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ON A LOGARITHMIC HARDY-BLOCH TYPE SPACE

XIAOMING WU AND SHANLI YE

ABSTRACT. In this paper, given 0 < p < ∞, we define a
logarithmic Hardy-Bloch type space

BHp,L =
{
f(z) ∈ H(D) : ||f ||p,L

= sup
z∈D

(1− |z|) log
e

1− |z|
Mp(|z|, f ′) < ∞

}
.

Then we mainly study the relation between BHp,L and
three classical spaces: Hardy space, Dirichlet type space and
VMOA. We also obtain some estimates on the growth of
f ∈ BHp,L.

1. Introduction. Let D = {z : |z| < 1} be the open unit disk in the
complex plane C, and let H(D) denote the set of all analytic functions
on D. For 0 ≤ r < 1, f(z) ∈ H(D), we set

Mp(r, f) =

(
1

2π

∫ 2π

0

|f(reiθ)|pdθ
)1/p

, 0 < p < ∞,

M∞(r, f) = max
0≤θ≤2π

|f(reiθ)|.

For 0 < p ≤ ∞, the Hardy space Hp consists of those functions
f ∈ H(D), for which

∥f∥Hp = sup
0≤r<1

Mp(r, f) < ∞.

The Dirichlet type space D p
p−1 consists of those functions f ∈ H(D),
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for which ∫
D

(1− |z|)p−1|f ′(z)|pdA(z) < ∞,

where dA(z) = 1/π dx dy denotes the norm Lebesgue area measure on
D. Hence, f ∈ D p

p−1 if and only if

(1)

∫
D

(1−|z|)p−1|f ′(z)|pdA(z) = 2π

∫ 1

0

r(1−r)p−1Mp
p (r, f

′) dr < ∞.

The D p
p−1 is closely related to Hp. A classical result of Littlewood

and Paley [9] (see also [10]) asserts that

Hp ⊂ D p
p−1, 2 ≤ p < ∞.

On the other hand, see, e.g., [11, 14], we have

D p
p−1 ⊂ Hp, 0 < p ≤ 2.

These inclusions are strict if p ̸= 2.

Given 0 < p ≤ ∞ and 0 ≤ α < ∞, we write BHp,α and BHp,L for
the spaces of those f(z) ∈ H(D), such that

BHp,α =
{
f(z) ∈ H(D) : ||f ||p,α

= sup
z∈D

(1− |z|)α Mp (|z|, f ′) < ∞
}
,

BHp,L =

{
f(z) ∈ H(D) : ||f ||p,L

= sup
z∈D

(1− |z|) log e

1− |z|
Mp(|z|, f ′) < ∞

}
.

It is easy to prove that BHp,α and BHp,L are complete under the norms

||f ||pα = ||f ||p,α + |f(0)|,
||f ||pL = ||f ||p,L + |f(0)|.

When p ≥ 1, the two spaces above are Banach spaces.

For the two spaces above, it is evident that BHp,L ⊇ BHq,L

for 0 < p < q ≤ ∞. With the terminology just introduced, we
have BH∞,α = Bα and BH∞,L = BL, where Bα and BL denote
the α-Bloch space and the logarithmic Bloch space, respectively, the
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properties on these two spaces are abundant. More information about
Bα and BL can be found in [12, 15, 16, 17, 18, 20, 21].

When 0 ≤ α < 1, the following result is due to Hardy and
Littlewood, see [8].

Theorem A. Let 0 ≤ α < 1 and 1 ≤ p ≤ ∞. Then

BHp,α = Λp
1−α =

{
f ∈ Hp : ωp(t, f) = O(t1−α), as t → 0

}
,

where

ωp(t, f) = sup
0<|h|≤t

(
1

2π

∫ 2π

0

∣∣∣∣f (
ei(θ+h)

)
− f

(
eiθ

) ∣∣∣∣pdθ)1/p

,

t > 0, if 1 ≤ p < ∞,

ω∞(t, f) = sup
0<|h|≤t

(
ess sup

∣∣∣∣f (
ei(θ+h)

)
− f

(
eiθ

) ∣∣∣∣), t > 0.

Thus, BHp,α is a mean Lipschitz space. On this basis, Blasco [2] and
Girela and Máquez [5] extend the result.

When α = 1, the following result is known (see [7] and [6]).

Theorem B. Let f ∈ H(D), if 0 < p < ∞ and f ∈ BHp,1. Then

Mp(r, f) = O

((
log

1

1− r

)β)
,

where

(i) β = 1/p, for 0 < p < 2,
(ii) β = 1/2 for 2 ≤ p < ∞.

Our main goal in this paper is to show that, if f ∈ BHp,L, whose
rate of growth Mp(r, f

′) (1 < p < ∞) is between the ones for the
functions in BHp,α (0 < α < 1) and BHp,1, then f ∈ (Hp

∩
Dp

p−1),

see Theorem 2.1. We also characterize that BHp,L ⊂ (Hp
∩

Dp
p−1) for

p ∈ (1,∞) is strict. However, the containment is not true for 0 < p ≤ 1.
We also note that BHp,L ̸⊂ VMOA for every 0 < p < ∞. As for the
growth of f ∈ BHp,L, we give a sharp estimate.
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Throughout this paper, C, which may change from one occurrence
to the next, denotes a positive and finite constant only dependent on p
and α.

2. Proof of main results.

Theorem 2.1. Suppose 1 < p < ∞. Then BHp,L ⊂ (Hp
∩

Dp
p−1).

To complete the proof, we need the following three lemmas.

Lemma 2.1. [6] If 2 < p < ∞, then there is a constant Cp depending
only on p such that

||f ||Hp ≤ Cp

(
|f(0)|+

(∫ 1

0

(1− r)M2
p (r, f

′) dr

)1/2)
,

for all f ∈ H(D).

Lemma 2.2. [7] If 0 < p ≤ 2, then there is a constant Cp depending
only on p such that

||f ||pHp ≤ Cp

(
|f(0)|p +

∫
D

(1− |z|)p−1|f ′(z)|pdA(z)

)
,

for every f ∈ Dp
p−1.

Lemma 2.3. If 0 < α, β < ∞, x ∈ (0, e], then f(x) = xα(log e/x)β

increases on (0, e1−β/α], decreases on [e1−β/α, e].

The proof of this lemma is easy; we omit the details here.

Proof of Theorem 2.1. Take f ∈ BHp,L and assume, without loss
of generality, that f(0) = 0. When 2 < p < ∞, for 0 < r < 1, set
fr(z) = f(rz). Applying Lemma 2.1 to fr, we obtain that

M2
p (r, f) ≤ C

∫ 1

0

r2(1− s)M2
p (rs, f

′) ds

≤ C

∫ 1

0

1− s

(1− rs)2(log e/(1− rs))2
ds.
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Since rs < s, Lemma 2.3 implies

M2
p (r, f) ≤ C

∫ 1

0

1

(1− s)(log e/(1− s))2
ds < ∞.

When 1 < p ≤ 2, using Lemma 2.2 yields

Mp
p (r, f) ≤ C

∫
D

rp(1− |w|)p−1|f ′(rw)|pdA(w)

≤ C

∫ 1

0

(1− s)p−1

(1− rs)p(log e/(1− rs))p
ds

≤ C

∫ 1

0

1

(1− s)(log e/(1− s))p
ds.

Hence f ∈ Hp. The assertion that f ∈ Dp
p−1 can be easily obtained

from (1) finishes the proof. �

This theorem is not true for 0 < p ≤ 1 and p = ∞. Indeed, when
p = ∞, the space BH∞,L = BL. We take f(z) = log log e/(1− z).
Then

M∞(r, f ′) = O

(
1

(1− r) log e/(1− r)

)
,

that is, f ∈ BL, but f /∈ H∞. In the case 0 < p ≤ 1, we only prove
the following result.

Theorem 2.2. Suppose 0 < p ≤ 1. Let

f(z) =
1

(1− z)1/p log e/(1− z)
, z ∈ D.

Then f ∈ BHp,L, but f /∈ Hp.

The following three lemmas are needed in the proof of Theorem 2.2.

Lemma 2.4. If a > 1 and 0 < r < 1, then there exist two constants

C1 =
2

a− 1

(
1− 1

(1 + π)a−1

)
and

C2 =
4πa

a− 1
,
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such that

C1 (1− r)
1−a ≤

∫ 2π

0

∣∣ρeiθ − r
∣∣−a

dt ≤ C2 (1− r)
1−a

, ρ =
1

2
(1 + r).

The proof is similar to [3, Lemma in Chapter 4.6], so we omit the
details.

Lemma 2.5. For 0 < α, β < ∞ and z ∈ D, let

f(z) =
(1− |z|)α (log e/(1− |z|))β

(|1− z|)α (log e/|1− z|)β
.

Then f(z) ≤ 1 in the case β ≤ α log e/2, and f(z) ≤ (eα−β(6β)β)/2ααβ

in the case β > α log e/2.

Proof. For β ≤ α log e/2, by Lemma 2.3, we have

(1− |z|)α
(
log

e

1− |z|

)β

≤ (|1− z|)α
(
log

e

|1− z|

)β

,

for all z ∈ D,

which implies f(z) ≤ 1.

When β > α log e/2, let z ∈ D1 = {z ∈ D, |1 − z| < e1−(β/α)}, we
deduce that |f(z)| ≤ 1. On the other hand, the condition z ∈ D\D1

implies that

f(z) ≤ eα−β(β/α)β

2α (log e/2)
β
≤ 6βeα−β(β/α)β

2α
≤ eα−β(6β)β

2ααβ
.

This finishes the proof. �

The following lemma may be found in [8].

Lemma 2.6. Suppose that 0 < p < ∞ and f ∈ Hp. Then∫ 1

0

Mp
∞(r, f) dr ≤ π||f ||pHp .
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Proof of Theorem 2.2. Take the function

gc(z) =
zc

(1− z) (log 1/(1− z))
c .

Exercise 3 [3, Chapter I] says that gc ∈ H1 (c > 1). However, set
z = reiθ,∫ 1

0

M1
∞(r, gc) dr ≥

∫ 1

0

rc

(1− r) (log 1/(1− r))
c dr = ∞,

for every 0 ≤ c ≤ 1,

which, by Lemma 2.6, implies gc(z) /∈ H1 for 0 ≤ c ≤ 1.

For r = |z| ≥ 1/2, there exists a constant C > 0, such that
| log 1/(1− z)| ≥ C. Therefore,

|f(z)|p

|g1(z)|
=

∣∣∣∣1/(1− z) log(e/(1− z))p

z/(1− z) log 1/(1− z)

∣∣∣∣
≥ 2

| log 1/(1− z)|
|(log e/(1− z))p|

≥ 2
| log 1/(1− z)|| log e/(1− z)|1−p

1 + | log 1/(1− z)|

≥ 2C

1 + C

(
log

e

2

)1−p

.

It follows that f /∈ Hp. On the other hand,

f ′(z) =
1/p

(1− z)1+(1/p) log e/(1− z)
− 1

(1− z)1+(1/p) (log e/(1− z))
2 .

We have

|f ′(z)|p ≤ 1

|1− z|1+p(log |e/(1− z)|)p

(
1

p
+

1

log |e/(1− z)|

)p

≤
(
1

p
+

1

log e/2

)p
1

|1− z|1+p(log |e/(1− z)|)p
.

Using Lemmas 2.4 and 2.5, we obtain that∫ 2π

0

1

|1− reiθ|1+p(log |e/(1− reiθ)|)p
dθ
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=

∫ 2π

0

1

|1− reiθ|p/2(log |e/(1− reiθ)|)p|1− reiθ|1+(p/2)
dθ

≤ C

(1− r)p/2 (log e/(1− r))
p

∫ 2π

0

1

|1− reiθ|1+(p/2)
dθ

=
C

(1− r)p (log e/(1− r))
p .

This shows that f(z) ∈ BHp,L, and the proof is complete. �

We also note that BHp,L ⊂ (Hp
∩

Dp
p−1) for every p ∈ (1,∞) is

proper. Indeed, we have the following theorem.

Theorem 2.3. Given p with 1 < p < ∞, there exists a function f
which belongs to (Hp

∩
Dp

p−1)\BHp,L.

Proof. Let

f(z) =
1

(1− z)1/p
(
log(2e2

√
p)/(1− z)

)1/√p
, z ∈ D.

Then

log
2e2

√
p

1− |z|
∼ log

1

1− |z|
as |z| → 1−.

Take gc in the proof of Theorem 2.2 with c =
√
p. Then

Mp
p (r, f) ∼ M1(r, g√p), r = |z| → 1−,

which implies f ∈ Hp for every 1 < p < ∞.

As for proving f ∈ Dp
p−1 (1 < p < ∞), it can be deduced by directly

calculating ∫ 1

0

r(1− r)p−1Mp
p (r, f

′) dr < ∞.

Thus, we find f ∈ Hp
∩

Dp
p−1.

On the other hand, using Lemma 2.4 yields

1

2π

∫ 2π

0

|f ′(reiθ)|pdθ

≥ 1

2π

∫ 2π

0

1

|1− reiθ|1+p| log(2e2
√
p)/(1− reiθ)|

√
p
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×
(
1

p
− 1

√
p| log(2e2

√
p)/(1− reiθ)|

)p

dθ

≥ δ

2π(2p)p
1

(log(2e2
√
p)/(1− r))

√
p

∫ 2π

0

1

|1− reiθ|1+p
dθ

≥ δ

2π(2p)p
1

(1− r)p(log(2e2
√
p)/(1− r))

√
p
,

where δ > 0 is a constant. Therefore,

(1− r) log
e

1− r
Mp(r, f

′) ≥ δ1/p

2p(2π)
√
p

log e/1− r

(log(2e2
√
p)/(1− r))1/

√
p

−→ ∞, r → 1−,

which implies f /∈ BHp,L, and this concludes the proof. �

Remark 2.1. If we take

f(z) =
1

(1− z)1/p log(2e2
√
p)/(1− z)

, z ∈ D.

Carefully checking the proofs of Theorems 2.2 and 2.3, we have

Mp(r, f
′) ≈ 1

(1− r) log e/(1− r)
.

In [17], the second author showed that βL ⊆ VMOA, the vanishing
mean oscillation of analytic functions in D. So we want to know
whether BHp,L ⊆ VMOA for p ∈ (0,∞). However, the answer is
negative. For more information for VMOA space, see [1, 4, 19].

Theorem 2.4. Suppose 0 < p < ∞, then

f(z) =

∫ z

0

1

(1− t)1+1/p log e/(1− t)
dt ∈ BHp,L,

but f(z) /∈ VMOA.

Proof. The proof for f ∈ BHp,L is similar to Theorem 2.2, we omit
the details here.
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It is well known that the space

VMOA ⊂ BMOA ⊂ B
∩( ∩

0<p<∞
Hp

)
.

We have

f ′(r) =
1

(1− r)1+1/p log e/(1− r)
,

and then

(1− r)f ′(r) =
1

(1− r)1/p log e/(1− r)
,

which tends to infinity when r tends to 1. Hence, f /∈ B, it follows
that f /∈ VMOA. �

Our next objective is to estimate the growth of f ∈ BHp,L (0 < p <
∞). We begin with two lemmas.

Lemma 2.7. Given p with 1 ≤ p < ∞ and r with 0 < r < 1, then
(2)∫ r

0

1

(1−s)1+1/p log e/(1−s)
ds≤2p

(
1 + pe2/p

) 1

(1−r)1/p log e/(1−r)
.

Proof. Let r∗ = 1− e1−2p. Using Lemma 2.3, we easily obtain∫ r

0

1

(1− s)1+1/p log e/(1− s)
ds ≤

∫ r

0

1

(1− s)1+1/2p
ds

≤ 2pe(2p−1)/2p

if r ≤ r∗. When r > r∗, we have∫ r

0

1

(1− s)1+1/p log e/(1− s)
ds

=

∫ r∗

0

1

(1−s)1+1/p log e/(1−s)
ds+

∫ r

r∗

1

(1−s)1+1/p log e/(1−s)
ds

≤ 2pe(2p−1)/2p +
1

(1− r)1+1/2p log e/(1− r)

∫ r

0

1

(1− s)1+1/2p
ds

≤ 2pe(2p−1)/2p + 2p
1

(1− r)1/p log e/(1− r)
.

Hence, (2) holds. �
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Lemma 2.8. [8] Any function f ∈ Hp (0 < p < ∞) can be expressed
in the form f(z) = f1(z)+f2(z), where f1 and f2 are nonvanishing Hp

functions such that ∥fn∥Hp ≤ 2∥f∥Hp , n = 1, 2.

Theorem 2.5. If f ∈ BHp,L, (0 < p < ∞), then

|f(z)| ≤ C∥f∥pL
(1− r)1/p log e/(1− r)

, r = |z|,

where

C =


4πp(p− 1)(p−1)/p ·

(
1 + p · e1/2p

)
, 1 < p < ∞,

8(1 + e1/2), p = 1,
22+(3/p)−3p/(1− p), 0 < p < 1.

Proof. For r with 0 < r < 1, we have

f(reiθ) =

∫ r

0

f ′(seiθ)eiθds+ f(0).

We set ρ = (1 + s)/2, by Cauchy formula

f ′(seiθ) =
1

2πi

∫
|ζ|=ρ

f ′(ζ)

ζ − seiθ
dζ =

ρ

2π

∫ 2π

0

f ′(ρei(t+θ))ei(t−θ)

ρeit − s
dt.

Case I: 1 < p < ∞. Let q be the conjugate index of p : (1/p)+(1/q) =
1, then, by Hölder’s inequality, Lemmas 2.4 and 2.7, we give

|f(reiθ)| ≤ |f(0)|+ 1

2π

∫ r

0

∫ 2π

0

|f ′(ρei(t+θ))ei(t−θ)|
|ρeit − s|

dt ds

≤ |f(0)|+
(

1

2π

)1/q

·
(

4πq

q − 1

)1/q

∫ r

0

Mp(ρ, f
′) · 1

(1− s)1/p
ds

≤ |f(0)|+ 4πp(p− 1)(p−1)/p
(
1 + p · e1/2p

)
· ∥f∥p,L
(1− r)1/p log e/(1− r)

≤ 4πp(p− 1)(p−1)/p
(
1 + p · e1/2p

) ||f ||pL

(1− r)1/p log e/(1− r)
.
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Case II: p = 1. Using Lemma 2.7 again yields

|f(reiθ)| ≤ |f(0)|+ 1

2π

∫ r

0

∫ 2π

0

|f ′(ρei(t+θ))ei(t−θ)|
|ρeit − s|

dt ds

≤ |f(0)|+ 4

∫ r

0

1

(1− s)2 log e/(1− s)
ds · ||f ||p,L

≤ 8(1 + e1/2)
||f ||pL

(1− r) log e/(1− r)
.

Case III: 0 < p < 1. If f ′(z) ̸= 0 in z ∈ D, then the function
F (z) = (f ′(z))p is analytic, and f ∈ BHp,L gives

M1(r, F ) = {Mp(r, f
′)}p ≤

||f ||pp,L
(1− r)p (log e/(1− r))

p .

By the Cauchy formula, we find

|F (reiθ)| = | ρ
2π

∫ 2π

0

F (ρeit)eit

ρeit − z
dt| ≤

2||f ||pp,L
(1− r)1+p (log e/(1− r))

p ,

which implies that

|f ′(reiθ)| ≤
p
√
2||f ||p,L

(1− r)1+1/p log e/(1− r)
.

Then

M1(r, f
′) =

1

2π

∫ 2π

0

|f ′(reiθ)|1−p|f ′(reiθ)|pdθ

≤ {M∞(r, f ′)}1−p {Mp(r, f
′)}p

≤ 2(1−p)/p

(1− r)1/p log e/(1− r)
· ||f ||pp,L.

We deduce

|f(reiθ)| ≤ |f(0)|+ 1

2π

∫ r

0

∫ 2π

0

|f ′(ρei(t+θ))ei(t−θ)|
|ρeit − s|

dt ds

≤ |f(0)|+ 22/p
p

1− p
· ||f ||p,L
(1− r)1/p log e/(1− r)

≤ 22/p

1− p
· ||f ||pL

(1− r)1/p log e/(1− r)
.
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If f ′(z) has zeros, we fix R < 1 and use Lemma 2.8 to write

f ′(Rz) = f ′
1(z) + f ′

2(z),

where f1 and f2 do not vanish and

∥f ′
n∥Hp ≤ 2Mp(R, f ′) ≤ 2||f ||p,L

(1−R) log e/(1−R)
, n = 1, 2.

Since f ′
n(z) ̸= 0 (n = 1, 2), it follows that

|f ′(R2eiθ)| ≤ |f ′
1(Reiθ)|+ |f ′

2(Reiθ)|

≤ 22+1/p||f ||p,L
(1−R)1+1/p log e/(1−R)

.

Then

|f ′(reiθ)| ≤ 23+2/p||f ||p,L
(1− r)1+1/p log e/(1− r)

,

which implies that

|f(reiθ)| ≤ 22+3/p−3p

1− p
· ||f ||pL

(1− r)1/p log e/(1− r)
.

This completes the proof of Theorem 2.5. �

For 0 < p < ∞, we set

H∞
p,L=

{
f ∈ H(D), |f(z)|=sup

(
1

(1−r)1/p log e/(1−r)

)
<∞, |z|=r

}
.

Then BHp,L and the classic Bloch space B1 are included in H∞
p,L. It

turns out that neither H∞
p,L nor H∞

p,L is contained in Hp for every
1 < p < ∞. Indeed,

f(z) =
∞∑

n=0

z2
n

, z ∈ D

is in B1, which implies that f ∈ H∞
p,L, but not in Hp. On the other

hand, taking the function f(z) in Theorem 2.4, we find that f ∈ Hp

but not f /∈ H∞
p,L.

We set U here to be the class of all univalent functions in D. Then
Prawitz, see [13, page 17], deduced the following theorem.
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Theorem D. Suppose that 0 < p < ∞. If f ∈ U and
∫ 1

0
Mp

∞(r, f) dr <
∞, then f ∈ Hp. Using this result, we can give the following theorem.

Theorem 2.6. Suppose that 1 < p < ∞ and f ∈ U
∩

H∞
p,L. Then

f ∈ Hp.

Acknowledgments. We thank the referee for numerous stylistic
corrections.
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