up equivalent or not.

If successive degenerate singular points appear from desingulariza-
tion of p1, we do the same kind of changes that we did for p1,j and apply
the corresponding definition of one step blow-up equivalence. This is
repeated until, after a finite number of blow-up’s, all the singular points
that appear are elemental or semi-elemental.

We say that two singularities p1 and p2, both nilpotent or both
intricate, of two polynomial vector fields χ1 and χ2, are blow-up
equivalent if and only if

(i) they are one step blow-up equivalent;
(ii) at each level j in the process of desingularization of p1 and

of p2, two singularities which are related via the corresponding
homeomorphism are one step blow-up equivalent.

Definition 4.1. Two singularities p1 and p2 of two polynomial vector
fields are locally geometrically equivalent if and only if they are topo-
logically equivalent, they have the same multiplicity and one of the
following conditions is satisfied:

• p1 and p2 are order equivalent foci (or saddles);
• p1 and p2 are tangent equivalent simple nodes;
• p1 and p2 are both centers;
• p1 and p2 are both semi–elemental singularities;
• p1 and p2 are blow–up equivalent nilpotent or intricate singu-
larities.

We say that two infinite singularities P1 and P2 of two polynomial
vector fields are blow-up equivalent if they are blow-up equivalent finite
singularities in the corresponding infinite local charts and the number,
type and ordering of sectors on each side of the line at infinity of P1

coincide with those of P2.
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Definition 4.2. Let χ1 and χ2 be two polynomial vector fields each
having a finite number of singularities. We say that χ1 and χ2 have
geometric equivalent configurations of singularities if and only if we
have a bijection ϑ carrying the singularities of χ1 to singularities of χ2

and, for every singularity p of χ1, ϑ(p) is geometric equivalent with p.

5. Notations for singularities of polynomial differential sys-
tems. In this work, we encounter all the possibilities we have for the
geometric features of the infinite singularities in the whole quadratic
class as well as the way they assemble in systems of this class. Since
we want to precisely describe these geometric features and in order to
facilitate understanding, it is important to have a clear, compact and
congenial notation which easily conveys the information. Of course,
this notation must be compatible with the one used to describe finite
singularities, so we start with the finite ones. The notation we use, even
though it is used here to describe finite and infinite singular points of
quadratic systems, can easily be extended to general polynomial sys-
tems.

We describe the finite and infinite singularities, denoting the first
ones with lower case letters and the second with capital letters. When
describing in a sequence both finite and infinite singular points, we
will always place first the finite ones and only later the infinite ones,
separating them by a semicolon ‘;’.

Elemental points. We use the letters s and S for “saddles,” n and
N for “nodes,” f for “foci” and c for “centers.” In order to augment
the level of precision we will distinguish the finite nodes as follows:

• n for a node with two distinct eigenvalues (generic node);
• nd (a one-direction node) for a node with two identical eigen-
values whose Jacobian matrix cannot be diagonal;

• n∗ (a star-node) for a node with two identical eigenvalues whose
Jacobian matrix is diagonal.

Moreover, in the case of an elemental infinite generic node, we want
to distinguish whether the eigenvalue associated to the eigenvector
directed towards the affine plane is, in absolute value, greater or lower
than the eigenvalue associated to the eigenvector tangent to the line
at infinity. This is relevant because this determines if all the orbits
except one on the Poincaré disk arrive at infinity tangent to the line



52 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

at infinity or transversal to this line. We will denote them as N∞ and
Nf , respectively.

Finite elemental foci and saddles are classified as strong or weak foci,
respectively, strong or weak saddles. When the trace of the Jacobian
matrix evaluated at those singular points is not zero, we call them
strong saddles and strong foci and we maintain the standard notations
s and f . But when the trace is zero, except for centers and saddles of
infinite order (i.e., saddles with all their Poincaré-Lyapounov constants
equal to zero), it is known that the foci and saddles, in the quadratic
case, may have up to 3 orders. We denote them by s(i) and f (i) where
i = 1, 2, 3 is the order. In addition, we have the centers which we denote
by c and saddles of infinite order (integrable saddles) which we denote
by $.

Foci and centers cannot appear as singular points at infinity, and
hence there is no need to introduce their order in this case. In the
case of saddles, we can have weak saddles at infinity but the maximum
order of weak singularities in cubic systems is not yet known. For this
reason, a complete study of weak saddles at infinity cannot be done
at this stage. Due to this, in this work, we shall not even distinguish
between a saddle and a weak saddle at infinity.

All non-elemental singular points are multiple points, in the sense
that there are perturbations which have at least two elemental singular
points as close as we wish to the multiple point. For finite singular
points, we denote with a subindex their multiplicity as in s(5) or in
ês(3) (the notation indicates that the saddle is semi-elemental and̂ indicates that the singular point is nilpotent). In order to describe
the various kinds of multiplicity for infinite singular points we use the
concepts and notations introduced in [28]. Thus, we denote by ‘

(
a
b

)
. . .’

the maximum number a (respectively b) of finite (respectively infinite)
singularities which can be obtained by perturbation of the multiple

point. For example,
(
1
1

)
SN means a saddle-node at infinity produced

by the collision of one finite singularity with an infinite one;
(
0
3

)
S means

a saddle produced by the collision of 3 infinite singularities.

Semi-elemental points. They can either be nodes, saddles or
saddle-nodes, finite or infinite. We will denote the semi-elemental
ones always with an overline, for example, sn, s and n with the
corresponding multiplicity. In the case of infinite points we will put
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on top of the parenthesis with multiplicities.

Moreover, in cases that will be explained later, an infinite saddle-

node may be denoted by
(
1
1

)
NS instead of

(
1
1

)
SN . Semi-elemental nodes

could never be nd or n∗ since their eigenvalues are always different.
In the case of an infinite semi-elemental node, the type of collision

determines whether the point is denoted by Nf or by N∞ where
(
2
1

)
N

is an Nf and
(
0
3

)
N is an N∞.

Nilpotent points. They can either be saddles, nodes, saddle-
nodes, elliptic-saddles, cusps, foci or centers. The first four of these
could be at infinity. We denote the nilpotent singular points with a
hat, ‘̂’, as in ês(3) for a finite nilpotent elliptic-saddle of multiplicity 3
and ĉp(2) for a finite nilpotent cusp point of multiplicity 2. In the case
of nilpotent infinite points, we will put the ‘̂’ on top of the parenthesis

with multiplicity, for example
(̂
1
2

)
PEP −H (the meaning of PEP −H

will be explained in the next paragraph). The relative position of the
sectors of an infinite nilpotent point, with respect to the line at infinity,
can produce topologically different phase portraits. This forces us to
use a notation for these points similar to the notation which we will
use for the intricate points.

Intricate points. It is known that the neighborhood of any singular
point of a polynomial vector field (except for foci and centers) is formed
by a finite number of sectors which could only be of three types:
parabolic, hyperbolic and elliptic (see [15]). Then, a reasonable way to
describe intricate and nilpotent points at infinity is to use a sequence
formed by the types of their sectors. The description we give is the one
which appears in the clock-wise direction (starting anywhere) once the
blow-down of the desingularization is done. Thus, in non degenerate
quadratic systems, we have just seven possibilities for finite intricate
singular points of multiplicity four (see [3]) which are the following
ones:

a) phpphp(4);
b) phph(4);
c) hh(4);
d) hhhhhh(4);
e) peppep(4);
f) pepe(4);
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g) ee(4).

We use lower case because of the finite nature of the singularities
and add the subindex (4) since they are all of multiplicity 4.

For infinite intricate and nilpotent singular points, we insert a dash
(hyphen) between the sectors to split those which appear on one side or
the other of the equator of the sphere. In this way, we will distinguish
between

(
2
2

)
PHP − PHP and

(
2
2

)
PPH − PPH.

Whenever we have an infinite nilpotent or intricate singular point,
we will always start with a sector bordering the infinity (to avoid
using two dashes). When one needs to describe a configuration of
singular points at infinity, then the relative positions of the points
is relevant in some cases. In this paper, this situation only occurs
once for systems having two semi-elemental saddle-nodes at infinity
and a third singular point which is elemental. In this case, we need to
write NS instead of SN for one of the semi-elemental points in order
to have coherence of the positions of the parabolic (nodal) sector of
one point with respect to the hyperbolic (saddle) of the other semi-
elemental point. More concretely, [28, Figure 3] (which corresponds to

Configuration 3 in Figure 4) must be described as
(
1
1

)
SN,

(
1
1

)
SN, N

since the elemental node lies always between the hyperbolic sectors of
one saddle-node and the parabolic ones of the other. However, [28,
Figure 4] (which corresponds to Configuration 4 in Figure 4) must be

described as
(
1
1

)
SN,

(
1
1

)
NS, N since the hyperbolic sectors of each

saddle-node lie between the elemental node and the parabolic sectors
of the other saddle-node. These two configurations have exactly the
same description of singular points but their relative position produces
topologically (and geometrically) different portraits.

For the description of the topological phase portraits around the
isolated singular points the information described above is sufficient.
However, we are interested in additional geometrical features such as
the number of characteristic directions which figure in the final global
picture of the desingularization. In order to add this information we
need to introduce more notation. If two borsecs (the limiting orbits
of a sector) arrive at the singular point with the same slope and
direction, then the sector will be denoted by Hf, Ef or Pf. The index
in this notation refers to the cusp-like form of limiting trajectories of
the sectors. Moreover, in the case of parabolic sectors we want to
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make precise whether the orbits arrive tangent to one borsec or to

the other. We distinguish the two cases by
x
P if they arrive tangent

to the borsec limiting the previous sector in clock-wise sense or
y
P if

they arrive tangent to the borsec limiting the next sector. Clearly,
a parabolic sector denoted by P ∗ would correspond to a sector in
which orbits arrive with all possible slopes between the borsecs. In
the case of a cusp-like parabolic sector, all orbits must arrive with only

one slope, but the distinction between
x
P and

y
P is still valid if we

consider the different desingularizations we obtain from them. Thus,
complicated intricate singular points like the two we see in Figure 4 may
be described (considering the horizontal line as the line at infinity)

as
(
4
2

) y
PE

x
P −HHH (case (a)) and

(
4
3

)
E

x
PfH −H

y
PfE (case (b)),

respectively.

The lack of finite singular points will be encapsulated in the notation
∅. In the cases we need to point out the lack of an infinite singular point,
we will use the symbol ∅.

Finally, there is also the possibility that we have an infinite number
of finite or of infinite singular points. In the first case, this means that
the polynomials defining the differential system are not coprime. Their
common factor may produce a line or conic with real coefficients filled
up with singular points.

Line at infinity filled up with singularities. It is known that
any such system has in a sufficiently small neighborhood of infinity
one of six topological distinct phase portraits (see [31]). The way
to determine these portraits is by studying the reduced systems on
the infinite local charts after removing the degeneracy of the systems
within these charts. In case a singular point still remains on the line
at infinity we study such a point. In [31], the tangential behavior of
the solution curves was not considered in the case of a node. If, after
the removal of the degeneracy in the local charts at infinity a node
remains, this could either be of the type Nd, N or N⋆ (this last case
does not occur in quadratic systems as we will see in this paper). Since
no eigenvector of such a node N (for quadratic systems) will have the
direction of the line at infinity we do not need to distinguish Nf and
N∞. Other types of singular points at infinity of quadratic systems,
after removal of the degeneracy, can be saddles, centers, semi-elemental
saddle-nodes or nilpotent elliptic-saddles. We also have the possibility
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of no singularities after the removal of the degeneracy. To convey the
way these singularities were obtained as well as their nature, we use

the notation [∞; ∅], [∞; N ], [∞; Nd], [∞; S], [∞; C], [∞;
(
1
0

)
SN ] or

[∞;
(̂
3
0

)
ES].

Degenerate systems. We will denote with the symbol ⊖ the case
when the polynomials defining the system have a common factor. This
symbol stands for the most generic of these cases which corresponds to
a real line filled up with singular points. The degeneracy can also be
produced by a common quadratic factor which defines a conic. It is
well known that, by an affine transformation, any conic over R can be
brought to one of the following forms: x2 + y2 − 1 = 0 (real ellipse),
x2 + y2 + 1 = 0 (complex ellipse), x2 − y2 = 1 (hyperbola), y − x2 = 0
(parabola), x2 − y2 = 0 (pair of intersecting real lines), x2 + y2 = 0
(pair of intersecting complex lines), x2 − 1 = 0 (pair of parallel real
lines), x2 + 1 = 0 (pair of parallel complex lines) or x2 = 0 (double
line).

We will indicate each case by the following symbols:

•⊖[|] for a real straight line;
•⊖[◦] for a real ellipse;
•⊖[ c⃝] for a complex ellipse;
•⊖[ )( ] for an hyperbola;
•⊖[∪] for a parabola;
•⊖[×] for two real straight lines intersecting at a finite point;
•⊖[· ] for two complex straight lines which intersect at a real
finite point.

•⊖[∥] for two real parallel lines;
•⊖[∥c] for two complex parallel lines;
•⊖[|2] for a double real straight line.

Moreover, we also want to determine whether, after removing the
common factor of the polynomials, singular points remain on the curve
defined by this common factor. If the reduced system has no finite
singularity on this curve, we will use the symbol ∅ to describe this
situation. If some singular points remain we will use the corresponding
notation of their types. As an example, we complete the notation above
as follows:

•
(
⊖[|];∅

)
denotes the presence of a real straight line filled up with
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singular points such that the reduced system has no singularity
on this line;

•
(
⊖ [|]; f

)
denotes the presence of the same straight line such

that the reduced system has a strong focus on this line;
•
(
⊖ [∪];∅

)
denotes the presence of a parabola filled up with

singularities such that no singular point of the reduced system
is situated on this parabola.

Degenerate systems with non-isolated singular points at
infinity, which are however isolated on the line at infinity. The
existence of a common factor of the polynomials defining the differential
system also affects the infinite singular points. We point out that the
projective completion of a real affine line filled up with singular points
has a point on the line at infinity which will then be also a non-isolated
singularity.

In order to describe correctly the singularities at infinity, we must
also mention this kind of phenomena and describe what happens to
such points at infinity after removal of the common factor. To show
the existence of the common factor we will use the same symbol ⊖ as
before, and for the type of degeneracy we use the symbols introduced
above. We will use the symbol ∅ to denote the non-existence of real
infinite singular points after the removal of the degeneracy. We will
use the corresponding capital letters to describe the singularities which
remain there. Let us take note that a simple straight line, two parallel
lines (real or complex), one double line or one parabola defined by the
common factor (all taken over the reals) imply the existence of one
real non-isolated singular point at infinity in the original degenerate
system. However, a hyperbola and two real straight lines intersecting
at a finite point imply the presence of two real non-isolated singular
points at infinity in the original degenerate system. Finally, a complex
ellipse and two complex straight lines which intersect at a real finite
point imply the presence of two complex non-isolated singular points at
infinity in the original degenerate system. Thus, in the reduced system,
these points may disappear as singularities and, in case they remain,
they must be described. For the first five cases mentioned above we
will give the description of the corresponding infinite point. In the next
five cases we will give the description of the corresponding two singular
points. As agreed, we will use capital letters to denote them since they
are on the line at infinity. We give below some examples:
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• Nf , S,
(
⊖ [|]; ∅

)
means that the system has a node at infinity

such that an infinite number of orbits arrive tangent to the
eigenvector in the affine part, a saddle, and one non-isolated
singular point, which belongs to a real affine straight line filled
up with singularities, and such that the reduced linear system
has no infinite singular points in that position;

• S,
(
⊖ [|];N∗) means that the system has a saddle at infinity,

and one non–isolated singular point which belongs to a real
affine straight line filled up with singularities, and such that
the reduced linear system has a star node in that position;

• N∗,
(
⊖ [ )( ]; ∅, ∅

)
means that the system has a saddle at in-

finity, and two non-isolated singular points which belong to a
hyperbola filled up with singularities, and such that the reduced
constant system has no singularities in those positions;

•
(
⊖ [×];N∗, ∅

)
means that the system has two non-isolated sin-

gular points at infinity which belong to two real intersecting
straight lines filled up with singularities, and such that the re-
duced constant system has a star node in one of those positions
and no singularities in the other;

• N∗,
(
⊖ [◦]; ∅, ∅

)
means that the system has a saddle at infin-

ity, and two non-isolated (complex) singular points which are
located on the complexification of a real conic which has no
real points at infinity, and the reduced constant system has no
singularities in those positions.

When there is a non-isolated infinite singular point such that the
reduced system has a singularity at that position, it may happen that
one or several characteristic directions at this point, directed towards
the affine plane, could coincide with a tangent line to the curve of
singularities at this point. This situation could produce many different
geometrical (or even topological) combinations, but in the quadratic
case we only have a few of them for which we introduce a coherent
notation. This notation can be further developed for higher degree
systems. In quadratic systems we only need to distinguish among some
situations in which, after the removal of the degeneracy, a characteristic
direction of the infinite singular point may or may not coincide with a
tangent line to the curve of singularities at this point. We show two
cases in Figure 5 that need to be distinguished (case (a) and (b)). Here
we will use a numerical subscript which denotes the cardinal number K
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of the union of the set of characteristic directions, together with the set
of tangent lines to the curve of singularities at this point, all of them
considered in a neighborhood of the point at infinity on the Poincaré
sphere. The singularities at infinity of the examples of Figure 5 would
then be denoted by S,

(
⊖ [|];N∞

3

)
(case (a)) and S,

(
⊖ [|];N∞

2

)
(case

(b)).

FIGURE 5.

Degenerate systems with the line at infinity filled up with
singularities. For a quadratic system, this implies that the polynomi-
als must have a common linear factor, and there are only two possible
phase portraits, which can be seen in Figure 5 (portraits (c) and (d)).
In order to be consistent with our notation, and considering general-
ization to higher degree systems, we describe the two cases in a way
coherent with what we have done up to now.

Case (c) is denoted by [∞;
(
⊖ [|]; ∅3

)
], which means:
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• the line at infinity is filled up with singular points;
• the reduced quadratic system has on one of the infinite local
charts a non-isolated singular point on the line at infinity due
to the affine line of degeneracy;

• once the original system is reduced to a linear one by removing
the common factor, the infinity continues to be filled up with
singular points;

• once the system on a local chart at infinity around the singular-
ity which is common to both lines filled up with singular points,
is reduced by completely removing the degeneracy, there is no
singular point on that intersection;

• the cardinal number K is 3. This means that, apart from the
line of singularities and the line at infinity, we have another
characteristic direction pointing towards the affine plane.

Case (d) is denoted by [∞;
(
⊖ [|]; ∅2

)
], which means exactly the

same items as above with the exception that cardinal number K is 2.
That is, beyond the line of singularities and the line at infinity, we have
no other characteristic direction.

6. Assembling multiplicities for global configurations of sin-
gularities at infinity using divisors. The singular points at infinity
belong to compactifications of planar polynomial differential systems,
defined on the affine plane. We begin this section by briefly recalling
these compactifications.

6.1. Compactifications associated to planar polynomial differ-
ential systems.

6.1.1. Compactification on the sphere and on the Poincaré disk. Pla-
nar polynomial differential systems (1) can be compactified on the
sphere. For this, we consider the affine plane of coordinates (x, y) as be-
ing the plane Z = 1 in R3 with the origin located at (0, 0, 1), the x-axis
parallel with the X-axis in R3, and the y-axis parallel to the Y -axis.
We use central projection to project this plane on the sphere as fol-
lows: for each point (x, y, 1), we consider the line joining the origin with
(x, y, 1). This line intersects the sphere in two points P1 = (X,Y, Z)

and P2 = (−X,−Y,−Z) where (X,Y, Z) = (1/
√
x2 + y2 + 1)(x, y, 1).
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The applications (x, y) 7→ P1 and (x, y) 7→ P2 are bianalytic and as-
sociate to a vector field on the plane (x, y) an analytic vector field Ψ
on the upper hemisphere and also an analytic vector field Ψ′on the
lower hemisphere. A theorem stated by Poincaré and proved in [16]
says that there exists an analytic vector field Θ on the whole sphere
which simultaneously extends the vector fields on the two hemispheres.
By the Poincaré compactification on the sphere of a planar polynomial
vector field we mean the restriction Ψ of the vector field Θ to the union
of the upper hemisphere with the equator. For more details, we refer
to [20]. The vertical projection of Ψ on the plane Z = 0 gives rise to
an analytic vector field Φ on the unit disk of this plane. By the com-
pactification on the Poincaré disk of a planar polynomial vector field,
we understand the vector field Φ. By a singular point at infinity of a
planar polynomial vector field we mean a singular point of the vector
field Ψ which is located on the equator of the sphere, respectively, a
singular point of the vector field Φ located on the circumference of the
Poincaré disk.

6.1.2. Compactification on the projective plane. To a polynomial sys-
tem (1) we can associate a differential equation ω1 = q(x, y) dx −
p(x, y) dy = 0. Assuming the differential system (1) is with real coeffi-
cients, we may associate to it a foliation with singularities on the real,
respectively complex, projective plane as indicated below. The equa-
tion ω1 = 0 defines a foliation with singularities on the real or complex
plane depending on if we consider the equation as being defined over
the real or complex affine plane. It is known that we can compact-
ify these foliations with singularities on the real, respectively complex,
projective plane. In the study of real planar polynomial vector fields,
their associated complex vector fields and their singularities play an
important role. In particular, such a vector field could have complex,
non-real singularities, by this meaning singularities of the associated
complex vector field. We briefly recall below how these foliations with
singularities are defined.

The application Υ : K2 → P2(K) defined by (x, y) 7→ [x : y : 1]
is an injection of the plane K2 over the field K into the projective
plane P2(K) whose image is the set of [X : Y : Z] with Z ̸= 0. If
K is R or C, this application is an analytic injection. If Z ̸= 0, then
(Υ)−1([X : Y : Z]) = (x, y) where (x, y) = (X/Z, Y/Z). We obtain a
map i : K3 − {Z = 0} → K2 defined by [X : Y : Z] 7→ (X/Z, Y/Z).
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Considering that dx = d(X/Z) = (ZdX − XdZ)/Z2 and dy =
(ZdY −Y dZ)/Z2, the pull-back of the form ω1 via the map i yields the
form i ∗ (ω1) = q(X/Z, Y/Z)(ZdX −XdZ)/Z2 − p(X/Z, Y/Z)(ZdY −
Y dZ)/Z2 which has poles on Z = 0. Then the form ω = Zm+2i ∗ (ω1)
on K3−{(0, 0, 0)}, K being R or C and m being the degree of systems
(1) yields the equation ω = 0:

A(X,Y, Z)dX +B(X,Y, Z)dY + C(X,Y, Z)dZ = 0

on K3 − {(0, 0, 0)} where A, B and C are homogeneous polynomials
overK with A(X,Y, Z) = ZQ(X,Y, Z), Q(X,Y, Z) = Zmq(X/Z, Y/Z),
B(X,Y, Z) = ZP (X,Y, Z), P (X,Y, Z) = Zmp(X/Z, Y/Z) and C(X,Y,
Z) = Y P (X,Y, Z)−XQ(X,Y, Z).

The equation AdX + BdY + CdZ = 0 defines a foliation F with
singularities on the projective plane over K with K either R or C. The
points at infinity of the foliation defined by ω1 = 0 on the affine plane
are the points [X : Y : 0], and the line Z = 0 is called the line at
infinity of the foliation with singularities generated by ω1 = 0.

The singular points of the foliation F are the solutions of the three
equations A = 0, B = 0, C = 0. In view of the definitions of A,B,C, it
is clear that the singular points at infinity are the points of intersection
of Z = 0 with C = 0.

6.2. Assembling data on infinite singularities in divisors of
the line at infinity. In the previous sections, we have seen that
there are two types of multiplicities for a singular point p at infinity:
one expresses the maximum number m of infinite singularities which
can split from p, in small perturbations of the system, and the other
expresses the maximum numberm′ of finite singularities which can split
from p, in small perturbations of the system. In Section 5 we mentioned
that we shall use a column (m,m′)t to indicate this situation.

We are interested in the global picture which includes all singulari-
ties at infinity. Therefore, we need to assemble the data for individual
singularities in a convenient, precise way. To do this, we use for this
situation the notion of cycle on an algebraic variety as indicated in [23]
and which was used in [20] as well as in [28].

We briefly recall here the definition of this notion. Let V be an
irreducible algebraic variety over a field K. A cycle of dimension r or
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r − cycle on V is a formal sum
∑

W nWW , where W is a subvariety
of V of dimension r which is not contained in the singular locus of V ,
nW ∈ Z, and only a finite number of the coefficients nW are non-zero.
The degree deg (J) of a cycle J is defined by

∑
W nW . An (n−1)-cycle

is called a divisor on V . These notions were used for classification
purposes of planar quadratic differential systems in [20, 23, 28].

To a system (1) we can associate two divisors on the line at infinity
Z = 0 of the complex projective plane: DS(P,Q;Z) =

∑
w Iw(P,Q)w

and DS(C,Z) =
∑

w Iw(C,Z)w, where w ∈ {Z = 0} and where by
Iw(F,G) we mean the intersection multiplicity at w of the curves
F (X,Y, Z) = 0 and G(X,Y, Z) = 0, with F and G homogeneous
polynomials in X,Y, Z over C. For more details, see [20].

Following [28], we assemble the above two divisors on the line at
infinity into just one, but with values in the ring Z2:

DS =
∑

ω∈{Z=0}

(
Iw(P,Q)
Iw(C,Z)

)
w.

This divisor encodes for us the total number of singularities at infinity
of a system (1) as well as the two kinds of multiplicities which each
singularity has. The meaning of these two kinds of multiplicities
are described in the definition of the two divisors DS(P,Q;Z) and
DS(C,Z) on the line at infinity.

7. Invariant polynomials and preliminary results. Consider
real quadratic systems of the form:

(2)

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0=a00, p1(x, y)=a10x+a01y, p2(x, y)=a20x
2+2a11xy+a02y

2,

q0=b00, q1(x, y)=b10x+b01y, q2(x, y)=b20x
2+2b11xy+b02y

2.

Let ã = (a00, a10, a01, a20, a11, a02, b00, b10, b01, b20, b11, b02) be the
12-tuple of the coefficients of systems (2), and denote R[ã, x, y] =
R[a00, . . . , b02, x, y].
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7.1. Affine invariant polynomials associated to infinite singu-
larities. It is known that on the set QS of all quadratic differential
systems (2) acts the group Aff (2,R) of the affine transformation on
the plane (cf., [28]). For every subgroup G ⊆ Aff (2,R), we have an
induced action of G on QS. We can identify the set QS of systems (2)
with a subset of R12 via the map QS → R12 which associates to each
system (2) the 12-tuple (a00, . . . , b02) of its coefficients.

For the definitions of a GL-comitant and invariant as well as for
the definitions of a T -comitant and a CT -comitant we refer the reader
to the paper [28] (see also [35]). Here, we shall only construct the
necessary T -comitants and CT -comitants associated to configurations
of infinite singularities (including multiplicities) of quadratic systems
(2).

Consider the polynomial Φα,β = αP ∗ + βQ∗ ∈ R[ã, X, Y, Z, α, β]
where P ∗ = Z2P (X/Z, Y/Z), Q∗ = Z2Q(X/Z, Y/Z), P, Q ∈ R[ã, x, y]
and max(deg(x,y) P, deg(x,y) Q) = 2. Then

Φα,β = s11(ã, α, β)X
2 + 2s12(ã, α, β)XY + s22(ã, α, β)Y

2

+ 2s13(ã, α, β)XZ + 2s23(ã, α, β)Y Z + s33(ã, α, β)Z
2,

and we denote

D̃(ã, x, y) = 4 det ||sij(ã, y,−x)||i,j∈{1,2,3} ,

H̃(ã, x, y) = 4 det ||sij(ã, y,−x)||i,j∈{1,2} .

We consider the polynomials

(3)

Ci(ã, x, y) = ypi(ã, x, y)− xqi(ã, x, y),

Di(ã, x, y) =
∂

∂x
pi(ã, x, y) +

∂

∂y
qi(ã, x, y),

in R[ã, x, y] for i = 0, 1, 2 and i = 1, 2, respectively. Using the so-
called transvectant of order k (see [17, 21]) of two polynomials f ,
g ∈ R[ã, x, y],

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
,
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we construct the following GL-comitants of the second degree with the
coefficients of the initial system

T1 = (C0, C1)
(1)

, T2 = (C0, C2)
(1)

, T3 = (C0, D2)
(1)

,

T4 = (C1, C1)
(2)

, T5 = (C1, C2)
(1)

, T6 = (C1, C2)
(2)

,

T7 = (C1, D2)
(1)

, T8 = (C2, C2)
(2)

, T9 = (C2, D2)
(1)

.

Using these GL-comitants as well as the polynomials (3) we con-
struct the additional invariant polynomials (see also [28])

M̃(ã, x, y) = (C2, C2)
(2) ≡ 2Hess

(
C2(ã, x, y)

)
;

η(ã) = (M̃, M̃)(2)/384 ≡ Discrim
(
C2(ã, x, y)

)
;

K̃(ã, x, y) = Jacob
(
p2(ã, x, y), q2(ã, x, y)

)
;

K1(ã, x, y) = p1(ã, x, y)q2(ã, x, y)− p2(ã, x, y)q1(ã, x, y);

K2(ã, x, y) = 4(T2, M̃ − 2K̃)(1)+ 3D1(C1, M̃ − 2K̃)(1)

− (M̃ − 2K̃)
(
16T3 − 3T4/2 + 3D2

1

)
;

K3(ã, x, y)= C2
2 (4T3 + 3T4)+C2(3C0K̃−2C1T7)+2K1(3K1−C1D2);

L̃(ã, x, y) = 4K̃ + 8H̃ − M̃ ;

L1(ã, x, y) = (C2, D̃)(2);

L2(ã, x, y) = (C2, D̃)(1);

L3(ã, x, y) = C2
1 − 4C0C2;

R̃(ã, x, y) = L̃+ 8K̃;

κ(ã) = (M̃, K̃)(2)/4;

κ1(ã) = (M̃, C1)
(2);

κ2(ã) = (D2, C0)
(1);

Ñ(ã, x, y) = K̃(ã, x, y) + H̃(ã, x, y);

θ(ã) = −(Ñ , Ñ)(2)/2 ≡ Discrim
(
Ñ(ã, x, y)

)
;

θ1(ã) = 16η(ã) + κ(ã);

θ2(ã) =
(
C1, Ñ

)(2)
/16;

θ3(ã) =
(
2
(
F̃ , Ñ

)(2) − (
(D̃, H̃)(2), D2

)(1))
/32;
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θ4(ã) =
(
(C2, Ẽ)(2), D2

)(1)
;

θ5(ã, x, y) = 2C2(T6, T7)
(1) − (T5 + 2D2C1)(C1, D

2
2)

(2);

θ6(ã, x, y) = C1T8 − 2C2T6,

where

Ẽ =
[
D1(2T9 − T8)− 3 (C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̃ =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) + 48C0 (D2, T9)

(1)− 9D2
2T4

+ 288D1Ẽ − 24
(
C2, D̃

)(2)

+120
(
D2, D̃

)(1)

− 36C1 (D2, T7)
(1)

+8D1 (D2, T5)
(1)

]
/144.

The geometrical meaning of the invariant polynomials C2, M̃ and η
is revealed in the next lemma (see [28]).

Lemma 7.1. The form of the divisor DS(C,Z) for systems (2) is
determined by the corresponding conditions indicated in Table 1, where
we write wc

1 + wc
2 + w3 if two of the points, i.e., wc

1, w
c
2, are complex

but not real. Moreover, for each form of the divisor DS(C,Z) given
in Table 1, the quadratic systems (2) can be brought via a linear
transformation to one of the following canonical systems (SI)–(SV )
corresponding to their behavior at infinity.

{
ẋ = a+ cx+ dy + gx2 + (h− 1)xy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SI){

ẋ = a+ cx+ dy + gx2 + (h+ 1)xy,

ẏ = b+ ex+ fy − x2 + gxy + hy2;
(SII){

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy + (g − 1)xy + hy2;
(SIII){

ẋ = a+ cx+ dy + gx2 + hxy,

ẏ = b+ ex+ fy − x2 + gxy + hy2,
(SIV )



FROM TOPOLOGICAL TO GEOMETRICAL EQUIVALENCE 67

{
ẋ = a+ cx+ dy + x2,

ẏ = b+ ex+ fy + xy.
(SV )

TABLE 1.

Case Form of DS(C,Z)
Necessary and

sufficient conditions
on the comitants

1 w1 + w2 + w3 η > 0

2 wc
1 + wc

2 + w3 η < 0

3 2w1 + w2 η = 0, M̃ ̸= 0

4 3w M̃ = 0, C2 ̸= 0

5 DS(C,Z) undefined C2 = 0

Consider the differential operator L = x·L2−y·L1 acting on R[a, x, y]
constructed in [8], where

L1 = 2a00
∂

∂a10
+ a10

∂

∂a20
+

1

2
a01

∂

∂a11

+ 2b00
∂

∂b10
+ b10

∂

∂b20
+

1

2
b01

∂

∂b11
,

L2 = 2a00
∂

∂a01
+ a01

∂

∂a02
+

1

2
a10

∂

∂a11

+ 2b00
∂

∂b01
+ b01

∂

∂b02
+

1

2
b10

∂

∂b11
.

Using this operator and the affine invariant µ0 = Resx
(
p2(ã, x, y),

q2(ã, x, y)
)
/y4, we construct the following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, . . . , 4,

where L(i)(µ0) = L(L(i−1)(µ0)).

These polynomials are in fact comitants of systems (2) with respect
to the group GL(2,R) (see [8]). Their geometrical meaning is revealed
in Lemmas 7.2 and 7.3 below.
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Lemma 7.2. ([7]). The total multiplicity of all finite singularities
of a quadratic system (2) equals 4 − k if and only if, for every i ∈
{0, 1, . . . , k − 1}, we have µi(ã, x, y) = 0 in R[x, y] and µk(ã, x, y) ̸= 0.
Moreover, a system (2) is degenerate (i.e., gcd(P,Q) ̸= constant) if
and only if µi(ã, x, y) = 0 in R[x, y] for every i = 0, 1, 2, 3, 4.

Lemma 7.3. ([8]). The point M0(0, 0) is a singular point of multi-
plicity k (1 ≤ k ≤ 4) for a quadratic system (2) if and only if for
every i ∈ {0, 1, . . . , k − 1} we have µ4−i(ã, x, y) = 0 in R[x, y] and
µ4−k(ã, x, y) ̸= 0.

We base our work here on results obtained in [28, 31] where
integer valued invariants and invariant polynomials were used to classify
global singularities in the neighborhood of infinity. We integrate this
information here using invariant polynomials and types of divisors on
the line at infinity, in a unified theorem where we replace Figure j with
Configuration j from j = 1, . . . , 46. This theorem is stated as follows:

Theorem 7.4. Consider the family of planar quadratic differential
systems. The bifurcation diagram of the phase portraits around infinity
in the 12-dimensional parameter space of coefficients is given by using
invariant polynomials in Diagrams 5–7, and their local phase portraits
are given in Figures 6 and 7.

8. The proof of the main theorem. As we have to examine the
infinite singularities we shall consider step by step each one of the five
canonical systems (SI)–(SV ) (see Lemma 7.1) which are associated to
infinite singularities.

8.1. The family of systems (SI). For these systems, we have
C2 = yp2(x, y)− xq2(x, y) = xy(x− y) and η > 0. Therefore, at infin-
ity, we have three real distinct singularities: R1(1, 0, 0), R2(0, 1, 0) and
R3(1, 1, 0). Constructing the corresponding systems at infinity (pos-
sessing the point Ri (i = 1, 2, 3) at the origin of coordinates), we get,
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respectively:
(4)

R1 −→
{
u̇ = u− ez − u2 + (c− f)uz − bz2 + du2z + auz2,
ż = gz + (h− 1)uz + cz2 + duz2 + az3;

R2 −→
{
v̇ = v − dz − v2 + (−c+ f)vz − az2 + ev2z + bvz2,
ż = hz + (g − 1)vz + fz2 + evz2 + bz3;

R3 −→

u̇ = u− (c+ d− e− f)z + u2 − (c+ 2d− f)uz − (a− b)z2

−du2z − auz2,
ż = (1− g − h)z − (h− 1)uz − (c+ d)z2 − duz2 − az3.

So the corresponding matrices for these singularities are as follows:

(5)

R1 =⇒
(

1 −e
0 g

)
; R2 =⇒

(
1 −d
0 h

)
;

R3 =⇒
(

1 −c− d+ e+ f
0 1− g − h

)
.

Remark 8.1. The eigenvalues of R1 (respectively R2; R3) are λ1 = 1
and λ2 = g (respectively λ2 = h; λ2 = 1 − g − h). We also denote
ξ = −e (respectively ξ = −d; ξ = −c− d+ e+ f) for R1 (respectively
R2; R3). The eigenvalue λ1 is associated to the eigenvector tangent to
the line at infinity, whereas λ2 is associated to the eigenvector directed
towards the affine plane. Thus, the point Ri for i = 1, 2, 3 is a node if
λ2 > 0 and, according to the notation introduced in Section 5, when
λ2 > 1, the singular point Ri is N

∞ and if λ2 < 1, it is Nf . Moreover,
when λ2 = 1, the singular point Ri is a star node (i.e., N∗) if ξ = 0,
and it is a one direction node (i.e., Nd) if ξ ̸= 0.

Following Theorem 7.4 (see Diagram 5) we calculate for systems (SI)
the value of the corresponding invariant polynomials:

(6) µ0 = gh(g + h− 1), κ = 16(g + h− g2 − gh− h2).

8.1.1. The case µ0 < 0. According to Theorem 7.4, all three infinite
singularities are elemental. Moreover, by [28], we have a node and two
saddles if κ < 0 and three nodes if κ > 0. We claim that, in the first
case, we have a node N∞, whereas in the second case, all three nodes
are of type Nf .
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Indeed, assume first κ < 0, i.e., we have a node and two saddles.
This means that two of the values g, h and 1− g − h are negative and
one positive. Without loss of generality, we may assume g > 0 (i.e., R1

is a node), h < 0 and 1−g−h < 0. Then g > 1−h > 1 and, according
to Remark 8.1, R1 is a node N∞.

FIGURE 6. Topologically distinct local configurations of ISPs ([28, 31]).
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DIAGRAM 5. Topological configuration for the case η ̸= 0.

Suppose now κ > 0, i.e., we have three nodes. Therefore, according
to (4), the relations g > 0, h > 0 and g + h < 1 must hold. Hence,
g < 1, h < 1 and, by Remark 8.1, all three nodes are Nf . Thus, our
claim is proved.



72 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

DIAGRAM 6. Topological configuration for the case η = 0, M̃ ̸= 0.

8.1.2. The case µ0 > 0. By Theorem 7.4 and [28] systems (SI)
possess at infinity one saddle and two nodes. According to Remark 8.1,
the types of the nodes depend on the three values λ2 − 1 with λ2 ∈
{g, h, 1−g−h}. Moreover, if one of these values vanishes (for example,
h− 1 = 0) then in order to distinguish between a star node and a one
direction node we need to distinguish if either the value ξ (which in
this case is −d) vanishes or not. So it is convenient to introduce for the
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DIAGRAM 6 (continued). Topological configuration for the case η = 0, M̃ ̸= 0.

singular points Ri (i = 1, 2, 3) the following additional notations:

(7)
τ1 = g − 1, τ2 = h− 1, τ3 = (1− g − h)− 1 = −(g + h);
ξ1 = −e, ξ2 = −d, ξ3 = −c− d+ e+ f.

Then, for systems (SI) we calculate

θ = 8τ1τ2τ3,

θ1 = 16(τ1τ2 + τ1τ3 + τ2τ3),

4θ2 = (τ1τ2ξ3 + τ1τ3ξ2 − τ2τ3ξ1),

(8)

θ3∣∣{τ1=τ2=0}
= −2ξ1ξ2, θ4∣∣{τ1=τ2=0}

= ξ1 + ξ2,

θ3∣∣{τ1=τ3=0}
= −2ξ1ξ3, θ4∣∣{τ1=τ3=0}

= −(ξ1 + ξ3),

θ3∣∣{τ2=τ3=0}
= 2ξ2ξ3, θ4∣∣{τ2=τ3=0}

= −(ξ2 − ξ3),

In order to distinguish the signs of the values τ1, τ2 and τ3, using the
Viète’s theorem we construct the equation of degree three possessing
these quantities as the roots:

z3 − (τ1 + τ2 + τ3)z
2 + (τ1τ2 + τ1τ3+
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DIAGRAM 7. Topological configuration for the case M̃ = 0.

Considering (7), the above equation is equivalent to

(9) F (z) ≡ z3 + 2z2 +
θ1
16

z − θ

8
= 0.

We note that the existence of one saddle among the singular points Ri

(i = 1, 2, 3) implies that one of the roots of the equation (9) is negative.

The subcase θ < 0. Then the remaining two roots are both of the
same sign. Moreover, considering the zeros of the function F ′(z) =
3z2 +4z+ θ1/16, we conclude, that besides the negative zero of (9) we
have two negative roots if θ1 > 0 and two positive ones if θ1 < 0. We
note that the conditions µ0 > 0, θ < 0 and θ1 = 0 are incompatible as
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FIGURE 7. Topologically distinct local configurations

of ISPs for degenerate quadratic systems.

it can be easily seen using the respective graphic.

Thus, besides the saddle we have at infinity two nodes N∞, N∞ if
θ1 < 0 and Nf , Nf if θ1 > 0.

The subcase θ > 0. Then the remaining two zeros are of opposite signs
and hence, beside the saddle we have at infinity the nodes Nf , N∞.

The subcase θ = 0. In this case one of the roots of (9) vanishes and
hence at infinity we have a node with two coinciding eigenvalues.

Assume first θ1 ̸= 0. , i.e., other two zeros do not vanish. More exactly,
as one of the zeros of F is negative, the second one is positive if θ1 < 0,
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and it is negative if θ1 > 0.

It remains to distinguish whether the node with two coinciding
eigenvalues is a Nd or it is a N∗. We may assume that such a node
is R1 (otherwise we can apply a linear transformation). Therefore, the
condition g = 1 (i.e., τ1 = 0) holds and considering (8) we obtain
θ1 = 16τ2τ3 ̸= 0 and θ2 = −τ2τ3ξ1/4. So due to θ1 ̸= 0 the condition
ξ1 = 0 is equivalent to θ2 = 0.

Thus, in the cases θ = 0 and θ1 ̸= 0,. we arrive at the following
configurations, respectively:

(10)

θ1 < 0, θ2 ̸= 0 =⇒ S, N∞, Nd;
θ1 < 0, θ2 = 0 =⇒ S, N∞, N∗;
θ1 > 0, θ2 ̸= 0 =⇒ S, Nf , Nd;
θ1 > 0, θ2 = 0 =⇒ S, Nf , N∗.

Suppose now that θ1 = 0. Then two of the roots of (9) vanish and
therefore at infinity we have two nodes of the type either Nd or N∗.
We may consider that the infinite singular point N3 is a saddle (then
τ3 < 0) and in this case the condition τ1 = τ2 = 0 (i.e., g = h = 1) must
be satisfied. According to (8), in this case we obtain θ3 = −2ξ1ξ2 and
θ4 = ξ1 + ξ2. So, evidently, we obtain Nd, Nd (respectively, Nd, N∗;
N∗, N∗) if θ3 ̸= 0 (respectively, θ3 = 0, θ4 ̸= 0; θ3 = θ4 = 0).

8.1.3. The case µ0 = 0, µ1 ̸= 0. In this case exactly one finite point
has gone to infinity. Considering (6), we have gh(g + h − 1) = 0 and
we may assume g = 0 due to a linear transformation (which replaces
the corresponding lines defined by the factors of C2 = xy(x − y)). So
the singular point R1 becomes a semi-elemental saddle-node and for
systems (SI) we calculate

(11) µ0 = 0, µ1 = (1− h)h(c− e+ eh)y ̸= 0, κ = 16h(1− h).

Remark 8.2. If κ ̸= 0 (i.e., h(h − 1) ̸= 0) then considering (5) and
g = 0 we conclude that R2 and R3 are elemental infinite singularities.
Moreover, we have a saddle and a node N∞ if κ < 0 and there are two
nodes Nf , Nf if κ > 0.

The condition µ1 ̸= 0 implies κ ̸= 0 and, by the above remark,
besides the saddle-node at infinity we have the singular points S, N∞
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if κ < 0 and Nf , Nf if κ > 0.

8.1.4. The case µ0 = µ1 = 0. We shall consider two geometrically
distinct situations (see Theorem 7.4): κ ̸= 0 (when systems (SI) have
at infinity only one multiple singularity) and κ = 0 (when at infinity
there are two multiple singularities).

The subcase κ ̸= 0. Then non-degenerate systems (SI) (i.e., systems

with
∑4

i=0 µ
2
i ̸= 0) possess at infinity only one multiple singularity

(in this case, it is the point R1). Moreover, its multiplicity is three
(respectively four, five) if µ2 ̸= 0 (respectively, µ2 = 0, µ3 ̸= 0;
µ2 = µ3 = 0, µ4 ̸= 0). It is clear that this point is a semi-elemental
saddle-node in the case of even multiplicity, and it is either a saddle or
a node if its multiplicity is an odd number. Considering Theorem 7.4,
Remark 8.2 and [28] for non-degenerate systems (SI) in the cases
µ0 = µ1 = 0 and κ ̸= 0 we obtain the following configurations of
infinite singularities:

µ2 < 0, κ < 0 =⇒
(
2
1

)
S, S, N∞;

µ2 < 0, κ > 0 =⇒
(
2
1

)
N, Nf , Nf ;

µ2 > 0, κ < 0 =⇒
(
2
1

)
N, S, N∞;

µ2 > 0, κ > 0 =⇒
(
2
1

)
S, Nf , Nf ;

µ2 = 0 ̸= µ3, κ < 0 =⇒
(
3
1

)
SN, S, N∞;

µ2 = 0 ̸= µ3, κ > 0 =⇒
(
3
1

)
SN, Nf , Nf ;

µ2 = µ3 = 0 ̸= µ4, κ < 0 =⇒
(
4
1

)
N, S, N∞;

µ2 = µ3 = 0 ̸= µ4, κ > 0 =⇒
(
4
1

)
S, Nf , Nf .

It remains to examine the case of degenerate systems (SI), i.e., when
the conditions µi = 0 for each i = 0, 1, . . . , 4, hold. We shall construct
the canonical form of such systems in the case κ ̸= 0. By (11), the
condition µ1 = 0 implies c − e + eh = 0. Moreover, as g = 0 via a
translation we may assume e = f = 0. Then c = 0 and systems (SI)
become

ẋ = a+ dy + (h− 1)xy, ẏ = b− xy + hy2,

and, for these systems, we calculate

µ0 = µ1 = 0, µ2 = h(h− 1)(a− b+ bh)y2, κ = 16h(1− h).
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So, since κ ̸= 0, the condition µ2 = 0 gives a = b(1 − h), and then we
calculate

µ3 = bd(1− h)hy3,

µ4 = −by3(d2x− d2hy − bh2y + 2bh3y − bh4y).

Clearly, the condition µ3 = µ4 = 0 is equivalent to b = 0. Therefore,
we arrive at the degenerate systems

(12) ẋ = y(d− x+ hx), ẏ = −y(x− hy),

possessing the invariant singular line y = 0 and the corresponding linear
systems have the matrix (

h− 1 0
−1 h

)
.

As κ ̸= 0, then, considering the notation of singularities (see Sec-
tion 5), we obtain the following configurations of infinite singularities of
quadratic systems (12): N∞, S,

(
⊖ [|]; ∅

)
if κ < 0 and Nf , Nf ,

(
⊖ [|]; ∅

)
if κ > 0.

On the other hand, we observe that the behavior of the trajectories
at infinity in this case is topologically equivalent to the portraits QD∞

1

if κ < 0 and QD∞
2 if κ > 0 (see Figure 8.1.1).

The subcase κ = 0. Then h(h− 1) = 0 and, without loss of generality,
we may consider h = 0 in the systems (SI) with g = 0 (due to a linear
transformation which keeps the line y = 0 and replaces the line y = x
with x = 0). Moreover, since g = h = 0 (doing a translation) we may
assume d = e = 0 and systems (SI) become

(13) ẋ = a+ cx− xy, ẏ = b+ fy − xy,

which possess at infinity two semi-elemental singular points R1(1, 0, 0)
and R2(0, 1, 0) and the elemental singular point R3(1, 1, 0). For the
last point, we have the corresponding linear matrix (see (5))

(
1 −c+f
0 1

)
.

Therefore, R3(1, 1, 0) is a node of the type either Nd if f − c ̸= 0, or
N∗ if f − c = 0.

On the other hand, for systems (13), we calculate:

µ0 = µ1 = 0, µ2 = cfxy, L̃ = 8xy,

θ2 = (f − c)/4, K1 = −xy(cx− fy),
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and therefore we arrive at the next result.

Remark 8.3. The elemental singular point R3(1, 1, 0) is a node of the
type Nd, if θ2 ̸= 0, and N∗ if θ2 = 0.

Assume µ2 ̸= 0. Then, by Theorem 7.4, the singularities R1(1, 0, 0) and
R2(0, 1, 0) are both of multiplicity 2, and hence they are semi-elemental
saddle-nodes. Considering [28], we conclude that in the case µ2 ̸= 0
we have the following configurations of infinite singularities:

µ2L̃ < 0 =⇒
(
1
1

)
SN,

(
1
1

)
SN, Nd;

µ2L̃ > 0, θ2 ̸= 0 =⇒
(
1
1

)
SN,

(
1
1

)
NS, Nd;

µ2L̃ > 0, θ2 = 0 =⇒
(
1
1

)
SN,

(
1
1

)
NS, N∗.

We notice that the condition µ2L̃ < 0 (i.e., cf < 0) implies θ2 ̸= 0.

Admit now µ2 = 0. Then cf = 0, and we may assume f = 0
since the change (x, y, a, b, c, f) 7→ (y, x, b, a, f, c) conserves the systems
(13). Then the semi-elemental singular point R2(0, 1, 0) becomes
of the multiplicity ≥ 3. Moreover, according to Theorem 7.4, the
multiplicities of the semi-elemental singularities are governed in the
case κ = 0 by the invariant polynomials µ3, µ4 and K1.

1) Assume first K1 ̸= 0. For systems (13) in the case f = 0, we have

µ3 = (b− a)cx2y, µ4 = −bc2x3y + (a− b)2x2y2,(14)

K1 = −cx2y, θ2 = −c/4.

Therefore, the condition K1 ̸= 0 implies θ2 ̸= 0.

a) If µ3 ̸= 0 by Theorem 7.4, Remark 8.3 and [28], we get the

configurations
(
2
1

)
N,

(
1
1

)
SN, Nd if µ3K1 < 0 and

(
2
1

)
S,

(
1
1

)
SN, Nd if

µ3K1 > 0.

b) Assume µ3 = 0. Since K1 ̸= 0 (i.e., c ̸= 0) we obtain b = a and

then µ4 = −ac2x3y and L̃ = xy.

So, if µ4 ̸= 0 (i.e., systems (13) are non-degenerate), then at
infinity we have an elemental singularity (which is Nd by Remark 8.3),
and two semi-elemental saddle-nodes: R1(1, 0, 0) of multiplicity two
and R2(0, 1, 0) of multiplicity four. Considering [28], we obtain the
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configurations
(
3
1

)
SN,

(
1
1

)
SN, Nd if µ4L̃ < 0 and

(
3
1

)
SN,

(
1
1

)
NS, Nd if

µ4L̃ > 0.

Assuming µ4 = 0 (i.e., a = 0) since c ̸= 0 we may take c = 1 due
to a rescaling and, hence, we get the degenerate system ẋ = x(1 − y),
ẏ = −xy, possessing the invariant line x = 0 filled with singularities.
Clearly, the singular point R2(0, 1, 0) at infinity becomes a non-isolated
singularity for the above system. So, applying our notation (see
Section 5) in the case of degenerate systems and κ = 0 and K1 ̸= 0

we get the configuration
(
1
1

)
SN, Nd,

(
⊖ [|]; ∅

)
. On the other hand,

we observe that the phase portrait around infinity in this case is
topologically equivalent to the portrait QD∞

3 (see Figure 7).

2) Suppose now K1 = 0. Then, for systems (13) with f = 0
considering (14) we obtain c = 0, and then

µ3 = 0, µ4 = (a− b)2x2y2, θ2 = 0.

If µ4 ̸= 0 by Theorem 7.4 we have at infinity an elemental singularity
(which is a star node by Remark 8.3) and two semi-elemental singular
points, both of multiplicity three. Considering [28], one of them is a

node and another one is a saddle. Thus, we get
(
2
1

)
S,

(
2
1

)
N, N∗.

Assume that µ4 = 0. Then for systems (13) the condition µ2 =
µ3 = µ4 = K1 = 0 gives us f = c = 0 and b = a, i.e., we get the
degenerate systems ẋ = a− xy, ẏ = a− xy. These systems possess an
invariant hyperbola xy − a = 0 filled with singularities, which splits in
two lines if a = 0. As for the above systems we have L1 = 12a(x− y)2,
and considering the notation in Section 5 we obtain N∗,

(
⊖ [ )( ]; ∅, ∅

)
if

L1 ̸= 0 and N∗,
(
⊖ [×]; ∅, ∅

)
if L1 = 0. On the other hand, we observe

that the phase portrait around infinity in both the cases is topologically
equivalent to the portrait QD∞

4 (see Figure 7).

As all the cases are examined, the Main theorem is proved for the
family of systems (SI).

8.2. The family of systems (SII). For these systems, we have
C2 = yp2(x, y) − xq2(x, y) = x(x2 + y2). Therefore, clearly at infinity
we have one real singular point R2(0, 1, 0) and two complex singulari-
ties R1,3(1,±i, 0). Constructing the corresponding systems at infinity
(possessing the real point at the origin of coordinates) we get the family
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of systems:

R2 :

{
v̇ = −v − dz + (−c+ f)vz − az2 − v3 + ev2z + bvz2,
ż = hz + gvz + fz2 − v2z + evz2 + bz3

with the corresponding linear matrix
(−1 −d

0 h

)
. Considering Re-

mark 8.1, we arrive at the next result.

Remark 8.4. If R2(0, 1, 0) is an elemental singular point (i.e., h ̸= 0),
then it is a saddle if h > 0; a node Nf if −1 < h < 0; a node Nd if
h = −1 and d ̸= 0; a node N∗ if h = −1 and d = 0; and it is a node
N∞ if h < −1.

On the other hand, for systems (SII), we have:

(15)
µ0 = −h

[
(h+ 1)2 + g2

]
, κ = −16

[
g2 + (h+ 1)(1− 3h)

]
,

θ = 8(h+ 1)
[
(h− 1)2 + g2

]
, θ2∣∣{h=−1}

= d(4 + g2)/4.

8.2.1. The case µ0 ̸= 0. In this case we obtain sign (µ0) = −sign (h)
and, by Theorem 7.4 together with [28] and taking into account the
above remark, we get the following configurations of infinite singulari-
ties:

µ0 < 0 =⇒ S, c⃝, c⃝;
µ0 > 0, θ < 0 =⇒ N∞, c⃝, c⃝;
µ0 > 0, θ > 0 =⇒ Nf , c⃝, c⃝;

µ0 > 0, θ = 0, θ2 ̸= 0 =⇒ Nd, c⃝, c⃝;
µ0 > 0, θ = 0, θ2 = 0 =⇒ N∗, c⃝, c⃝.

We notice that, in the case µ0 > 0, we get h < 0 and then, by (15),
the condition θ = 0 is equivalent to h = −1.

8.2.2. The case µ0 = 0, µ1 ̸= 0. According to Lemma 7.2 in this case
only one finite point has gone to infinity and clearly it must be a real
one. So R2 becomes a semi-elemental double singular point, and clearly

we get the configuration
(
1
1

)
SN, c⃝, c⃝.

8.2.3. The case µ0 = µ1 = 0. Considering Theorem 7.4, we shall
distinguish again two geometrically different situations: when only the
real infinite singular point increases its multiplicity (then κ ̸= 0) and
when the complex points become multiple (then κ = 0).
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The subcase κ ̸= 0. Then for non-degenerate systems (SII) the con-
ditions µ0 = 0 and κ ̸= 0 imply h = 0. In this case, we may
assume c = d = 0 (doing a translation), and then the condition
µ1 = −f(1 + g2)x = 0 gives f = 0. Therefore, we get the systems

(16) ẋ = a+ gx2 + xy, ẏ = b+ ex− x2 + gxy

for which calculations yield

(17) µ0 = µ1 = 0, µ2 = (ag − b)(1 + g2)x2, κ = −16(1 + g2).

By Theorem 7.4, only the real infinite singularity is a multiple sin-
gularity for these systems, which is R2. Moreover, its multiplicity is
three (respectively, four, five) if µ2 ̸= 0 (respectively, µ2 = 0, µ3 ̸= 0;
µ2 = µ3 = 0, µ4 ̸= 0). Clearly, this point is a semi-elemental saddle-
node in the case of even multiplicity, and it is either a saddle or a
node if its multiplicity is an odd number. Considering Theorem 7.4,
Remark 8.2 and [28] for non-degenerate systems (SII) in the cases
µ0 = µ1 = 0 and κ ̸= 0, we obtain the following configurations of
infinite singularities:

µ2 < 0 =⇒
(
2
1

)
S, c⃝, c⃝;

µ2 > 0 =⇒
(
2
1

)
N, c⃝, c⃝;

µ2 = 0 ̸= µ3 =⇒
(
3
1

)
SN, c⃝, c⃝;

µ2 = µ3 = 0 ̸= µ4 =⇒
(
4
1

)
N, c⃝, c⃝.

Consider now the case of degenerate systems (SII) when κ ̸= 0.
Therefore, we have to impose the conditions µ2 = µ3 = µ4 = 0 for
systems (16). By (17), the condition µ2 = 0 yields b = ag, and then we
obtain

µ3 = ae(1 + g2)x3, µ4 = a
[
a(1 + g2)2 + e2g

]
x4 + ae2x3y.

Clearly, the condition µ3 = µ4 = 0 is equivalent to a = 0, and we arrive
at the systems

ẋ = x(gx+ y), ẏ = x(e− x+ gy)

possessing the invariant line x = 0 filled with singularities. The
corresponding linear systems have complex infinite points, and hence,
according to our notation (see Section 5) for degenerate systems (16) we
get the configuration c⃝, c⃝,

(
⊖ [|]; ∅

)
. In this case the phase portrait
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around infinity is topologically equivalent to the portrait QD∞
5 (see

Figure 7).

The subcase κ = 0. As µ0 = 0, then considering (15), we have
h+ 1 = g = 0 and then we may assume e = f = 0 doing a translation.
So we get the family of systems

(18) ẋ = a+ cx+ dy, ẏ = b− x2 − y2,

for which we calculate

κ = θ = µ0 = µ1 = 0, µ2 = (c2 + d2)(x2 + y2), θ2 = d.

If µ2 ̸= 0, then by Theorem 7.4, the complex singularitiesR1,3(1,±i, 0)
are both of multiplicity 2. As the condition d = 0 is equivalent
to θ2 = 0, considering Remark 8.4, we obtain the configurations
Nd,

(
1
1

)
c⃝,

(
1
1

)
c⃝ if θ2 ̸= 0 and N∗,

(
1
1

)
c⃝,

(
1
1

)
c⃝ if θ2 = 0.

Assuming µ2 = 0, we have c = d = 0, and then for systems (18), we
obtain

µ2 = µ3 = θ = θ2 = 0, µ4 = a2(x2 + y2)2.

For non-degenerate systems, we have µ4 ̸= 0 (i.e., a ̸= 0) and, by Theo-
rem 7.4 and Remark 8.4, we obtain the configuration N∗,

(
2
1

)
c⃝,

(
2
1

)
c⃝.

It remains to examine the case µ4 = 0, i.e., when κ = 0 and systems
(SII) are degenerate. So, setting µ4 = 0 (i.e., a = 0) in systems (18)
with c = d = 0, we get the systems ẋ = 0, ẏ = b−x2−y2 possessing the
invariant conics x2+y2 = b filled with singularities. For these systems,
we have L1 = −48bx2, i.e., sign (b) = −sign (L1) if b ̸= 0. Therefore,
considering the notation in Section 5 and Remark 8.4, we obtain the
following configurations:

L1 < 0 =⇒ N∗,
(
⊖ [◦]; ∅, ∅

)
;

L1 > 0 =⇒ N∗,
(
⊖ [ c⃝]; ∅, ∅

)
;

L1 = 0 =⇒ N∗,
(
⊖ [· ]; ∅, ∅

)
.

On the other hand, we observe that the phase portrait around
infinity in all three cases is topologically equivalent to the portrait
QD∞

30 (see Figure 7). This completes the proof of the Main theorem in
the case of the family of systems (SII).



84 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

8.3. The family of systems (SIII). For these systems, we have

η = 0, M̃ ̸= 0 and, according to Lemma 7.1, at infinity we have
two distinct real singularities. As C2 = yp2(x, y) − xq2(x, y) = x2y,
these singularities are R1(1, 0, 0) and R2(0, 1, 0). We note that, by
Theorem 7.4, the divisor encoding the multiplicities of infinite singular
points has the form

(
i
1

)
u+

(
j
2

)
v with i+ j ∈ {0, 1, . . . , 4}. Constructing

the corresponding systems at infinity (possessing the points Ri (i =
1, 2) each one at the origin of coordinates of the corresponding local
chart) we get respectively:

(19)

R1 −→
{
u̇ = u− ez + (c− f)uz − bz2 + du2z + auz2,
ż = gz + huz + cz2 + duz2 + az3;

R2 −→
{
v̇ = −dz − v2 − (c− f)vz − az2 + ev2z + bvz2,
ż = hz + (g − 1)vz + fz2 + evz2 + bz3.

So, the corresponding matrices for these singularities are as follows:

(20) R1 =⇒
(

1 −e
0 g

)
; R2 =⇒

(
0 −d
0 h

)
,

and therefore R1 is an elemental singular point if g ̸= 0 and R2 is a
semi-elemental singularity if h ̸= 0.

Remark 8.5. If R1(1, 0, 0) is an elemental singular point (i.e., g ̸= 0)
then it is a saddle if g < 0; a node Nf if 0 < g < 1; a node Nd if g = 1
and e ̸= 0; a node N∗ if g = 1 and e = 0; and it is a node N∞ if g > 1.

On the other hand, for systems (SIII), calculations yield

µ0 = gh2, κ = −16h2,(21)

θ = −8h2(g − 1), θ2∣∣{g=1}
= −eh2/4.

8.3.1. The case µ0 ̸= 0. In this case, we obtain sign (µ0) = sign (g) and
sign (θ) = −sign (g − 1). Therefore, by Theorem 7.4, [28] and taking
into account the above remark we get the following configurations of
infinite singularities:

µ0 < 0 =⇒
(
0
2

)
SN, S;

µ0 > 0, θ < 0 =⇒
(
0
2

)
SN, N∞;
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µ0 > 0, θ > 0 =⇒
(
0
2

)
SN, Nf ;

µ0 > 0, θ = 0 ̸= θ2 =⇒
(
0
2

)
SN, Nd;

µ0 > 0, θ = θ2 = 0 =⇒
(
0
2

)
SN, N∗.

8.3.2. The case µ0 = 0. According to Theorem 7.4, at least one finite
singular point has gone to infinity. Moreover, this point has coalesced
either with R1(1, 0, 0) or with R2(0, 1, 0), and these two possibilities
are governed by the invariant polynomial κ.

The subcase κ ̸= 0. Then, for systems (SIII), the conditions µ0 = 0
and κ ̸= 0 imply g = 0, i.e., the finite singular point has coalesced
with R1(1, 0, 0). We note that, by Theorem 7.4, if κ ̸= 0, then all the
finite singularities which have gone to infinity have coalesced only with
the point R1 whose multiplicity is

(
i
1

)
. Moreover, this point remains

a semi-elemental singularity whose multiplicity i + 1 depends of the
number of the vanishing invariant polynomials µj (j ∈ {0, 1, . . . , 3}
(see Lemma 7.2). It is clear that this point is a semi-elemental saddle-
node in the case of even multiplicity, and it is either a saddle or a node
if its multiplicity is odd.

Therefore, considering Theorem 7.4 and [28], in the cases µ0 = 0
and κ ̸= 0 for non-degenerate systems (SIII) we obtain the following
configurations of infinite singularities:

µ1 ̸= 0 =⇒
(
0
2

)
SN,

(
1
1

)
SN ;

µ1 = 0, µ2 < 0 =⇒
(
0
2

)
SN,

(
2
1

)
S;

µ1 = 0, µ2 > 0 =⇒
(
0
2

)
SN,

(
2
1

)
N ;

µ1 = µ2 = 0 ̸= µ3 =⇒
(
0
2

)
SN,

(
3
1

)
SN ;

µ1 = µ2 = µ3 = 0 ̸= µ4 =⇒
(
0
2

)
SN,

(
4
1

)
N.

In order to finish the case κ ̸= 0, we consider the degenerate systems
(SIII), i.e., by Lemma 7.2, the conditions µi = 0 must hold for each
i = 0, 1, . . . , 4.

As κ ̸= 0, we have h ̸= 0, and we may assume h = 1 and c = d = 0
due to the affine transformation x1 = x+ d/h, y1 = hy+(ch− 2dg)/h.
It was mentioned above that the conditions µ0 = 0 and κ ̸= 0 yield
g = 0, and then µ1 = −ey = 0 implies e = 0. Thus, we obtain the
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systems
ẋ = a+ xy, ẏ = b+ fy − xy + y2

for which we have µ2 = (a + b)y2. So µ2 = 0 gives b = −a, and then
we calculate

µ3 = afy3, µ4 = ay3(f2x+ ay).

Clearly, the condition µ3 = µ4 = 0 is equivalent to a = 0, and then we
obtain the degenerate systems

ẋ = xy, ẏ = y(f − x+ y)

with f ∈ {0, 1} by doing a rescaling. These systems possess the
invariant line y = 0 filled with singularities, and the corresponding
linear systems possess a double point at infinity which corresponds to
the point R2(0, 1, 0) of quadratic systems. So, using the notation given

in Section 5, we arrive at the configuration
(
0
2

)
SN,

(
⊖ [|]; ∅

)
. On the

other hand, we observe that the phase portrait around infinity is, in
this case, topologically equivalent to the portrait QD∞

6 (see Figure 7).

The subcase κ = 0. Then, by (21), we get h = 0, and this implies
µ0 = 0. We observe that, in this case, the singular point R2(0, 1, 0)
becomes either a nilpotent or intricate point and, for systems (SIII),
we calculate

µ1 = dg(g − 1)2x, K̃ = 2g(g − 1)x2, L̃ = 8gx2,(22)

κ1 = −32d, Ñ = (g2 − 1)x2.

If µ1 ̸= 0, then L̃K̃ ̸= 0, sign (g) = sign (L̃) and, if L̃ > 0, then

sign (g − 1) = sign (K̃).

The condition µ1 ̸= 0 implies d ̸= 0. and hence the second singular
point R2(0, 1, 0) is nilpotent of multiplicity three. As d(g−1) ̸= 0, then
for systems (SIII) with h = 0, we may assume e = f = 0 and d = 1
(doing a translation and a rescaling). So, considering (19), we have the
following systems:

(23) v̇ = −z − v2 − cvz − az2 + bvz2, ż = (g − 1)vz + bz3

which have R2 at the origin of coordinates. The phase portrait in a
neighborhood of this point depends on the parameter g. More exactly,
applying a blow-up and using our notation from Section 5, we obtain
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the following types of the singularity R2 (depending on g):

g < −1 =⇒
(̂
1
2

) x
PfH

y
Pf−E;

g = −1 =⇒
(̂
1
2

)
H−E;

−1 < g < 0 =⇒
(̂
1
2

) y
PfE

x
Pf−H;

0 < g < 1 =⇒
(̂
1
2

) y
PfE

x
Pf−H;

g > 1 =⇒
(̂
1
2

)
HfHHf−H.

We observe that the above intervals for the parameter g are com-

pletely defined by the invariant polynomials K̃, L̃ and Ñ given in (22).
So, considering Remark 8.5 in the case κ = 0 and µ1 ̸= 0, we obtain
the following configurations of infinite singularities:

K̃ < 0 =⇒
(̂
1
2

) y
PfE

x
Pf−H, Nf ;

K̃ > 0, L̃ < 0, Ñ < 0 =⇒
(̂
1
2

) y
PfE

x
Pf−H, S;

K̃ > 0, L̃ < 0, Ñ = 0 =⇒
(̂
1
2

)
H−E, S;

K̃ > 0, L̃ < 0, Ñ > 0 =⇒
(̂
1
2

) x
PfH

y
Pf−E, S;

K̃ > 0, L̃ > 0 =⇒
(̂
1
2

)
HfHHf−H, N∞.

In what follows, we assume µ1 = 0, and we consider two cases:

K̃ ̸= 0 and K̃ = 0.

Assume first K̃ ̸= 0. Considering (22), we have g(g − 1) ̸= 0, and
therefore the condition µ1 = 0 gives d = 0. In this case we may assume
e = f = 0 (due to a translation), and we get the systems

(24) ẋ = a+ cx+ gx2, ẏ = b+ (g − 1)xy,

for which we have

µ0 = µ1 = κ1 = 0, µ2 = ag(g − 1)2x2,(25)

K̃ = 2g(g − 1)x2, L̃ = 8gx2,

K2 = 48(c2 − 4ag)(2− g + g2)x2.

The condition K̃ ̸= 0 implies L̃ ̸= 0, and the infinite singular point
R1(1, 0, 0) of the above systems is elemental. Its type is described by
Remark 8.5.
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On the other hand, since h = d = 0, by (20), the second infinite
singularity R2(0, 1, 0) becomes an intricate singular point whose multi-
plicity, by Lemma 7.2, depends on the number of the vanishing invariant
polynomials µi (i = 2, 3).

1) Assume µ2 ̸= 0. Then R2(0, 1, 0) has multiplicity four: two
infinite and two finite singularities have coalesced altogether. The
corresponding systems (19) in this case are the systems

v̇ = −v2 − cvz − az2 + bvz2, ż = (g − 1)vz + bz3,

where ag(g − 1) ̸= 0, having R2 at the origin of coordinates. Applying
a blow-up, we determine that the behavior of the trajectories in the
neighborhood of this point depends on the parameters a, c and g. More
exactly, using our notation from Section 5, we obtain the following types
of the singularity R2:

ag < 0, g < 0 =⇒
(
2
2

) x
P H

y
P −

x
P H

y
P ;

ag < 0, 0 < g < 1 =⇒
(
2
2

) y
P E

x
P −

y
P E

x
P ;

ag < 0, g > 1 =⇒
(
2
2

)
HHH−HHH;

ag > 0, g < 0, ∆ < 0 =⇒
(
2
2

)
E− E;

ag > 0, g < 0, ∆ = 0 =⇒
(
2
2

) x
P E−

x
P E;

ag > 0, g < 0, ∆ > 0 =⇒
(
2
2

) x
P

y
P E−

x
P

y
P E;

ag > 0, g > 0, ∆ < 0 =⇒
(
2
2

)
H−H;

ag > 0, g > 0, ∆ = 0 =⇒
(
2
2

) y
P H−

y
P H;

ag > 0, g > 0, ∆ > 0 =⇒
(
2
2

) y
P

x
P H−

y
P

x
P H,

where ∆ = c2 − 4ag. According to (25), if µ2K2K̃ ̸= 0, then we have

sign (ag) = sign (µ2),

sign (c2 − 4ag) = sign (K2),

sign (g) = sign (L̃).

Moreover, as by Remark 8.5, the type of the elemental node R1 depends

on sign (g − 1), we notice that sign (g − 1) = sign (L̃K̃).

Thus, considering the types of the intricate singular point R2 (de-

scribed above) and Remark 8.5 in the cases κ = µ1 = 0 and K̃µ2 ̸= 0,
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we obtain the following configurations of infinite singularities:

µ2 < 0, K̃ < 0 =⇒
(
2
2

) y
P E

x
P −

y
P E

x
P , Nf ;

µ2 < 0, K̃ > 0, L̃ < 0 =⇒
(
2
2

) x
P H

y
P −

x
P H

y
P , S;

µ2 < 0, K̃ > 0, L̃ > 0 =⇒
(
2
2

)
HHH−HHH, N∞;

µ2 > 0, K̃ < 0, K2 < 0 =⇒
(
2
2

)
H−H, Nf ;

µ2 > 0, K̃ < 0, K2 > 0 =⇒
(
2
2

) y
P

x
P H−

y
P

x
P H, Nf ;

µ2 > 0, K̃ < 0, K2 = 0 =⇒
(
2
2

) y
P H−

y
P H, Nf ;

µ2 = 0, K̃ > 0, L̃ < 0, K2 < 0 =⇒
(
2
2

)
E− E, S;

µ2 = 0, K̃ > 0, L̃ < 0, K2 > 0 =⇒
(
2
2

) x
P

y
P E−

x
P

y
P E, S;

µ2 = 0, K̃ > 0, L̃ < 0, K2 = 0 =⇒
(
2
2

) x
P E−

x
P E, S;

µ2 = 0, K̃ > 0, L̃ > 0, K2 < 0 =⇒
(
2
2

)
H−H, N∞;

µ2 = 0, K̃ > 0, L̃ > 0, K2 > 0 =⇒
(
2
2

) y
P

x
P H−

y
P

x
P H, N∞;

µ2 = 0, K̃ > 0, L̃ > 0, K2 = 0 =⇒
(
2
2

) y
P H−

y
P H, N∞.

2) Suppose now µ2 = 0 and µ3 ̸= 0. Considering (25), we have
a = 0, and then

µ3 = −bcg(g − 1)x3,(26)

µ4 = bx3
[
bg2x+ c2(g − 1)y

]
,

K̃ = 2g(g − 1)x2.

As µ3 ̸= 0, the intricate singular point R2(0, 1, 0) has multiplicity five.
The corresponding systems (19) in this case are of the form

v̇ = −v2 − cvz + bvz2, ż = (g − 1)vz + bz3,

where bcg(g − 1) ̸= 0 having R2 at the origin of coordinates. Applying
again a blow-up, we determine that the behavior of the trajectories in
the neighborhood of this point depends only on the parameter g. More
exactly, using our notation from Section 5, we obtain the following
types of the singularity R2:

g < 0 =⇒
(
3
2

) x
P H

y
P −

x
P

y
P E;

0 < g < 1 =⇒
(
3
2

) y
P E

x
P −

y
P

x
P H;

g > 1 =⇒
(
3
2

)
H

y
P

x
P −HHH.
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Therefore, considering Remark 8.5 in the cases κ = µ1 = µ2 = 0 and

K̃µ3 ̸= 0, we obtain the following configurations of infinite singularities:

K̃ < 0 =⇒
(
3
2

) y
P E

x
P −

y
P

x
P H, Nf ;

K̃ > 0, L̃ < 0 =⇒
(
3
2

) x
P H

y
P −

x
P

y
P E, S;

K̃ > 0, L̃ > 0 =⇒
(
3
2

)
H

y
P

x
P −HHH, N∞.

3) If µ2 = µ3 = 0 and µ4 ̸= 0, considering (26), we get c = 0
and bg(g − 1) ̸= 0. In this case, the intricate singular point R2(0, 1, 0)
becomes a singularity of multiplicity six. The corresponding systems
(19) in this case are of the form:

(27) v̇ = −v2 + bvz2, ż = (g − 1)vz + bz3,

where bg(g − 1) ̸= 0, and we need to examine the point (0, 0) of
these systems. Similarly, as before, applying a blow-up we determine
that the behavior of the trajectories in the neighborhood of this point
depends only on the parameter g. More exactly, using our notation
from Section 5, we obtain the following types of the singularity of R2:

g < 0 =⇒
(
4
2

) x
P

y
PfE−E

x
Pf

y
P ;

0 < g < 1/2 =⇒
(
4
2

) y
P Hf

x
P −

y
P Hf

x
P ;

g = 1/2 =⇒
(
4
2

) y
P H−H

x
P ;

1/2 < g < 1 =⇒
(
4
2

) y
P

x
PfH−H

y
Pf

x
P ;

g > 1 =⇒
(
4
2

) y
P

x
PfH−H

y
Pf

x
P .

We note that, for systems (SIII), in this case, we have R̃ = 8g(2g −
1)x2, and hence if g > 0, we have sign (2g − 1) = sign (R̃).

Thus, considering the types of the intricate singular point R2 (de-
scribed above) and Remark 8.5 in the cases κ = µ1 = µ2 = µ3 = 0 and
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K̃µ4 ̸= 0, we obtain the following configurations of infinite singularities:

K̃ < 0, R̃ < 0 =⇒
(
4
2

) y
P Hf

x
P −

y
P Hf

x
P , Nf ;

K̃ < 0, R̃ > 0 =⇒
(
4
2

) y
P

x
PfH−H

y
Pf

x
P , Nf ;

K̃ < 0, R̃ = 0 =⇒
(
4
2

) y
P H−H

x
P , Nf ;

K̃ > 0, L̃ < 0 =⇒
(
4
2

) x
P

y
PfE−E

x
Pf

y
P , S;

K̃ > 0, L̃ > 0 =⇒
(
4
2

) y
P

x
PfH−H

y
Pf

x
P , N∞.

4) Assuming µ2 = µ3 = µ4 = 0, the systems (SIII) become
degenerate.

Considering (26), we observe that the condition µ3 = µ4 = 0 is
equivalent to b = 0. Therefore, systems (24) with a = 0 are of the form

(28) ẋ = x(c+ gx), ẏ = (g − 1)xy

possessing the invariant line x = 0 filled with singularities. The cor-
responding linear systems possess two infinite singularities R1(1, 0, 0)
and R2(0, 1, 0). The corresponding matrices for these singularities are
the following:

R1 =⇒
(

1 0
0 g

)
; R2 =⇒

(
1 0
0 1− g

)
.

As K̃ = 2g(g − 1)x2 ̸= 0, we conclude that both singularities are
elemental. Moreover, their types are governed by the parameter g as
follows:

g < 0 =⇒ R1 −→ S, R2 −→ N∞;

0 < g < 1 =⇒ R1 −→ Nf , R2 −→ Nf ;

g > 1 =⇒ R1 −→ N∞, R2 −→ S.

We observe that the invariant line x = 0 of systems (28) coincides
with an invariant line of the corresponding linear systems if and only

if c = 0. Therefore, as L̃ = 8gx2 and K2 = 48c2(2 − g − g2)x2, then
considering our notation (see Section 5) for the degenerate systems

(SIII) in the cases κ = 0 and K̃ ̸= 0, we obtain the following
configurations of infinite singularities and the corresponding topological
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behavior at infinity (see Figure 7):

K̃ < 0, K2 ̸= 0 =⇒ Nf ,
(
⊖ [|];Nf

3

)
QD∞

7 ;

K̃ < 0, K2 = 0 =⇒ Nf ,
(
⊖ [|];Nf

2

)
QD∞

8 ;

K̃ > 0, L̃ < 0 ̸= K2 =⇒ S,
(
⊖ [|];N∞

3

)
QD∞

9 ;

K̃ > 0, L̃ < 0 = K2 =⇒ S,
(
⊖ [|];N∞

2

)
QD∞

10;

K̃ > 0, L̃ > 0 ̸= K2 =⇒ N∞,
(
⊖ [|];S3

)
QD∞

11;

K̃ > 0, L̃ > 0 = K2 =⇒ N∞,
(
⊖ [|];S2

)
QD∞

12.

Suppose now K̃ = 0. Then, by (22), we get g(g − 1) = 0 and we shall

consider two subcases: L̃ ̸= 0 and L̃ = 0.

1) Assume first L̃ ̸= 0. Then g = 1, and we may assume c = 0 due
to a translation. So we get the systems

(29) ẋ = a+ dy + x2, ẏ = b+ ex+ fy,

for which we have
(30)

µ0 = µ1 = K̃ = 0, µ2 = f2x2, κ1 = −d,

L̃ = 8x2, θ5 = 96dex3, θ6∣∣{d=0}
= 8ex4, K2

∣∣{d=0}
= −384ax2.

a) Suppose µ2 ̸= 0, i.e., f ̸= 0. Then, via a rescaling, we may assume
f = 1. Since g = 1, by Remark 8.5, the singular point R1(1, 0, 0) is
a node Nd if e ̸= 0, and it is a star node if e = 0. The singularity
R2(0, 1, 0) has multiplicity four: two infinite and two finite singularities
have coalesced altogether. Moreover, R2 is a nilpotent singularity if
d ̸= 0, and it is an intricate singular point if d = 0. The corresponding
systems (19) in this case are the systems

v̇ = −dz − v2 + vz + ev2z − az2 + bvz2, ż = z2 + evz2 + bz3,

having R2 at the origin of coordinates. Applying a blow-up, we show
that the behavior of the trajectories in the neighborhood of this point
depends on the parameters a and d. Furthermore, using our notation
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from Section 5, we obtain the following types of the singularity R2:

d ̸= 0 =⇒
(̂
2
2

) y
Pf

x
P Hf−H;

d = 0, a < 0 =⇒
(
2
2

) y
P

x
P H−

y
P

x
P H;

d = 0, a = 0 =⇒
(
2
2

) y
P H−

y
P H;

d = 0, a > 0 =⇒
(
2
2

)
H−H.

Therefore, considering the types of the elemental singular point R1 and

(30), in the cases κ = K̃ = 0 and µ2L̃ ̸= 0, we obtain the following
configurations of infinite singularities:

κ1 ̸= 0 ̸= θ5 =⇒
(̂
2
2

) y
Pf

x
P Hf−H, Nd;

κ1 ̸= 0 = θ5 =⇒
(̂
2
2

) y
Pf

x
P Hf−H, N∗;

κ1 = 0, K2 < 0 ̸= θ6 =⇒
(
2
2

)
H−H, Nd;

κ1 = 0, K2 < 0 = θ6 =⇒
(
2
2

)
H−H, N∗;

κ1 = 0, K2 > 0 ̸= θ6 =⇒
(
2
2

) y
P

x
P H−

y
P

x
P H, Nd;

κ1 = 0, K2 > 0 = θ6 =⇒
(
2
2

) y
P

x
P H−

y
P

x
P H, N∗;

κ1 = 0, K2 = 0 ̸= θ6 =⇒
(
2
2

) y
P H−

y
P H, Nd;

κ1 = 0, K2 = 0 = θ6 =⇒
(
2
2

) y
P H−

y
P H, N∗.

b) Assume µ2 = 0 and µ3 ̸= 0. In this case, for systems (29), we
obtain f = 0, and then

µ3 = de2x3, µ4 = (b2 + ae2)x4 − bdex3y,(31)

κ1 = −32d, K1 = −ex3.

The condition µ3 ̸= 0 implies de ̸= 0, and we may assume d = 1
and a = 0, due to a rescaling and a translation. Therefore, the singular
point R1(1, 0, 0) is a node Nd and R2(0, 1, 0) is a nilpotent singularity
of multiplicity five. In order to examine the neighborhood of the second
point, we consider the corresponding systems (see (19))

v̇ = −z − v2 + ev2z + bvz2, ż = evz2 + bz3,

having R2 at the origin of coordinates. Applying a blow-up, we show
that the behavior of the trajectories in the neighborhood of this point
depends on the sign of the parameter e. More precisely, we obtain the
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following types of the singularity R2:

e < 0 =⇒
(̂
3

2

)
HfHHf−H; e > 0 =⇒

(̂
3

2

)
y
PfE

x
Pf−H.

Since, by (31), in the case d = 1 we have sign (µ3K1) = −sign (e),
then we get the following configurations of infinite singularities:

µ3K1 < 0 =⇒
(̂
3

2

)
y
PfE

x
Pf−H, Nd;

µ3K1 > 0 =⇒
(̂
3

2

)
HfHHf−H, Nd.

c) Admit now that µ3 = 0. Then de = 0, and we shall consider two
subcases: d = 0 and d ̸= 0. Clearly, these cases are distinguished by
the invariant polynomial κ1 (see (31)).

α) Assume first κ1 ̸= 0, i.e., d ̸= 0 and e = 0. As was mentioned
above, we can take d = 1 and a = 0, and therefore we get the systems

(32) ẋ = y + x2, ẏ = b

for which µ4 = b2x4. If µ4 ̸= 0, then according to Remark 8.5, the
elemental singular point R1(1, 0, 0) is a star node, whereas R2(0, 1, 0)
is a nilpotent singularity of multiplicity six: two infinite and four finite
singularities have coalesced all together. The corresponding systems
(19) in this case are the systems

v̇ = −z − v2 + bvz2, ż = bz3, b ̸= 0,

having R2 at the origin of coordinates. Applying a blow-up, we find
that the behavior of the trajectories in the neighborhood of this point

is uniquely determined:
(̂
4
2

) y
Pf

x
P Hf−H.

Therefore, considering the elemental star node in the case κ = K̃ =

µ2 = µ3 = 0 and L̃κ1µ4 ̸= 0, we obtain the following configuration of

infinite singularities:
(̂
4
2

) y
Pf

x
P Hf−H, N∗.

Supposing µ4 = 0, we have b = 0, and from (32), we obtain the
degenerate system possessing the invariant parabola y = −x2 filled
with singularities. Considering the notation from Section 5 we get the
configuration N∗,

(
⊖ [∪]; ∅

)
. On the other hand, we observe that the
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phase portrait around infinity is topologically equivalent to the portrait
QD∞

13 (see Figure 7).

β) Suppose now κ1 = 0. Then d = 0, and we obtain the systems

(33) ẋ = a+ x2, ẏ = b+ ex.

for which we have

(34) κ1 = µ3 = 0, µ4 = (b2+ae2)x4, K2 = −384ax2, θ6 = 8ex4.

By Remark 8.5, the elemental singular point R1(1, 0, 0) is a node Nd if
e ̸= 0 and it is a star node N∗ if e = 0.

If µ4 ̸= 0, then R2(0, 1, 0) is an intricate singularity of multiplicity
six: two infinite and four finite singularities have coalesced altogether.
To describe the neighborhood of R2 we need to examine the neighbor-
hood of the origin in the corresponding systems

v̇ = −v2 − az2 + ev2z + bvz2, ż = evz2 + bz3,

where b2 + ae2 ̸= 0. Applying a blow-up, we find that the behavior
of the trajectories in the neighborhood of this point depends on the
parameters a, b and e. More exactly, using our notation from Section 5,
we obtain the following types of the singularity R2:

a < 0, b2 + ae2 < 0 =⇒
(
4
2

) y
PE

x
P −HHH;

a = 0 =⇒
(
4
2

) y
P

x
PfH−H

y
Pf

x
P ;

a < 0, b2 + ae2 > 0 =⇒
(
4
2

) y
P

x
PH−H

y
P

x
P ;

a > 0 =⇒
(
4
2

)
H−H.

By (34), we have sign (a) = −sign (K2) and sign (b2 + ae2) =
sign (µ4), and since the condition θ6 = 0 (i.e., e = 0) implies µ4 > 0,
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we get the following configurations of the infinite singularities:

K2 < 0, θ6 ̸= 0 =⇒
(
4
2

)
H−H, Nd;

K2 < 0, θ6 = 0 =⇒
(
4
2

)
H−H, N∗;

K2 > 0, µ4 < 0 =⇒
(
4
2

) y
PE

x
P −HHH, Nd;

K2 > 0, µ4 > 0 ̸= θ6 =⇒
(
4
2

) y
P

x
PH−H

y
P

x
P , Nd;

K2 > 0, µ4 > 0 = θ6 =⇒
(
4
2

) y
P

x
PH−H

y
P

x
P , N∗;

K2 = 0, θ6 ̸= 0 =⇒
(
4
2

) y
P

x
PfH−H

y
Pf

x
P , Nd;

K2 = 0, θ6 = 0 =⇒
(
4
2

) y
P

x
PfH−H

y
Pf

x
P , N∗.

Assume now µ4 = 0, i.e., b2 + ae2 = 0. We shall consider two
subcases: e ̸= 0 and e = 0 (these conditions are governed by the
invariant polynomial θ6).

β1) If θ6 ̸= 0, then e ̸= 0, and we may assume e = 1 due to a
rescaling. Then a = −b2, and we obtain the degenerate systems

(35) ẋ = (b+ x)(x− b), ẏ = b+ x,

possessing the invariant line x = −b filled with singularities. We note
that the linear systems ẋ = −b + x, ẏ = 1, have the invariant line
x = b and two infinite singularities R1(1, 0, 0) and R2(0, 1, 0) with the
following matrices:

R1 =⇒
(

1 −1
0 1

)
; R2 =⇒

(
−1 b
0 0

)
.

So the elemental singular pointR1 is a nodeN
d, and the double singular

point R2 is a semi-elemental saddle-node. Moreover, we observe that
the line x = −b is different from the invariant line x = b of the linear
systems if b ̸= 0, and they coincide if b = 0.

Therefore, considering our notation (see Section 5), we clearly get

either the configuration Nd,
(
⊖ [|];

(
1
1

)
SN3

)
if b ̸= 0, or Nd,

(
⊖

[|];
(
1
1

)
SN2

)
if b = 0.

β2) If θ6 = 0, we have e = b = 0, and the systems (33) have the
form

(36) ẋ = a+ x2, ẏ = 0.
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So, in this case, we have an invariant conic filled with singularities
which splits into two parallel complex (respectively, real) lines if a > 0
(respectively, a < 0), and it is a double real line if a = 0. Clearly,
at infinity the corresponding constant system possesses one singular
point which is a star node. Therefore, considering the notation from
Section 5, we arrive at the next configurations of the singular points
for the above systems:

a < 0 =⇒ N∗,
(
⊖ [∥]; ∅

)
;

a = 0 =⇒ N∗,
(
⊖ [|2]; ∅

)
;

a > 0 =⇒ N∗,
(
⊖ [∥c]; ∅

)
.

On the other hand, for systems (35) (respectively, (36)) we have
K2 = 384b2x2 ≥ 0 (respectively, K2 = −384ax2). Therefore, the
invariant polynomials K2 and θ6 distinguish the configurations of the
infinite singularities as well as the phase portraits around infinity for

the degenerate systems (SIII) in the cases κ = K̃ = 0 and L̃ ̸= 0 as
follows:

K2 < 0 =⇒ N∗,
(
⊖ [∥c]; ∅

)
QD∞

30;

K2 > 0 ̸= θ6 =⇒ Nd,
(
⊖ [|];

(
1
1

)
SN3

)
QD∞

14;

K2 > 0 = θ6 =⇒ N∗,
(
⊖ [∥]; ∅

)
QD∞

15;

K2 = 0 ̸= θ6 =⇒ Nd,
(
⊖ [|];

(
1
1

)
SN2

)
QD∞

16;

K2 = 0 = θ6 =⇒ N∗,
(
⊖ [|2]; ∅

)
QD∞

17.

2) Consider now the case L̃ = 0. Then g = 0 and we may assume
e = f = 0 due to a translation. So we get the systems

(37) ẋ = a+ cx+ dy, ẏ = b− xy

for which we have

κ = µ0 = µ1 = K̃ = L̃ = 0, µ2 = −cdxy, κ1 = −32d.

a) Suppose µ2 ̸= 0, i.e., cd ̸= 0. Then, via a rescaling, we may
assume d = 1 and, considering (20) and Theorem 7.4, we deduce that
the singular point R1(1, 0, 0) is a double semi-elemental saddle-node,
whereas R2(0, 1, 0) is a nilpotent singularity of multiplicity three: one
finite and two infinite singularities have coalesced all together. To
determine the geometric structure of the neighborhood of R2(0, 1, 0),
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we shall examine the singular point (0, 0) of the systems

v̇ = −z − v2 − cvz − az2 + bvz2, ż = −vz + bz3,

where c ̸= 0.

Remark 8.6. Doing a blow-up, we detect a unique type for (0, 0):
y
PfE

x
Pf−H, independently of the values of the parameters a, b and c.

So, considering the saddle-node R1(1, 0, 0), we obtain that the
systems (37) possess at infinity the configuration of singularities(̂
1
2

) y
PfE

x
Pf−H,

(
1
1

)
SN .

b) Assume µ2 = 0. Then cd = 0, and we examine two subcases:
d ̸= 0 and d = 0.

α) Admit first κ1 ̸= 0, i.e., d ̸= 0 and c = 0. Due to a rescaling, we
may take d = 1 and, for systems (37), we calculate:

µ2 = 0, µ3 = axy2, κ1 = −32 ̸= 0, K1 = −xy2.

α1) If µ3 ̸= 0, then according to Theorem 7.4, the singular point
R1(1, 0, 0) becomes a triple semi-elemental singularity: two finite sin-
gularities have coalesced with an infinite one. Moreover, R1 is a saddle
if a < 0, and it is a node if a > 0. We note that, in this case, the triple
nilpotent point R2 is of the type indicated in Remark 8.6.

Thus, taking into account that sign (a) = −sign (µ3K1), for systems
(37), at infinity we obtain(̂

1

2

)
y
PfE

x
Pf−H,

(
2

1

)
N if µ3K1 < 0

and (̂
1

2

)
y
PfE

x
Pf−H,

(
2

1

)
S if µ3K1 > 0.

α2) Suppose now µ3 = 0. Then a = 0, and we obtain the systems

(38) ẋ = y, ẏ = b− xy



FROM TOPOLOGICAL TO GEOMETRICAL EQUIVALENCE 99

for which we have µ4 = −bxy3. If µ4 ̸= 0, then by Theorem 7.4,
the singularity R1 increases its multiplicity and it becomes a semi-
elemental saddle-node of multiplicity four. By Remark 8.6, we get
the following configuration of infinite singularities of systems (38):(̂
1
2

) y
PfE

x
Pf−H,

(
3
1

)
SN .

Supposing µ4 = 0, we have b = 0, and we get the degenerate
system ẋ = y, ẏ = −xy, possessing the invariant line y = 0 filled with
singularities. The reduced system is linear, having the unique infinite
singularity [0 : 1 : 0] which is a nilpotent elliptic-saddle. More exactly,

as this system is linear, we have
(̂
1
2

)
E−H. Considering the line y = 0,

for the above degenerate system, we get at infinity
(̂
1
2

)
E−H,

(
⊖ [|]; ∅

)
.

On the other hand, we observe that the phase portrait around infinity
is topologically equivalent to the portrait QD∞

18 in Figure 8.1.1.

β) In the case κ1 = 0, we have d = 0 and, for systems (37), we
calculate:

(39) µ2 = 0, µ3 = −acx2y, K1 = −cx2y.

β1) If µ3 ̸= 0, then ac ̸= 0, and we may assume c = 1 due
to a rescaling. By Theorem 7.4, the singular point R1(1, 0, 0) is a
double semi-elemental saddle-node. At the same time, the singular
point R2(0, 1, 0) is an intricate singularity of multiplicity four: two
finite points have coalesced with two infinite ones. To determine the
geometric structure of the neighborhood of R2 we examine the singular
point (0, 0) of the systems

v̇ = −v2 − vz − az2 + bvz2, ż = −vz + bz3,

where a ̸= 0. Applying a blow-up, we show that the behavior of the
trajectories in the neighborhood of this point depends on the parameter
a. More exactly, using our notation from Section 5, we obtain the
following types for the singularity R2:

a < 0 =⇒
(
2

2

)
y
P E−

y
P E; a > 0 =⇒

(
2

2

)
x
P H−

x
P H.

Since, by (39), we have sign (a) = sign (µ3K1), considering the sin-
gularity R1, we get the following configurations of infinite singularities
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for systems (37) in the case d = 0 (i.e., κ1 = 0):

µ3K1 < 0 =⇒
(
2

2

)
y
P E−

y
P E,

(
1

1

)
SN ;

µ3K1 > 0 =⇒
(
2

2

)
x
P H−

x
P H,

(
1

1

)
SN.

β2) Supposing µ3 = 0, by (39), we obtain ac = 0, and we consider
two subcases: c ̸= 0 and c = 0.

i) If K1 ̸= 0, then c ̸= 0, and as above, we assume c = 1. Then
a = 0, and we arrive at the systems ẋ = x, ẏ = b − xy for which we
calculate:

µ2 = µ3 = 0, µ4 = −bx3y, K1 = −x2y.

If µ4 ̸= 0, then by Theorem 7.4 besides the double semi-elemental
saddle-node R1(1, 0, 0), the above systems possess the intricate singular
point R2(0, 1, 0) of multiplicity five: three finite singularities have
coalesced with two infinite ones. In order to determine the geometric
structure of the neighborhood of R2 we examine the singular point
(0, 0) of the systems

v̇ = −v2 − vz + bvz2, ż = −vz + bz3, b ̸= 0.

Applying a blow-up, we determine that the behavior of the trajectories

in the neighborhood of this point could be described as
(
3
2

)
E

x
P −

x
P H.

Considering the saddle–node R1 we obtain
(
3
2

)
E

x
P −

x
P H,

(
1
1

)
SN .

Assuming µ4 = 0, we obtain b = 0, and this leads to the degenerate
system ẋ = x, ẏ = −xy, possessing the invariant line x = 0 filled
with singularities. It can easily be determined that the reduced linear
system has two singular points at infinity: (i) the semi-elemental saddle-
node R1(1, 0, 0) (which corresponds to the singular point R1 of the
degenerate quadratic systems); (ii) the singular point R2(0, 1, 0) which
is a node Nd.

Therefore, we take into consideration our notation (see Section 5)
for degenerate systems (SIII) in the case of the configuration of infinite

singularities
(
1
1

)
SN,

(
⊖ [|];Nd

)
, and the phase portrait around infinity

is topologically equivalent to the portrait QD∞
19 (see Figure 7).



FROM TOPOLOGICAL TO GEOMETRICAL EQUIVALENCE 101

ii) Suppose now K1 = 0, i.e., c = 0. Then we obtain the systems

(40) ẋ = a, ẏ = b− xy

for which we calculate:

µ2 = µ3 = 0, µ4 = a2x2y2,

κ2 = −a, L1 = 8ax2, L2 = −3b.

If µ4 ̸= 0, then according to Theorem 7.4, the singular point R1(1, 0, 0)
is semi-elemental of multiplicity three: two finite singularities have
coalesced with one infinite singularity. Moreover, it is a node if κ2 < 0
(i.e., a > 0), and it is a saddle if κ2 > 0 (i.e., a < 0). At the same time,
R2(0, 1, 0) is an intricate singular point of multiplicity four: two finite
singularities have coalesced with two infinite ones. In order to examine
the neighborhood of the second point we consider the corresponding
systems

v̇ = −v2 − az2 + bvz2, ż = −vz + bz3, a ̸= 0,

having R2 at the origin of coordinates. Applying a blow-up, we show
that the behavior of the trajectories in the neighborhood of this point
depends on the sign of the parameter a. More precisely, we obtain the
following types of the singularity R2:

a < 0 =⇒
(̂
2

2

)
E−E; a > 0 =⇒

(̂
2

2

)
H−H.

Since sign (a) = sign (L1), considering the semi-elemental singular
point R1, we get the following configurations of infinite singularities
for systems (40) in the case a ̸= 0 (i.e., µ4 ̸= 0):

L1 < 0 =⇒
(
2

2

)
E−E,

(
2

1

)
S; L1 > 0 =⇒

(
2

2

)
H−H,

(
2

1

)
N.

Supposing µ4 = 0, we obtain a = 0, and this leads to the degenerate
systems ẋ = 0, ẏ = b− xy, possessing the invariant conic xy = b filled
with singularities. Clearly, this conic splits into two lines if b = 0,
and this situation is governed by the invariant polynomial L2. We
observe that both infinite singularities of the degenerate systems are
non-isolated ones.



102 J.C. ARTÉS, J. LLIBRE, D. SCHLOMIUK AND N. VULPE

Thus, applying the respective notation (see Section 5) for degenerate

systems (SIII) in the case κ = L̃ = κ1 = K1 = 0, we obtain the following
configurations of infinite singularities (see Figure 7):

L2 ̸= 0 =⇒
(
⊖ [ )( ];N∗, ∅

)
QD∞

20;

L2 = 0 =⇒
(
⊖ [×];N∗, ∅

)
QD∞

21.

Since all the cases have been examined, the Main theorem is proved
for the family of systems (SIII).

8.4. The family of systems (SIV ). For these systems, we have

η = M̃ = 0 and C2 ̸= 0, and according to Lemma 7.1, at infinity
we have one real singularity of multiplicity greater than or equal to
three. As C2 = yp2(x, y)−xq2(x, y) = x3, this singularity is R2(0, 1, 0)
and, by Theorem 7.4, the divisor encoding the multiplicities of infinite
singular points has the form

(
i
3

)
u with i ∈ {0, 1, . . . , 4}. Constructing

the corresponding systems at infinity (possessing the singular point R2

at the origin of coordinates) we obtain

(41)

{
v̇ = −dz − (c− f)vz − az2 − v3 + ev2z + bvz2,
ż = hz + gvz + fz2 − v2z + evz2 + bz3,

with the matrix ⇒
(
0 −d
0 h

)
of their linear parts. So R2 is a triple semi-

elemental singular point if h ̸= 0. For these systems, we have µ0 = −h3

and, by Theorem 7.4, R2 is a saddle if µ0 < 0, and it is a node if µ0 > 0.

Thus, in the case µ0 ̸= 0, the configuration of infinite singularities

for systems (SIV ) is
(
0
3

)
S if µ0 < 0, and it is

(
0
3

)
N if µ0 > 0.

In what follows, we assume µ0 = 0. Then h = 0 and, for systems
(SIV ), we calculate

(42) µ0 = 0, µ1 = dg3x, K̃ = 2g2x2.

8.4.1. The case µ1 ̸= 0. Then dg ̸= 0 and, considering (41) and
Theorem 7.4, the singular point R2(0, 1, 0) is a nilpotent singular point
of multiplicity four. To determine the behavior of the trajectories in
its neighborhood we consider systems (41) with h = 0, having R2 at
the origin of coordinates. Doing a blow-up and using our notation from

Section 5, we obtain the configuration
(̂
1
3

)
HfH

y
Pf−

x
P .
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8.4.2. The case µ1 = 0. In this case, we get dg = 0, and we examine

two subcases: K̃ ̸= 0 and K̃ = 0.

The subcase K̃ ̸= 0. Then, by (42), we have g ̸= 0, d = 0, and we may
assume e = f = 0 (doing a translation) and g = 1 (doing a rescaling).
So we get the systems

(43) ẋ = a+ cx+ x2, ẏ = b− x2 + xy

for which we calculate

(44) µ0 = µ1 = 0, µ2 = ax2, K2 = 48(c2 − 4a)x2.

If µ2 ̸= 0, then by Theorem 7.4, the singular point R2(0, 1, 0) is an
intricate singular point of multiplicity five: two finite singularities have
coalesced with three infinite ones. In this case, in order to determine
the geometrical type of this point considering (41), we examine the
systems

(45) v̇ = −cvz − az2 − v3 + bvz2, ż = vz − v2z + bz3

having R2 at the origin of coordinates. Applying a blow-up, we
determine that the behavior of the trajectories in the neighborhood
of this point depends on the sign of the parameter a. More precisely,
we obtain the following types of the singularity R2:

a < 0 =⇒
(
2
3

)
HH

y
P −

x
PHH;

a > 0, c2 − 4a < 0 =⇒
(
2
3

) y
P −

x
P ;

a > 0, c2 − 4a > 0 =⇒
(
2
3

)
H

y
P E−

x
P

y
P

x
P ;

a > 0, c2 − 4a = 0 =⇒
(
2
3

)
HE−

x
P

x
P .

It remains to note that, by (44), we obtain sign (a) = sign (µ2) and
sign (c2 − 4a) = sign (K2). Therefore, we arrive at the corresponding
conditions indicated in Diagram 4 (see the Main theorem).

Assuming µ2 = 0 by (44), we get a = 0, and then we calculate

µ0 = µ1 = µ2 = 0, µ3 = −bcx3,(46)

µ4 = bx3(bx− c2x+ c2y), K3 = −6bx6.

1) If µ3 ̸= 0, then bc ̸= 0, and we may assume c = 1 doing a rescaling.
In this case, the intricate singular point R2(0, 1, 0) has multiplicity six,
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and to determine its geometric type we consider again the systems (45)
with a = 0 and c = 1. In this case, doing a blow-up, we find that the
behavior of the trajectories in the neighborhood of R2 depends on the
sign of the parameter b. And, as sign (b) = −sign (K3) we obtain the
following types of the singularity R2 with conditions:

K3 < 0 =⇒
(
3

3

)
H

y
P E−

x
P HH; K3 > 0 =⇒

(
3

3

)
HH

y
P −

x
P

y
P

x
P .

2) Suppose now µ3 = 0, i.e., bc = 0. If µ4 ̸= 0, considering (46), we
obtain b ̸= 0, and this implies c = 0. So we get the systems ẋ = x2,
doty = b− x2 + xy, for which we have

µ0 = µ1 = µ2 = µ3 = 0, µ4 = b2x4, K3 = −6bx6.

In this case, all four finite singularities of systems (SIV ) have coalesced
with the triple infinite one, and hence the intricate singular point
R2(0, 1, 0) of the above systems has multiplicity seven. Doing a blow-up
for the singular point (0, 0) of the corresponding systems

v̇ = −v3 + bvz2, ż = vz − v2z + bz3,

we show that the geometric structure of the neighborhood of (0, 0)
depends again on the parameter b. As sign (b) = −sign (K3), we arrive
at the configurations

K3 < 0 =⇒
(
4

3

)
E

x
PfH−H

y
PfE; K3 > 0 =⇒

(
4

3

)
x
P

y
Pf

x
P−

y
P

x
Pf

y
P.

In order to finish the case K̃ ̸= 0, it remains to examine the
degenerate systems (SIV ). Considering (46), we observe that, for
systems (43) with a = 0, the condition µ3 = µ4 = 0 implies b = 0.
Therefore, we obtain the degenerate systems

ẋ = x(c+ x), ẏ = x(y − x)

possessing the invariant line x = 0 filled with singularities. We observe
that the reduced systems are linear having the infinite singular point
R2(0, 1, 0) which is a double semi-elemental saddle-node. Moreover,
the reduced systems have the invariant line x = −c. Clearly, this line
coincides with the line x = 0 of systems (43) if and only if c = 0.
This condition is governed by the invariant polynomial K2 as, for
these systems, we have K2 = 48c2x2. So, using the notations given
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in Section 5, we get the following configurations of infinite singularities

(see Figure 7) for degenerate systems (SIV ) in the case K̃ ̸= 0:

K2 ̸= 0 =⇒
(
⊖ [|];

(
0
2

)
SN3

)
QD∞

22;

K2 = 0 =⇒
(
⊖ [|];

(
0
2

)
SN2

)
QD∞

23.

The subcase K̃ = 0. Then, for systems (SIV ) with h = 0 we have
g = 0 and assuming e = 0 (doing a translation if necessary) we get the
systems

(47) ẋ = a+ cx+ dy, ẏ = b+ fy − x2.

We calculate
µ0 = µ1 = 0, µ2 = d2x2.

If µ2 ̸= 0 (i.e., d ̸= 0) by Theorem 7.4, the singular point R2(0, 1, 0) is
a nilpotent singular point of multiplicity

(
2
3

)
. Its geometrical type can

be determined by doing a blow-up for (0, 0) for the systems

v̇ = −dz + (f − c)vz − az2 − v3 + bvz2,

ż = fz2 − v2z + bz3

having R2 at the origin of coordinates. We univocally obtain that the

singularity R2 is geometrically equivalent to
(̂
2
3

) y
Pf

x
P −

y
Pf

x
P .

Assume µ2 = 0. Then d = 0, and for systems (47), calculations yield:

µ3 = −c2fx3, K1 = −cx3, K3 = 6(2c− f)fx6.

1) If µ3 ̸= 0, then cf ̸= 0, and we may assume c = 1 (doing a
rescaling) and b = 0. In this case, the intricate singular point R2(0, 1, 0)
has multiplicity six and, to determine its geometric type, we consider
the systems

v̇ = (f − 1)vz − az2 − v3, ż = fz2 − v2z

having R2 at the origin of coordinates. Using a blow-up, we find that
the behavior of the trajectories in the neighborhood of R2 depends on
the sign of the parameter f . More exactly, we obtain the following
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types of the singularity R2:

f < 0 =⇒
(
3
3

) y
PfEE

x
Pf−

y
P

x
P ;

0 < f < 2 =⇒
(
3
3

) y
Pf

x
P

y
P

x
Pf−HH;

f = 2 =⇒
(
3
3

)
HH−

x
P

y
P ;

f > 2 =⇒
(
3
3

)
Hf

x
P

y
P Hf−

x
P

y
P .

On the other hand, we observe that, in the case c = 1, we have
sign (f) = sign (µ3K1) and sign (f(f − 2)) = −sign (K3). Moreover, as
µ3 ̸= 0, the condition f = 2 is equivalent to K3 = 0. So we get the
following configurations of infinite singularities for systems (SIV ):

µ3K1 < 0 =⇒
(
3
3

) y
PfEE

x
Pf−

y
P

x
P ;

µ3K1 > 0, K3 > 0 =⇒
(
3
3

) y
Pf

x
P

y
P

x
Pf−HH;

µ3K1 > 0, K3 = 0 =⇒
(
3
3

)
HH−

x
P

y
P ;

µ3K1 > 0, K3 < 0 =⇒
(
3
3

)
Hf

x
P

y
P Hf−

x
P

y
P .

2) Suppose now µ3 = 0. Then, for systems (47) with d = 0, we
obtain cf=0, and we consider two subcases: c ̸= 0 and c = 0. Clearly
these possibilities are distinguished by the invariant polynomial K1.

a) If K1 ̸= 0, then c ̸= 0, f = 0, and we may assume c = 1 due to a
rescaling. So we get the systems

ẋ = a+ x, ẏ = b− x2

for which µ4 = (a2 − b)x4. If µ4 ̸= 0 all four finite singularities of the
systems (SIV ) have coalesced with the triple infinite one, and hence the
intricate singular point R2(0, 1, 0) of the above systems has multiplicity
seven. Doing a blow-up at the singular point (0, 0) of the corresponding
systems

v̇ = −vz − az2 − v3 + bvz2, ż = −v2z + bz3,

we determine that the geometric structure of R2 depends on the sign
of the expression a2 − b. Since sign (a2 − b) = sign (µ4), we arrive at
the configurations

µ4 < 0 =⇒
(
4

3

)
y
PfEE

x
Pf−HH;
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µ4 > 0 =⇒
(
4

3

)
y
Pf

x
P

y
P

x
Pf−

y
P

x
P .

In the case µ4 = 0, we obtain b = a2, and this leads to the degenerate
systems

ẋ = a+ x, ẏ = (a+ x)(a− x)

possessing the invariant line x = −a filled with singularities. It can be
easily determined that the reduced linear systems possess one nilpotent
singular point of multiplicity three at infinity: a finite singular point
has coalesced with two infinite ones. In our notations for the above

degenerate systems we obtain the configuration
(
⊖ [|];

(̂
1
2

)
E−H

)
. On

the other hand, we observe that the phase portrait around infinity is
topologically equivalent to the portrait QD∞

24 (see Figure 7).

b) Assume K1 = 0. In this case, we have c = 0 and we obtain the
systems

(48) ẋ = a, ẏ = b+ fy − x2,

for which we calculate µ4 = a2x4. If µ4 ̸= 0, then a ̸= 0, and we may
assume a = 1 due to a rescaling. Similarly to the previous case, we
show that the intricate singular point R2(0, 1, 0) of the above systems
has multiplicity seven. Doing a blow-up at (0, 0) of the respective
systems

(49) v̇ = fvz − z2 − v3 + bvz2, ż = fz2 − v2z + bz3,

we find that the geometric structure of R2 depends on the parameter f .

More precisely, we have
(
4
3

) y
PfEHf−

y
P if f ̸= 0 and

(
4
3

) y
Pf

x
P −

y
P

x
Pf

if f = 0. On the other hand, for systems (48), we have K3 = −6f2x6.
So we obtain the following configurations:

K3 ̸= 0 =⇒
(
4

3

)
y
PfEHf−

y
P ;

K3 = 0 =⇒
(
4

3

)
y
Pf

x
P −

y
P

x
Pf.

In the case µ4 = 0, we have a = 0, and we get the degenerate systems

(50) ẋ = 0, ẏ = b+ fy − x2
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possessing the invariant conic b+ fy − x2 = 0 filled with singularities.
Clearly, the type of this conic depends on the parameters b and f . More
exactly, if f ̸= 0, we have a parabola. In the case f = 0, this conic
splits into two parallel lines, which are real if b > 0, complex if b < 0
and a double real line if b = 0.

On the other hand, for systems (50), we have K3 = −6f2x6 and, in
the case f = 0 (i.e., K3 = 0) we obtain L3 = 4bx4. So, clearly, the
conditions above are governed by these two invariant polynomials. We
observe also that, for the reduced constant system, the infinite singular
point (0, 1, 0) is a star node.

Thus, for degenerate systems (SIV ) in the case K̃ = K1 = 0,
we get the following configurations of infinite singularities and the
corresponding phase portraits around infinity (see Figure 7):

K3 ̸= 0 =⇒
(
⊖ [∪]; N∗) QD∞

25;

K3 = 0, L3 < 0 =⇒
(
⊖ [∥c]; N∗) QD∞

30;

K3 = 0, L3 > 0 =⇒
(
⊖ [∥]; N∗) QD∞

26;

K3 = 0, L3 = 0 =⇒
(
⊖ [|2]; N∗) QD∞

27.

Since all the cases have been examined, the Main theorem is proved
for the family of systems (SIV ).

8.5. The family of systems (SV ). For these systems, we have

C2 = 0 (this implies η = M̃ = 0) and we may consider e = f = 0
due to a translation. So, in what follows, we shall consider the systems

(51) ẋ = a+ cx+ dy + x2, ẏ = b+ xy,

for which we have µ0 = 0 and µ1 = dx. The line at infinity of systems
(51) is filled up with singularities, and removing the degeneracy in the
systems obtained on the local charts at infinity we get the following
two systems {

u̇ = cu− bz + du2 + auz,
ż = 1 + cz + duz + az2;{
v̇ = −d− cv − az + bvz,
ż = v + bz2,

which we call reduced systems. As we could observe, the first systems
could not have singular points on the line z = 0, whereas the second
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ones could possess such a point if d = 0. So, in what follows, we
concentrate our attention on the quadratic systems

(52) v̇ = −d− cv − az + bvz, ż = v + bz2.

8.5.1. The case µ1 ̸= 0. Then d ̸= 0 and systems (52) do not have any
singular point on the line z = 0. This means that, after removal of the
degeneracy, similarly to what we did above, the systems (51) do not
have infinite singularities. According to our notations (see Section 5)
we have the configuration [∞; ∅].

8.5.2. The case µ1 = 0, µ2 ̸= 0. This implies d = 0, and then for
systems (51), we have µ2 = ax2 ̸= 0. On the other hand, for the
singular point (0, 0), the systems (52) have the following matrix of
their linearization at (0, 0) and the corresponding eigenvalues:(

−c −a
1 0

)
, λ1,2 =

−c±
√
c2 − 4a

2
,

and then λ1λ2 = a ̸= 0. Therefore, this singular point is a saddle
if a < 0; if a > 0 and c2 − 4a > 0, it is a generic node with both
directions transversal to the line z = 0; if a > 0 and c2 − 4a = 0, it is a
one direction node; and, if c2 − 4a < 0, it is either a focus or a center.

On the other hand, for systems (51), we have K2 = 48(c2 − 4a)x2,
and hence we obtain

sign (a) = sign (µ2),

sign (c2 − 4a) = sign (K2).

So, using the notations given in Section 5, we obtain the following
configurations of infinite singularities for the systems (SV ) in the cases
µ1 = 0 and µ2 ̸= 0:

µ2 < 0 =⇒ [∞; S];

µ2 > 0, K2 < 0 =⇒ [∞; C];

µ2 > 0, K2 > 0 =⇒ [∞; N ];

µ2 > 0, K2 = 0 =⇒ [∞; Nd].

8.5.3. The case µ2 = 0. Then a = 0 and systems (51) become

(53) ẋ = cx+ x2, ẏ = b+ xy,
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with the respective reduced systems at infinity

v̇ = −cv + bvz, ż = v + bz2.

Clearly, the singular point (0, 0) of the last systems is a semi-elemental
double saddle-node if c ̸= 0, and it is a triple nilpotent point (which is
an elliptic-saddle) if c = 0 and b ̸= 0. As for systems (53), we have

µ1 = µ2 = 0, µ3 = −bcx3, µ4 = bx3(bx+ c2y),

and we arrive at the following configurations of infinite singularities for
systems (53):

µ3 ̸= 0 =⇒
[
∞;

(
2

0

)
SN

]
; µ3 = 0, µ4 ̸= 0 =⇒

[
∞;

(̂
3

0

)
ES

]
.

Assuming µ4 = 0 (i.e., b = 0) we get the degenerate systems

(54) ẋ = x(c+ x), ẏ = xy,

possessing the invariant line x = 0 filled with singularities. We observe
that the phase portraits on the whole Poincaré disk for the above
systems are described in Section 5. More exactly in Figure 5 are
indicated the phase portraits of systems (54), which correspond to (c)
if c ̸= 0 and to (d) if c = 0. In Section 5, the notation for both the
finite part and at infinity are described in detail. Using the notation
for infinite singularities and considering that for systems (54) we have
K2 = 48c2x2, and we obtain the following configurations of singularities
for degenerate systems (SV ) and their respective phase portraits around
infinity (see Figure 7):

K2 ̸= 0 =⇒
[
∞;

(
⊖ [|]; ∅3

)]
QD∞

28;
K2 = 0 =⇒

[
∞;

(
⊖ [|]; ∅2

)]
QD∞

29.

Thus, all the families of the quadratic systems given by Lemma 7.1
are examined, and hence the Main theorem is completely proved. �
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