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4-DISSECTIONS AND 8-DISSECTIONS FOR
SOME INFINITE PRODUCTS

ERNEST X.W. XIA AND X.M. YAO

ABSTRACT. In this paper, we establish 4- and 8-
dissections for some infinite products. In particular, we gen-
eralize Hirschhorn’s formulas for 8-dissections of a continued
fraction of Gordon and its reciprocal. Our results also imply
a theorem on the periodicity of signs of the coefficients of an
infinite product given by Chan and Yesilyurt.

1. Introduction and main results. The aim of this paper is to
establish 4- and 8-dissections for some infinite products which implies
some results discovered by Hirschhorn [6] and Chan and Yesilyurt [4].

Throughout this paper, let q be a non-zero complex number of
modulus less than 1. We use the standard notation

[z; q]∞ = (z; q)∞(q/z; q)∞, z ̸= 0,

where

(a; q)∞ =
∞∑

n=0

(1− aqn),

and, as usual,

[z1, z2, . . . , zn; q]∞ =
n∏

i=1

[zi; q]∞.

It is easy to verify that

[z, q/z; q2]∞ = [z; q]∞,(1.1)

[−z, z; q]∞ = [z2; q2]∞,(1.2)
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[−1; q]∞ =
2

[q; q2]∞
(1.3)

and

[z−1; q]∞ = −z−1[z; q]∞.(1.4)

The m-dissection of the power series

P (q) =

∞∑
n=0

anq
n

is the presentation of P (q) as

P (q) = P0(q) + P1(q) + · · ·+ Pm−1(q),(1.5)

where

Pk(q) =
∞∑

n=0

amn+kq
mn+k.

Gordon’s continued fraction is given by

G(q) = 1 + q +
q2

1 + q3+

q4

1 + q5+

q6

1 + q7+
· · · = (q3, q5; q8)∞

(q, q7; q8)∞
.

This identity was established by Gordon [6]. Hirschhorn [8] discovered
the 8-dissections of G(q) and its reciprocal, thereby demonstrating
periodicity of the sign of the coefficients in the expansions of G(q)
and its reciprocal, and in particular that certain coefficients are zero, a
phenomenon first observed and shown by Richmond and Szekeres [12].
Alladi and Gordon [1], Andrews and Bressoud [3], Hirschhorn [7] and
Chan and Yesilyurt [4] generalized these themes. Recently, the authors
[16] proved Hirschhorn’s results by an iterative method.

Hirschhorn’s results on the 8-dissections of G(q) and G−1(q) can be
stated as follows.

Theorem 1.1 (Hirschhorn [8]). We have

G(q) =
[−q24,−q32; q64]∞

[q8, q16; q32]∞[q32; q64]∞
+

q[−q16,−q24; q64]∞
[q8, q8; q32]∞[q32; q64]∞

+
q2[−q16,−q24; q64]∞

[q8, q16; q32]∞[q32; q64]∞
− q12[−q8,−1; q64]∞

[q8, q16; q32]∞[q32; q64]∞
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− q5[−q8,−q16; q64]∞
[q8, q8; q32]∞[q32; q64]∞

− q6[−q8,−q16; q64]∞
[q8, q16; q32]∞[q32; q64]∞

,(1.6)

and

G−1(q) =
[−q16,−q24; q64]∞

[q8, q8; q32]∞[q32; q64]∞
− q[−q16,−q24; q64]∞

[q8, q16; q32]∞[q32; q64]∞

+
q3[−q8,−q32; q64]∞

[q8, q16; q32]∞[q32; q64]∞
− q4[−q8,−q16; q64]∞

[q8, q8; q32]∞[q32; q64]∞

+
q5[−q8,−q16; q64]∞

[q8, q16; q32]∞[q32; q64]∞
− q7[−1,−q24; q64]∞

[q8, q16; q32]∞[q32; q64]∞
.(1.7)

As a corollary of Theorem 1.2, Hirschhorn [8] discovered that

Corollary 1.2. Let

G(q) =
∞∑

n=0

anq
n and G−1(q) =

∞∑
n=0

bnq
n.

We have, for n ≥ 0,

a8n > 0, a8n+1 > 0, a8n+2 > 0, a8n+3 = 0,

a8n+12 < 0, a8n+5 < 0, a8n+6 < 0, a8n+7 = 0,

b8n > 0, b8n+1 < 0, b8n+2 = 0, b8n+3 > 0,

a8n+4 < 0, a8n+5 > 0, a8n+6 = 0, a8n+7 < 0.

Recently, Chan and Yesilyurt [4] generalized Corollary 1.2. They
established the following theorem.

Theorem 1.3. Suppose m is divisible by 8 and gcd (m, r) = 1. Let

[q3r; qm]∞
[qr; qm]∞

=
∞∑

n=0

cnq
n, 3r < m,(1.8)

and

[q3r−m; qm]∞
[qr; qm]∞

=

∞∑
n=0

dnq
n, m/3 < r < m/2.(1.9)
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We have, for n ≥ 0,

c8n > 0, c8n+r > 0, c8n+2r > 0,

c8n+m−2r < 0, c8n+m−3r < 0,

c8n+m+4r < 0 if m > 8r

c8n+2m−4r < 0 if m < 8r

cn = 0 if n ≡ 3r (mod 4);

d8n > 0, a8n+m−r > 0, a8n+r > 0,

d8n+4r−m < 0, a8n+3r−m < 0,

d8n+5r−m < 0 if 3m > 8r,

d8n+2m−3r < 0 if 3m < 8r,

dn = 0 if n ≡ 2r (mod 4).

In this paper, we establish 4- and 8-dissections of some infinite
products, which can be stated as follows.

Theorem 1.4. Let m > 0 be divisible by 4, let u > 0 and r > 0 be odd
integers and u− r ≡ 2 (mod 4). We have

(1.10)
[qu; qm]∞
[qr; qm]∞

= A0(q
4) + qA1(q

4) + q2A2(q
4) + q3A3(q

4),

where A0(q), A1(q), A2(q) and A3(q) are defined by

A0(q) =
[q(u+r)/4; qm/2]∞[q(m−u+3r)/4, q(m+u+r)/4; qm]∞

[qm/4; qm/2]∞[qm/2, qr; qm]∞
,

(1.11)

A2(q) = q(r−1)/2 [q
(u+r)/4; qm/2]∞[q(m−u−r)/4, q(m+u−3r)/4; qm]∞

[qm/4; qm/2]∞[qm/2, qr; qm]∞
,

(1.12)

Ai(q) = q(3r−i)/4 [q
(m−u−r)/4; qm/2]∞[q(u−3r)/4, q(2m−u−r)/4; qm]∞

[qm/4; qm/2]∞[qm/2, qr; qm]∞
,

(1.13)

if r ≡ −i (mod 4) for i = 1, 3, then
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Ai(q) = q(r−i)/4 [q
(m−u−r)/4; qm/2]∞[q(u+r)/4, q(2m−u+3r)/4; qm]∞

[qm/4; qm/2]∞[qm/2, qr; qm]∞
,

(1.14)

if r ≡ i (mod 4) for i = 1, 3.

Theorem 1.5. Let m and r be positive integers and r ≡ 1 (mod 2),
m ≡ 0 (mod 8). We have

(1.15)
[q3r; qm]∞
[qr; qm]∞

=
7∑

i=0

qiBi(q
8),

where Bi(q) are given by

B0(q) =
[−q3m/8,−q3m/8+r; qm]∞

[qm/8, qm/4; qm/2]∞[qm/2; qm]∞
,(1.16)

B4(q) = −qm/8+(r−1)/2 [−qm/8−r,−qm/8; qm]∞
[qm/8, qm/4; qm/2]∞[qm/2; qm]∞

,(1.17)

B2i(q) = q(r−i)/4 [q−3m/8,−q3m/8−r; qm]∞
[qm/8, qm/4; qm/2]∞[qm/2; qm]∞

,(1.18)

if r ≡ i (mod 4) for i = 1, 3, then

B2i(q) = −q(m−2r−2i)/8 [q−m/8,−qm/8+r; qm]∞
[qm/8, qm/4; qm/2]∞[qm/2; qm]∞

,(1.19)

if r ≡ −i (mod 4) for i = 1, 3, then

Bi(q) = B4+i(q) = 0, if r ≡ −i (mod 4) for i = 1, 3, then(1.20)

Bi(q) = q(r−i)/8 [−qm/4,−qm/2−r; qm]∞
[qm/8, qm/8; qm/2]∞[qm/2; qm]∞

,(1.21)

if r ≡ i (mod 8) for i = 1, 3, 5, 7, then

Bi(q) = −q(m−3r−i)/8 [−qm/4,−qr; qm]∞
[qm/8, qm/8; qm/2]∞[qm/2; qm]∞

,(1.22)

if r ≡ i+ 4 (mod 8) for i = 1, 3, 5, 7.

Theorem 1.6. Let m, r be positive integers and r ≡ 1 (mod 2), m ≡ 0
(mod 8). We have

(1.23)
[q3r−m; qm]∞
[qr; qm]∞

=
7∑

i=0

qiCi(q
8),
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where Ci(q) are given by

C0(q) =
[−qm/4,−qm−r; qm]∞

[qm/2; qm]∞[qm/8; qm/4]∞
,(1.24)

C4(q) = −q(r−1)/2−(m/8) [−qm/2−r,−qm/4; qm]∞
[qm/2; qm]∞[qm/8; qm/4]∞

,(1.25)

C2(q) = C6(q) = 0,(1.26)

Ci(q) = q(m−r−i)/8 [−qm/8,−qr−m/8; qm]∞
[qm/8, qm/4; qm/2]∞[qm/2; qm]∞

,(1.27)

if r ≡ −i (mod 8) for i = 1, 3, 5, 7, then

Ci(q) = −q(3r−m−i)/8 [−q5m/8−r,−q3m/8; qm]∞
[qm/8, qm/4; qm/2]∞[qm/2; qm]∞

,(1.28)

if r ≡ 4− i (mod 8) for i = 1, 3, 5, 7, then

Ci(q) = q(r−i)/8 [−qm/8,−qm/8+r; qm]∞
[qm/8, qm/4; qm/2]∞[qm/2; qm]∞

,(1.29)

if r ≡ i (mod 8) for i = 1, 3, 5, 7, then

Ci(q) = −q(5r−m−i)/8 [−q3m/8−r,−q3m/8; qm]∞
[qm/8, qm/4; qm/2]∞[qm/2; qm]∞

,(1.30)

if r ≡ 4 + i (mod 8) for i = 1, 3, 5, 7.

Taking r = 1 and m = 8 in Theorem 1.5, we deduce the formula
(1.6). Also, setting r = 3 and m = 8 in Theorem 1.6, we obtain
the formula (1.7). At last, it follows from Theorems 1.5 and 1.6 that
Theorem 1.3 holds.

2. Two lemmas. In order to prove our main results, we need the
following two lemmas which are proved using the following identity (see
[5, 14, 15])

(2.1)

[
χλ,

χ

λ
, µν,

µ

ν
; q

]
∞
−
[
χν,

χ

ν
, λµ,

µ

λ
; q

]
∞

=
µ

λ

[
χµ,

χ

µ
, λν,

λ

ν
; q]∞,

where χ, λ, µ and ν are non-zero complex numbers.
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Lemma 2.1. Let m > 0 be an even integer and r > 0, u > 0 odd
integers. We have

(2.2)
[qu; qm]∞
[qr; qm]∞

= α(q2) + qβ(q2),

where α(q2) and β(q2) are defined by

α(q2) =
[qu+r, qm+r−u; q2m]∞

[qm, q2r; q2m]∞
,(2.3)

β(q2) = qr−1 [q
u−r, qm−u−r; q2m]∞
[qm, q2r; q2m]∞

.(2.4)

Proof. In view of (1.2) and (2.2), we see that

α(q2) =
1

2

(
[qu; qm]∞
[qr; qm]∞

+
[−qu; qm]∞
[−qr; qm]∞

)
=

1

2

[qu,−qr; qm]∞ + [−qu, qr; qm]∞
[q2r; qm]∞

.(2.5)

Setting χ → q(3u−r)/4, λ → q(u+r)/4, µ → −q(u+r)/4, ν → q(u−3r)/4

and q → qm in (2.1), then dividing [qu−r; q2m]∞ on both sides and
utilizing (1.1), (1.2) and (1.3), we deduce that

[qu,−qr; qm]∞ − 2
[qu+r, qm−u+r; q2m]∞

[qm; q2m]∞
= −[−qu, qr; qm].(2.6)

Employing (2.5) and (2.6), we easily arrive at (2.3).

On the other hand, by (1.1) and (1.2), we have

β(q2) =
1

2q

(
[qu; qm]∞
[qr; qm]∞

− [−qu; qm]∞
[−qr; qm]∞

)

=
1

2q

[qu,−qr; qm]∞ − [−qu, qr; qm]∞
[q2r; qm]∞

.(2.7)

Taking χ → q(3u+r)/4, λ → q(u−r)/4, µ → q(u+3r)/4, ν → −q(u−r)/4

and q → qm in (2.1), then dividing [qu+r; q2m]∞ on both sides and
employing (1.1), (1.2) and (1.3), we see that

(2.8) [qu,−qr; qm]∞ − [−qu, qr; qm]∞ = 2qr
[qu−r, qm−u−r; q2m]∞

[qm; q2m]∞
.
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Combining (2.7) and (2.8), we obtain (2.4), and this completes the
proof. �

Lemma 2.2. Let m be a positive even integer and r, u positive odd
integers. We have

(2.9) [qr, qu; qm]∞ = α(q2) + qβ(q2),

where α(q2) and β(q2) are defined by

α(q2) =
[−qu+r,−qm−u+r; q2m]∞

[qm; q2m]∞
,(2.10)

β(q2) = −qr−1 [−qu−r,−qm−u−r; q2m]∞
[qm; q2m]∞

.(2.11)

Proof. It is easy to see that

(2.12) α(q2) =
1

2
([qu, qr; qm]∞ + [−qu,−qr; qm]∞) .

Setting χ → q(u+r)/2, λ → q(u−r)/2, µ → −q(u−r)/2, ν → i and q → qm

in (2.1), then dividing [−qu−r; q2m]∞ on both sides and using (1.1),
(1.2) and (1.3), we see that

(2.13) [qu, qr; qm]∞ − 2
[−qu+r,−qm−u+r; q2m]∞

[qm; q2m]∞
= −[−qu,−qr; qm].

It follows from (2.12) and (2.13) that (2.10) holds.

Similarly, we obtain:

(2.14) β(q2) =
1

2q
([qu, qr; qm]∞ − [−qu,−qr; qm]∞) .

Putting χ → q(u+r)/2, λ → q(u−r)/2, µ → −q(u+r)/2, ν → i and q → qm

in (2.1), then dividing [−qu+r; q2m]∞ on both sides and employing (1.1),
(1.2) and (1.3), we deduce that
(2.15)

[qu, qr; qm]∞ − [−qu,−qr; qm]∞ = −2qr
[−qu−r,−qm−u−r; q2m]∞

[qm; q2m]∞
.

Employing (2.14) and (2.15), we derive (2.11), and this proof is com-
plete. �
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3. Proof of Theorem 1.4. In this section, we provide a proof of
Theorem 1.4 by employing Lemma 2.1.

Proof. Taking u → (m+ r − u)/2 in (2.2), we have

(3.1)
[q(m+r−u)/2; qm]∞

[qr; qm]∞

=
[q(m−u+3r)/2, q(m+u+r)/2; q2m]∞+qr[q(m−u−r)/2, q(m+u−3r)/2; q2m]∞

[qm, q2r; q2m]∞
.

The congruence u− r ≡ 2 (mod 4) implies that u+ r ≡ 0 (mod 4) and
u− 3r ≡ 0 (mod 4). It follows from (1.10), (2.2) and (3.1) that

A0(q
4) + q2A2(q

4) =
[qu+r; q2m]∞
[qm; q2m]∞

[qm+r−u; q2m]∞
[q2r; q2m]∞

=
[qu+r; q2m]∞

[qm; q2m]∞[q2m, q4r; q4m]∞

(
[qm−u+3r, qm+u+r; q4m]∞

+q2r[qm−u−r, qm+u−3r; q4m]∞
)
,

which yields (1.11) and (1.12).

Also, taking u → (u− r)/2 in (2.2), we have

(3.2)

[q(u−r)/2; qm]∞
[qr; qm]∞

=
1

[qm, q2r; q2m]∞

(
[q(u+r)/2, q(2m−u+3r)/2; q2m]∞

+qr[q(u−3r)/2, q(2m−u−r)/2; q2m]∞

)
.

It follows from (1.10), (2.2) and (3.2) that

qA1(q
4) + q3A3(q

4) = qr
[qm−u−r; q2m]∞

[qm; q2m]∞

[qu−r; q2m]∞
[q2r; q2m]∞

= qr
[qm−u−r; q2m]∞

[qm; q2m]∞[q2m, q4r; q4m]∞
[qu+r, q2m−u+3r; q4m]∞

+ q3r
[qm−u−r; q2m]∞

[qm; q2m]∞[q2m, q4r; q4m]∞
[qu−3r, q2m−u−r; q4m]∞,(3.3)

which implies (1.13) and (1.14). This completes the proof. �
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4. Proofs of Theorems 1.5 and 1.6. In this section, we present
proofs of Theorems 1.5 and 1.6 by means of Lemma 2.2.

Proof. In Theorem 1.4, taking u = 3r, we can obtain the 4-dissection
of [q3r; qm]/[qr; qm]∞. Setting u → m/2− r, r → m/4 + r and q → qm

in (2.9), we have

(4.1) [qm/2−r, qm/4+r; qm]∞

=
[−q3m/4,−q3m/4+2r; q2m]∞

[qm; q2m]∞

− qm/4+r[−qm/4−2r,−qm/4, q2m]∞
[qm; q2m]∞

.

Setting u = 3r in (1.11) and employing (1.15) and (4.1), we see that

B0(q
8) + q4B4(q

8) =
[q2m−4r, qm+4r; q4m]∞

[qm, q2m; q4m]∞

=
[−q3m,−q3m+8r; q8m]∞

[qm, q2m; q4m]∞[q4m; q8m]∞

− qm+4r[−qm−8r,−qm; q8m]∞
[qm, q2m; q4m]∞[q4m; q8m]∞

,

which yields (1.16) and (1.21).

Setting u → m/2− r, r → m/4− r and q → qm in (2.9), we obtain

(4.2) [qm/2−r, qm/4−r; qm]∞

=
[−q3m/4,−q3m/4−2r; q2m]∞ − qm/4−r[−qm/4+2r,−qm/4; q2m]∞

[qm; q2m]∞
.

Taking u = 3r in (1.12) and using (1.15) and (4.2), we have

q2B2(q
8) + q6B6(q

8) = q2r
[q2m−4r, qm−4r; q4m]∞

[qm, q2m; q4m]∞

=
q2r[−q3m,−q3m−8r; q8m]∞
[qm, q2m; q4m]∞[q4m; q8m]∞

− qm−2r[−qm+8r,−qm; q8m]∞
[qm, q2m; q4m]∞[q4m; q8m]∞

,

which yields (1.18) and (1.19).
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Putting u = 3r in (1.13), we see that if r ≡ −i (mod 4) for i = 1, 3,
then

Ai(q) = 0.

Therefore, we have, if r ≡ 3 (mod 4), then

B1(q) = B5(q) = 0,

and, if r ≡ 1 (mod 4), then

B3(q) = B7(q) = 0,

which imply that (1.20) holds.

Setting u → qm/4+r, r → qm/4−r and q → qm in (2.9), we see that

(4.3) [qm/4+r, qm/4−r; qm]∞

=
[−qm/2,−qm−2r; q2m]∞ − qm/4−r[−q2r,−qm/2; q2m]∞

[qm; q2m]∞
.

Taking u = 3r in (1.14) and employing (1.15) and (4.3), we have

(4.4) qiBi(q
8) + q4+iB4+i(q

8) = qr
[qm−4r, qm+4r; q4m]∞

[qm, qm; q4m]∞

=
qr[−q2m,−q4m−8r; q8m]∞ − qm−3r[−q8r,−q2m; q8m]∞

[qm, qm; q4m]∞[q4m; q8m]∞
,

where i = 1, 3 and r ≡ i (mod 4). It follows from (4.4) that (1.21) and
(1.22) hold.

To conclude this section, we turn toward proving Theorem 1.6. Using
(1.1) and (1.4), we see that

(4.5)
[q3r−m; qm]∞
[qr; qm]∞

= −q3r−m [qm−3r; qm]∞
[qr; qm]∞

= −q3r−m [q3r; qm]∞
[qr; qm]∞

.

Employing Theorem 1.5 and (4.5), we can easily deduce Theorem 1.6.
The proof is complete. �
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