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ON CHARACTERIZATIONS OF HOPF
HYPERSURFACES IN A NONFLAT COMPLEX

SPACE FORM WITH COMMUTING OPERATORS

IN-BAE KIM, DONG HO LIM AND HYUNJUNG SONG

ABSTRACT. Let M be a real hypersurface in a complex
space form Mn(c), c ̸= 0. In this paper we prove that if
RξLξ = LξRξ holds on M , then M is a Hopf hypersurface,
where Rξ and Lξ denote the structure Jacobi operator and
the induced operator from the Lie derivative with respect
to the structure vector field ξ, respectively. We characterize
such Hopf hypersurfaces of Mn(c).

1. Introduction. A complex n-dimensional Kaeherian manifold of
constant holomorphic sectional curvature c is called a complex space
form, which is denoted by Mn(c). As is well known, a complete and
simply connected complex space form is complex analytically isometric
to a complex projective space Pn(C), a complex Euclidean space Cn or
a complex hyperbolic space Hn(C), according to c > 0, c = 0 or c < 0.

We consider a real hypersurface M in a complex space form Mn(c),
c ̸= 0. Then M has an almost contact metric structure (ϕ, g, ξ, η)
induced from the Kaehler metric and complex structure J on Mn(c).
The structure vector field ξ is said to be principal if Aξ = αξ is satisfied,
where A is the shape operator of M and α = η(Aξ). In this case, it
is known that α is locally constant ([4]) and that M is called a Hopf
hypersurface.

Typical examples of Hopf hypersurfaces in Pn(C) are homogeneous
ones, namely, those real hypersurfaces are given as orbits under a
subgroup of the projective unitary group PU(n + 1). Takagi [10]
completely classified such hypersurfaces as six model spaces which
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are said to be A1, A2, B, C, D and E. On the other hand, real
hypersurfaces in Hn(C) have been investigated by Berndt [1], Montiel
and Romero [5], and so on. Berndt [1] classified all homogeneous Hopf
hyersurfaces in Hn(C) as four model spaces which are said to be A0,
A1, A2 and B. If M is a real hypersurface of type A1 or A2 in Pn(C)
or type A0, A1 or A2 in Hn(C), then M is said to be of type A for
simplicity.

The induced operator Lξ on a real hypersurface M from the 2-form
Lξg is defined by (Lξg)(X,Y ) = g(LξX,Y ) for any vector fields X
and Y on M , where Lξ denotes the operator of the Lie derivative with
respect to the structure vector field ξ. This operator Lξ is given by
Lξ = ϕA − Aϕ on M , and the structure vector field ξ is Killing if
Lξ = 0. As a typical characterization of real hypersurfaces of type A,
the following is due to Okumura [7] for c > 0, and Montiel and Romero
[5] for c < 0.

Theorem A ([5, 7]). Let M be a real hypersurface of Mn(c), c ̸= 0.
It satisfies Lξ = 0 on M if and only if M is locally congruent to one of
the model spaces of type A.

For the curvature tensor field R on a real hypersurface M , we de-
fine the Jacobi operator RX by RX = R(·, X)X with respect to a unit
vector field X. Then we see that RX is self-adjoint endomorphism
of the tangent space. It is related with (the Jacobi vector equation)
∇γ̇(∇γ̇Y ) + R(Y, γ̇)γ̇ = 0 along a geodesic γ on M , where γ̇ denotes
the velocity vector field of γ. We will call the Jacobi operator Rξ with
respect to the structure vector field ξ a structure Jacobi operator on
M . Recently, it has been shown that there are no real hypersurfaces
in Mn(c) with parallel structure Jacobi operator Rξ (see [8]). Some
authors have also studied several conditions on the structured Jacobi
operator Rξ and given some results on the classification of real hyper-
surfaces of type A in Mn(c) ([2, 3, 6, 8, 9], etc). As for the structure
Jacobi operator Rξ and the operator Lξ, Ki and two of the present
authors [3] have proved the following.

Theorem B ([3]). Let M be a real hypersurface of Mn(c), c ̸= 0.
It satisfies RξLξ = 0 if and only if M is locally congruent to one of the
model spaces of type A.
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In this paper, we shall study a real hypersurface in a nonflat complex
space form Mn(c) with commuting operators Rξ and Lξ. Namely, we
shall prove:

Theorem 1. Let M be a real hypersurface satisfying RξLξ = LξRξ

in a complex space form Mn(c), c ̸= 0. Then M is a Hopf hypersurface
in Mn(c).

In Section 5, we shall give another characterization of such a real
hypersurface in Mn(c). All manifolds in the present paper are assumed
to be connected and of class C∞ and the real hypersurfaces supposed
to be orientable.

2. Preliminaries. Let M be a real hypersurface immersed in a

complex space formMn(c) andN a unit normal vector field ofM . By ∇̃
we denote the Levi-Civita connection with respect to the Fubini-Study
metric tensor g̃ of Mn(c). Then the Gauss and Weingarten formulas
are given respectively by

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX

for any vector fields X and Y on M , where g denotes the Riemannian
metric tensor of M induced from g̃, and A is the shape operator of M
in Mn(c). For any vector field X on M we put

JX = ϕX + η(X)N, JN = −ξ,

where J is the almost complex structure of Mn(c). Then we see that
M induces an almost contact metric structure (ϕ, g, ξ, η), that is,

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ξ) = 1,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)

for any vector fields X and Y on M .

Since the almost complex structure J is parallel, we can verify from
the Gauss and Weingarten formulas that

(2.1) ∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ.

Since the ambient manifold is of constant holomorphic sectional
curvature c, we have the following Gauss and Codazzi equations,
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respectively:

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

− 2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY,

(2.2)

(2.3) (∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ}

for any vector fields X, Y and Z on M , where R denotes the Riemann-
ian curvature tensor of M .

From the Gauss equation (2.2), the structure Jacobi operator Rξ is
given by

(2.4) RξX = R(X, ξ)ξ =
c

4
{X − η(X)ξ}+ αAX − η(AX)Aξ

for any vector field X on M .

By use of (2.1), we have (Lξg)(X,Y ) = ⟨(ϕA − Aϕ)X,Y ⟩ for any
vector fields X and Y on M , and hence the induced operator Lξ from
Lξg is given by

(2.5) LξX = (ϕA−Aϕ)X.

Let W be a unit vector field on M with the same direction of the
vector field −ϕ∇ξξ, and let µ be the length of the vector field −ϕ∇ξξ
if it does not vanish, and zero (constant function) if it vanishes. Then
it follows immediately from (2.1) that

(2.6) Aξ = αξ + µW,

where α = η(Aξ). We notice here that W is orthogonal to ξ. We put

(2.7) Ω = {p ∈ M | µ(p) ̸= 0}.

Then Ω is an open subset of M .

3. Real hypersurfaces satisfying RξLξ = LξRξ. Let M be a
real hypersurface in a complex space form Mn(c), c ̸= 0, satisfying
RξLξ = LξRξ. In this section, we assume that the open subset Ω given
in (2.7) is not empty. Then the above condition together with (2.4),
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(2.5) and (2.6) implies that

α(ϕA2 +A2ϕ− 2AϕA)X =µ

{(
α2 +

c

4

)
w(ϕX)− αw((ϕA−Aϕ)X)

}
ξ

+µ2{αw(ϕX)− w((ϕA−Aϕ)X)}W

+µ

{(
α2 +

c

4

)
η(X) + αµw(X)

}
ϕW

+µ{αη(X) + µw(X)}(ϕAW −AϕW )

(3.1)

for any vector field X on Ω, where w is the dual 1-form of the unit
vector field W . If we put X = ξ into (3.1) and make use of (2.6), then
we have α ̸= 0 on Ω, and hence

(3.2) AϕW = − c

4α
ϕW.

Putting X = W into (3.1) and taking account of (2.6) and (3.2) yields

(3.3) αϕA2W − 2αAϕAW − µ2ϕAW =

{
µ2

(
α+

c

4α

)
− c2

16α

}
ϕW,

and by putting X = ϕW into (3.1), we obtain

(3.4) αA2W+
c

2
AW = µ

(
α2+αγ+

c

2

)
ξ+

{
µ2

(
α+γ+

c

4α

)
− c2

16α

}
W,

where the smooth function γ is defined by γ = g(AW,W ). If we
substitute (3.4) into (3.3), then we have

(3.5) 2αAϕAW +

(
µ2 +

c

2

)
ϕAW = µ2γϕW.

Putting X = AW into (3.1) and using (2.6) and (3.2) yields

αϕA3W + αA2ϕAW − 2αAϕA2W − µ2(α+ γ)ϕAW

=µ2

(
α2 + αγ +

c

2
+

c

4α
γ

)
ϕW.

(3.6)

If we substitute (3.4) and (3.5) into (3.6) and make use of (2.6) and
(3.2), then we obtain ϕAW = γϕW , or equivalently,

(3.7) AW = µξ + γW
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on Ω. It follows immediately from (3.4) and (3.7) that

(3.8)

(
c

4
+ αγ

)(
c

4
+ αγ − µ2

)
= 0.

Differentiating the smooth function µ = g(Aξ,W ) along any vector
field X on Ω and using (2.1), (2.3), (2.6), (3.2) and (3.7), we have

Xµ = g

(
(∇ξA)W +

c

4α
γϕW,X

)
.

Since we have (∇ξA)W = ∇ξ(µξ + γW ) − A∇ξW , we see from the
equation above that the gradient vector field ∇µ of µ is given by

(3.9) ∇µ = −(A− γI)∇ξW + (ξµ)ξ + (ξγ)W +

(
µ2 +

c

4α
γ

)
ϕW

on Ω, where I indicates the identity transformation. If we differentiate
α = g(Aξ, ξ) along any vector field X and take account of (2.1), (2.3),
(2.6), (3.2) and (3.7), then we obtain ∇α = (∇ξA)ξ+(c/2α)µϕW , and
hence

(3.10) ∇α = µ∇ξW + (ξα)ξ + (ξµ)W + µ

(
3c

4α
+ α

)
ϕW.

By a similar argument as the above, we can verify that the gradient
vector fields of the smooth functions γ = g(AW,W ) and −c/(4α) =
g(AϕW,ϕW ) are given respectively by

(3.11) ∇γ = −(A− γI)∇WW + (Wµ)ξ + (Wγ)W + µ

(
γ − c

2α

)
ϕW,

(3.12)
c

4α
∇α = −α

(
A+

c

4α
I

)
ϕ∇ϕWW +

c

4α
((ϕW )α)ϕW.

Taking the inner product of (3.12) with ξ and W respectively and using
(2.6) and (3.7), and comparing the resultant equations, we have

(3.13) αµWα =

(
c

4
+ αγ

)
ξα.
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By means of (2.1), (2.6), (3.2) and (3.7), we can verify that

(∇ϕWA)ξ = µ∇ϕWW

+

{
(ϕW )α− c

4α
µ

}
ξ +

{
(ϕW )µ+

c

4
− c

4α
γ

}
W,

(∇ξA)ϕW = −
(
A+

c

4α
I

)
ϕ∇ξW + µ

(
c

4α
+ α

)
ξ

+ µ2W +
c

4α2
(ξα)ϕW.

Therefore, it follows from equation (2.3) of Codazzi that

µ∇ϕWW +

(
A+

c

4α
I

)
ϕ∇ξW = −

{
(ϕW )α− µ

(
c

2α
+ α

)}
ξ

−
{
(ϕW )µ− µ2 − c

4α
γ

}
W

+
c

4α2
(ξα)ϕW.

(3.14)

By a similar argument as the above, we can also verify from (∇ξA)W −
(∇WA)ξ that

µ∇WW + (A− γI)∇ξW

= (ξµ−Wα)ξ + (ξγ −Wµ)W +

(
µ2 − c

4
− αγ − c

4α
γ

)
ϕW.

If we take the inner product of this equation with ξ andW , respectively,
then we have

(3.15) ξµ = Wα and ξγ = Wµ

on Ω, and hence the initial equation is reduced to

(3.16) µ∇WW + (A− γI)∇ξW =

(
µ2 − c

4
− αγ − c

4α
γ

)
ϕW.

Let D be the distribution spanned by the unit vector fields ξ, W and
ϕW on Ω, that is, Dp = span {ξ,W, ϕW}p for any point p of Ω. Then
we see from (2.6), (3.2) and (3.7) that D is invariant under the shape
operator A and the structure tensor field ϕ.
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If we eliminate the term (A − γI)∇ξW from (3.9) and (3.16), then
we obtain

(3.17) ∇µ− µ∇WW ≡ 0(modD).

Applying the operators µI to (3.11) and A−γI to (3.17) and eliminating
the term ∇WW from them, we have

(3.18) (A− γI)∇µ+ µ∇γ ≡ 0 (modD).

By a similar argument as the above, we see from (3.9) and (3.10) that

(3.19) (A− γI)∇α+ µ∇µ ≡ 0 (modD).

Since D is invariant under the operator Aϕ+(c/4)ϕ, substituting (3.14)
into (3.12) yields
(3.20)
c

4
µ∇α−

{
α2AϕAϕ+

c

4
αϕAϕ− c

4

(
αA+

c

4
I

)}
∇ξW ≡ 0 (modD)

by the use of η(∇ξW ) = 0. If we apply the operator A− γI to (3.14),
then we can find

(3.21) µ(A− γI)∇ϕWW + (A− γI)

(
Aϕ+

c

4α
ϕ

)
∇ξW ≡ 0 (modD).

By virtue of (2.1), (2.3), (3.2) and (3.7), it follows from (∇WA)ϕW−
(∇ϕWA)W that (A− γI)∇ϕWW − (Aϕ+ c/(4α)ϕ)∇WW ≡ 0(modD),
from which together with (3.16), we find

(3.22) µ(A− γI)∇ϕWW +

(
Aϕ+

c

4α
ϕ

)
(A− γI)∇ξW ≡ 0 (modD).

Comparing (3.21) with (3.22), we can verify that

(3.23)

{
A2ϕ−AϕA− c

4α
(ϕA−Aϕ)

}
∇ξW ≡ 0 (modD).

It follows from (3.1) that (ϕA2 + A2ϕ − 2AϕA)X ≡ 0 (modD) for
any vector field X on Ω, since by use of (3.2) and (3.7) the vector field
on the right side of (3.1) belongs to D. Putting X = ϕ∇ξW into this
relation above yields

(A2 − ϕA2ϕ+ 2AϕAϕ)∇ξW ≡ 0 (modD).
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Since we have ϕ(ϕA2+A2ϕ−2AϕA)∇ξW ≡ 0 (modD) and η(A2∇ξW ) =
0, we obtain

(A2 − ϕA2ϕ+ 2ϕAϕA)∇ξW ≡ 0 (modD).

From the above two relations, we have

(3.24) (AϕAϕ− ϕAϕA)∇ξW ≡ 0 (modD).

Combining (3.23) with the relation (ϕA2 + A2ϕ − 2AϕA)∇ξW ≡
0 (modD), we get{

ϕA2 −AϕA+
c

4α
(ϕA−Aϕ)

}
∇ξW ≡ 0 (modD).

If we apply ϕ to this relation and take account of η(A∇ξW ) = 0 and
η(A2∇ξW ) = 0, then we have

(3.25)

(
A2 + ϕAϕA+

c

4α
ϕAϕ+

c

4α
A

)
∇ξW ≡ 0 (modD).

By virtue of (3.24), it follows from (3.20) and (3.25) that

c

4
µ∇α+

{
αA2 +

c

2
αA+

(
c

4

)2

I

}
∇ξW ≡ 0 (modD).

Since we have ∇α−µ∇ξW ≡ 0 (modD) from (3.10), the above relation
is rewritten as

(3.26)

{
α2A2 +

c

2
αA+

c

4

(
µ2 +

c

4

)
I

}
∇α ≡ 0 (modD).

4. Some lemmas. In this section we assume that M is a real
hypersurface satisfying RξLξ = LξRξ in a complex space form Mn(c),
c ̸= 0, and the open subset Ω given in (2.7) is not empty. Then we may
consider from (3.8) that we have either αγ + c/4 = 0 or αγ + c/4 = µ2

on Ω. The distribution D is given by D = span {ξ,W, ϕW} as before.
We shall prove some Lemmas, which will be used later.

Lemma 4.1. Let M be a real hypersurface in a complex space form
Mn(c), c ̸= 0, satisfying RξLξ = LξRξ. If the open subset Ω is not
empty, then the vector fields ∇α, ∇µ, ∇γ, ∇ξW , ∇WW and ∇ϕWW
are expressed in terms of the vector fields ξ, W and ϕW only on Ω.
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Proof. In the case where αγ + c/4 = µ2 on Ω, we have

(4.1) α∇γ + γ∇α = 2µ∇µ.

If we substitute (4.1) into (3.18) and make use of αγ + c/4 = µ2, then
we obtain

(4.2)

{
αA+

(
µ2 +

c

4

)
I

}
∇γ + γ(A− γI)∇α ≡ 0 (modD).

Substituting (4.1) into (3.19), we also obtain

(4.3) (2A− γI)∇α+ α∇γ ≡ 0(modD).

If we apply the operators αI to (4.2) and αA+ (µ2 + c/4)I to (4.3),
and eliminate the term ∇γ from them, then we have

(4.4)

{
α2A2 +

c

2
αA− c

4

(
µ2 − c

4

)
I

}
∇α ≡ 0 (modD).

By subtracting (4.4) from (3.26), we see that ∇α is expressed in terms
of ξ, W and ϕW only. Since D is invariant under the operator 2A−γI,
similar expressions as that of ∇α hold for ∇µ and ∇γ by (4.1) and
(4.3).

In the case where αγ + c/4 = 0 on Ω, we have

(4.5) γ∇α+ α∇γ = 0.

It is easily seen from (3.18) and (4.5) that

(4.6)

(
αA+

c

4
I

)
∇µ− µγ∇α ≡ 0 (modD).

Applying αA + (c/4)I to (3.19) and µ to (4.6), and eliminating the
term ∇µ from them, we can verify that

(4.7)

{
α2A2 +

c

2
αA− c

4

(
µ2 − c

4

)
I

}
∇α ≡ 0 (modD).

Therefore, it follows from (3.26) and (4.7) that ∇α is given by a
linear combination of ξ, W and ϕW only, and hence from (3.19) and
(4.5) that ∇µ and ∇γ have similar expressions as that of ∇α.
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Since ∇α is expressed in terms of ξ, W and ϕW only, so is ∇ξW by
(3.10). For the vector fields ∇ϕWW and ∇WW , the similar expressions
as that of ∇ξW are given by (3.14) and (3.16), respectively. �

Lemma 4.2. Under the assumptions of Lemma 4.1, if c/4+αγ = µ2

holds on Ω, then we have

α∇α = (ξα)Aξ − 3µ

(
α2 − c

4

)
ϕW,

α2∇µ = αµ(ξα)ξ +

(
µ2 +

c

4

)
(ξα)W

+

{
µ2

(
c

4
− 3α2

)
− c2

16

}
ϕW,

∇ξW = −4αϕW, µ∇ϕWW = − c

4α
µξ +

c

4α2
(ξα)ϕW.

(4.8)

Proof. At first, we see from (3.13) and (3.15) that

(4.9) ξµ = Wα =
µ

α
ξα, ξγ = Wµ.

If we substitute (3.9), (3.11) and (3.12) into (4.1), then we have

2µ(A− γI)∇ξW − α(A− γI)∇WW − 4α2

c
γ

(
A+

c

4α
I

)
ϕ∇ϕWW

= (2µξµ− αWµ)ξ + (2µξγ − αWγ)W

−
{
γ((ϕW )α)− 2µ

(
µ2 +

c

4α
γ

)
+ αµ

(
γ − c

2α

)}
ϕW.

Taking the inner product of this equation with ξ and W , respectively,
we obtain

4αµ

(
µ2 − c

4

)
g(∇ϕWW,ϕW ) = c(2µξµ− αWµ),

4µ2

(
µ2 − c

4

)
g(∇ϕWW,ϕW ) = c(2µξγ − αWγ)

by making use of (2.6), (3.7) and the relations η(∇ξW ) = η(∇WW ) = 0
and c/4 + αγ = µ2. From the above two equations, we have

(4.10) ξγ = Wµ =
1

α2

(
µ2 +

c

4

)
ξα
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by virtue of (4.9) and the equation αWγ = 2µWµ− γWα.

Substituting (3.9), (3.10) and (3.11) into (4.1) and using (4.1) and
(4.9), we have

µ(2A− γI)∇ξW − α(A− γI)∇WW =
c

4α2
µ

(
4α2 − µ2 +

c

4

)
ϕW.

If we take the inner product of the above equation with ϕW and use
(3.2), then we get

(4.11) − (µ2 +
c

4
)g(∇ξW,ϕW ) + αµg(∇WW,ϕW )

=
c

4α

(
4α2 − µ2 +

c

4

)
.

On the other hand, taking the inner product of (3.16) with ϕW , we
can easily find that

(4.12) µ2g(∇ξW,ϕW )− αµg(∇WW,ϕW ) =
c

4α

(
µ2 − c

4

)
.

It follows from (4.11) and (4.12) that g(∇ξW,ϕW ) = −4α, and
hence from Lemma 4.1 that the third equation of (4.8) holds on Ω.
Substituting the third of (4.8) into (3.14) and taking the inner product
of it with ϕW , we obtain µg(∇ϕWW,ϕW ) = c/(4α2)ξα. Since we
have g(∇ϕWW, ξ) = −c/(4α), we get the fourth equation of (4.8) by
Lemma 4.1.

Using (4.9), we can verify from (3.10) and the third of (4.8) that the
first equation of (4.8) holds on Ω. By substituting the third of (4.8)
into (3.9) and making use of (4.9) and (4.10), we obtain the second
equation of (4.8). �
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Lemma 4.3. Under the assumptions of Lemma 4.1, if c/4+αγ = 0
holds on Ω, then we have

∇α = (ξα)ξ − 3αµϕW,

∇ξW = −
(
4α+

3c

4α

)
ϕW,

∇ϕWW = − c

4α
ξ +

c

4α2µ
(ξα)ϕW.

(4.13)

Proof. It follows from (3.13) and (3.15) that

(4.14) Wα = ξµ = 0, ξγ = Wµ

on Ω. Using (4.5) and (4.14), we have

(4.15) αξγ + γξα = 0, Wγ = 0.

If we substitute (3.10) and (3.11) into (4.5) and use (4.14) and (4.15),
then we obtain

(4.16)
c

4
µ∇ξW + α

(
αA+

c

4
I

)
∇WW = −cµ

(
3c

16α
+ α

)
ϕW.

Taking the inner product of (4.16) with ϕW and using (3.2), we get
g(∇ξW,ϕW ) = −(4α+ (3c)/(4α)). Therefore, we see from Lemma 4.1
that the second equation of (4.13) holds on Ω. Moreover, if we
substitute the second of (4.13) into (3.14) and take the inner product
of it with ϕW , then we obtain µg(∇ϕWW,ϕW ) = c/(4α2)(ξα). Thus,
the third equation of (4.13) follows immediately from Lemma 4.1. By
comparing (3.10) with the second equation of (4.13) and using (4.14)
and Lemma 4.1, we have the first equation of (4.13). �

5. Characterizations of real hypersurfaces. At first, we shall
prove Theorem 1 given in the Introduction.

Proof of Theorem 1. Assume that the open set Ω = {p ∈ M |
µ(p) ̸= 0} is not empty. Then we can consider from (3.8) that either
c/4 + αγ = µ2 or c/4 + αγ = 0 hold on Ω.

In the case where c/4+αγ = µ2 holds on Ω, it follows from the first
equation of (4.8) in Lemma 4.2 that Xα2 = 2(ξα)η(AX) − 6µ(α2 −
c/4)v(X), where v is the dual 1-form of the unit vector field ϕW , that
is, v(X) = g(ϕW,X). From the identity [X,Y ]α2 = XY α2 − Y Xα2,
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we can verify that

(Xξα)η(AY )− (Y ξα)η(AX)

+ 2(ξα)g(AϕAX, Y )− c

2
(ξα)g(ϕX, Y )

− 3

(
α2 − c

4

)
{(Xµ)v(Y )− (Y µ)v(X)}

− 6αµ{(Xα)v(Y )− (Y α)v(X)}

− 6µ

(
α2 − c

4

)
dv(X,Y ) = 0

(5.1)

by virtue of equations (2.1) and (2.3), where

2dv(X,Y ) = Xv(Y )− Y v(X)− v([X,Y ])

for any vector fields X and Y on Ω. Since we have dv(ξ, ϕW ) = 0 by
(2.1) and (3.2), putting X = ϕW and Y = ξ into (5.1) and using (3.2),
(3.7) and (4.9) yields

(5.2) (ϕW )ξα = µ

(
c

4α2
− 9

)
ξα.

By virtue of the fourth equation of (4.8), we obtain dv(ϕW,W ) =
−c/(8α2µ)ξα. If we put X = ϕW and Y = W into (5.1) and make use
of (3.2), (3.7), (4.9), (4.10) and (5.2), then we have (α2 − c/4)ξα = 0,
from which ξα = 0 on Ω.

By use of (3.7) and the third equation of (4.8), we obtain

(5.3) 2dv(ξ,W ) = 4α+ γ =
1

α

(
4α2 + µ2 − c

4

)
on Ω. If we put X = ξ and Y = W into (5.1) and use (5.3) and ξα = 0,
then we have

(5.4)

(
α2 − c

4

)(
4α2 + µ2 − c

4

)
= 0.

The second equation of (4.8) is rewritten as Xµ = (1/α2){µ2(c/4 −
3α2) − (c2/16)}v(X). From the identity [X,Y ]µ = XY µ − Y Xµ, we
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have

c

(
µ2 − c

4

)
{(Xα)v(Y )− (Y α)v(X)}

− 4αµ

(
c

4
− 3α2

)
{(Xµ)v(Y )− (Y µ)v(X)}

− 4α

{
µ2

(
c

4
− 3α2

)
− c2

16

}
dv(X,Y ) = 0

for any vector fields X and Y on Ω. Putting X = ξ and Y = W into
the above equation and using (5.3), we obtain

(5.5)

{
µ2

(
c

4
− 3α2

)
− c2

16

}(
4α2 + µ2 − c

4

)
= 0.

It follows from (5.4) and (5.5) that 4α2 + µ2 = c/4 holds on Ω.
Substituting the first and second equations into 4α∇α + µ∇µ = 0
and using 4α2 + µ2 = c/4, we have c = 0, and hence a contradiction.

Therefore, c/4 + αγ = 0 holds on Ω. It follows from γξα+ αξγ = 0
and (4.14) that

(5.6) Wα = 0, α2Wµ =
c

4
ξα.

Since we have [X,Y ]α = XY α − Y Xα, we can verify from the first
equation of (4.13) in Lemma 4.3 that

(Xξα)η(Y )− (Y ξα)η(X) + (ξα)g((ϕA+Aϕ)X,Y )

− 3µ{(Xα)v(Y )− (Y α)v(X)} − 3α{(Xµ)v(Y )− (Y µ)v(X)}
− 6αµdv(X,Y ) = 0

(5.7)

for any vector fields X and Y on Ω. Making use of the third equation
of (4.13), we get dv(W,ϕW ) = c/(8α2µ)ξα. If we put X = W and
Y = ϕW into (5.7) and use (5.6), then we can find ξα = 0 on Ω.
Putting X = ξ and Y = W into (5.7) and using ξα = 0 yields
dv(ξ,W ) = 0, from which together with the second equation of (4.13),
we get 4α2 + c/2 = 0 by use of (2.1) and (3.7). Since we have
∇α = 0, the first equation of (4.13) turns to αµ = 0 on Ω, and it
is a contradiction.

Thus, the set Ω is empty, and hence M is a Hopf hypersurface. �
As a characterization of the Hopf hypersurface, we can state:
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Theorem 2. Let M be a real hypersurface in a complex space form
Mn(c), c ̸= 0. Then it satisfies RξLξ = LξRξ on M if and only if M
is locally congruent to:

(1) a Hopf hypersurface with Aξ = 0, or

(2) one of the model spaces of type A.

Proof. By Theorem 1, the real hypersurface M satisfying RξLξ =
LξRξ is a Hopf hypersurface in Mn(c), that is, Aξ = αξ.

In the case where the constant α does not vanish, the assumption
RξLξ = LξRξ is equivalent to

(5.8) A2ϕ+ ϕA2 − 2AϕA = 0

by use of (2.1) and (3.7). On the other hand, if we differentiate Aξ = αξ
covariantly and make use of equation (2.3) of Codazzi, then we have

(5.9) AϕA− α

2
(ϕA+Aϕ)− c

4
ϕ = 0.

For any vector field X on M such that AX = λX, it follows from (5.9)
that

(5.10)

(
λ− α

2

)
AϕX =

1

2

(
αλ+

c

2

)
ϕX.

We can choose an orthonormal frame field {X0 = ξ,X1, X2, . . . ,
X2(n−1)} on M such that AXi = λiXi for 1 ≤ i ≤ 2(n−1). If λi ̸= α/2
for 1 ≤ i ≤ p ≤ 2(n − 1), then we see from (5.10) that ϕXi is also a
principal direction, say AϕXi = µiϕXi. From (5.8), we have µi = λi,
and hence AϕXi = ϕAXi for 1 ≤ i ≤ p. If λi ̸= α/2 and λj = α/2 for
1 ≤ i ≤ p and p + 1 ≤ j ≤ 2(n − 1), respectively, then it follows from
(5.8) that

(5.11) A2ϕXj − αAϕXj +
α2

4
ϕXj = 0.

Taking the inner product of (5.11) with Xi, we obtain g(ϕXj , Xi) = 0
for 1 ≤ i ≤ p. Thus, the vector field ϕXj is expressed by a linear
combination ofXj ’s only, which implies AϕXj = (α/2)ϕXj = ϕAXj . If
λj = α/2 for 1 ≤ j ≤ 2(n−1), then it is easily seen that AϕXj = ϕAXj

for all j. Therefore, we have Lξ = ϕA− Aϕ = 0 on M . Statement (2)
of Theorem 5.2 follows immediately from Theorem A or Theorem B.
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In the case where α = 0, we see from (2.4) that Rξ = (c/4){X −
η(X)ξ}. Since we have Rξξ = 0, it is easily seen that RξLξ = LξRξ

holds on M . �
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