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VARIOUS COMMENSURABILITY RELATIONS IN
HECKE PAIRS AND PROPERTY (RD)

VAHID SHIRBISHEH

ABSTRACT. In this paper we continue our study of
property (RD) for Hecke pairs initiated in [14]. We study
the permanence of property (RD) under different commensu-
rability relations of subgroups in Hecke pairs. As an appli-
cation, we prove that if H is a normal subgroup of a group
G and K is a subgroup of G commensurable to H, then
the Hecke pair (G,K) has (RD) if and only if the quotient
group G/H has (RD). This is used to investigate an infi-
nite number of non-elementary examples of Hecke pairs with
property (RD). In particular, we introduce a class of groups
all of whose subgroups are almost normal and all such Hecke
pairs having property (RD). We also discuss property (RD)
of certain Hecke pairs arising from group extensions.

1. Introduction. In this paper, all groups are discrete. A subgroup
H of a group G is called an almost normal subgroup of G if every double
coset of H is a union of finitely many left cosets of H. In this case, the
pair (G,H) is called a Hecke pair. One should not confuse our definition
of almost normal subgroups, which is popular in the context of Hecke
C∗-algebras, with the other definition which is popular in group theory
literature. By the second definition, H is an almost normal subgroup
of G if its normalizer is a subgroup in G of finite index. In group
theory, an almost normal subgroup of G (according to our definition)
is called a conjugate-commensurable subgroup of G. This is because
every conjugate of H, like gHg−1, is commensurable with H. The
Hecke algebraH(G,H) associated to the Hecke pair (G,H) is the vector
space of all finite support complex functions on the set of double cosets
of H in G equipped with a convolution like product similar to (1).
The (reduced) Hecke C∗-algebra associated to a Hecke pair (G,H) is
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the completion of the image of the Hecke algebra H(G,H) under the
regular representation λ : H(G,H) → B(ℓ2(H \G)) defined by

(1) λ(f)(ξ)(g) := (f ∗ ξ)(g) :=
∑

h∈⟨H\G⟩

f(gh−1)ξ(h),

for all f ∈ H(G,H) and ξ ∈ ℓ2(H \G). In noncommutative geometry,
Hecke C∗-algebras first appeared in [2] to construct a C∗-dynamical
system rivaling the class field theory of the field Q of rational numbers.
They are also considered as a generalization of reduced group C∗-
algebras. This is the motivation of our program begun in [14] to extend
tools and methods of noncommutative geometry, developed originally
for reduced group C∗-algebras, to the more general setting of Hecke
C∗-algebras. In [14], we defined property (RD) for Hecke pairs, (see
Definition 1.3 below), and studied a class of examples of Hecke pairs
with this property. We also showed that, when a Hecke pair possesses
property (RD), the algebra of rapidly decreasing functions is a smooth
subalgebra of the associated Hecke C∗-algebra; in other words, it is
dense and stable under holomorphic functional calculus of the Hecke
C∗-algebra. In this paper we continue our study of property (RD)
for Hecke pairs. We refer the reader to [14, 15] for basic definitions,
notations and results, where we also explained why property (RD) is
important for developing noncommutative geometry over Hecke C∗-
algebras. In order to give a big picture of our work in the present paper,
we need to differentiate among different types of commensurability
between groups and subgroups.

Definition 1.1.

(i) Two subgroupsH andK of a groupG are called commensurable
if there exists some g ∈ G such that H∩gKg−1 is a finite index
subgroup of both H and K. The subgroups H and K are called
strongly commensurable if H ∩ K has finite index in both H
and K.

(ii) Two groups G1 and G2 are called weakly commensurable if they
have subgroups H1 ≤ G1 and H1 ≤ G1 of finite index such that
H1 and H2 are isomorphic.

We note that all of the above three different definitions of commensu-
rability relations have appeared in the literature under the same name,
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see for example [5, 7, 9, 13], and the terms “weakly” and “strongly”
are temporary terminologies used in this paper. For another definition
of commensurability see[10, Definition 11.42], which is equivalent to
weak commensurability. The notions of strong commensurability and
almost normal subgroups are closely related. Let H be a subgroup of
a group G. The commensurator of H in G is the set

H̃ := {g ∈ G;H and gHg−1 are strongly commensurable},

which happens to be a subgroup of G, [13]. It follows immediately

from the definition that H is almost normal in G if and only if H̃ = G.

It is easily seen that all of the above commensurability relations are
equivalence relations, and it is desirable to investigate the behavior of
different properties of groups or pairs of groups and subgroups (such
as Hecke pairs) under these equivalences. In this respect, so far, the
following theorem was proved in [6].

Theorem 1.2 ([6]). Property (RD) is invariant under weak commen-
surability of groups.

Proof. Let H be a subgroup of a group G of finite index. It is enough
to show that G has (RD) if and only if H has (RD). These implications
were proved in [6, Proposition 2.1.1 and Proposition 2.1.5]. �

In this paper, we study the invariance of property (RD) under
different commensurability relations among subgroups in Hecke pairs.
Our main result is Theorem 2.2 which asserts that, if (G,H) is a Hecke
pair with (RD) with respect to a length function L and if K is a
subgroup of G strongly commensurable with H such that

(2) K ⊆ NL := {g ∈ G;L(g) = 0},

then the Hecke pair (G,K) has (RD) with respect to L. The above
theorem is extended to the case where H and K are commensurable
subgroups of G in Corollary 2.14. By assuming that one of the
subgroups H or K is normal in G, one can drop the above condition,
(2), about the length function. Therefore, in Corollary 2.5, it is shown
that if H is normal and K is commensurable to H, then the quotient
group G/H has (RD) if and only if the Hecke pair (G,K) has (RD).
In Proposition 2.11, we show how group homomorphisms with finite
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kernels can be used to pull back property (RD). A similar result about
pushing forward property (RD) by surjective homomorphisms is proved
in Proposition 2.15. The proof of Theorem 1.2 relies on the behavior
of property (RD) in group extensions. Therefore, to extend this result
to the framework of Hecke pairs, we study certain Hecke pairs coming
from group extensions as well as the conditions which imply property
(RD) for this Hecke pairs in Section 3. So far, all examples of Hecke
pairs with (RD) discussed in [14] were restricted to those Hecke pairs
(G,H) where G has (RD) and H is a finite subgroup of G. The above
results can be applied to prove property (RD) for Hecke pairs (G,H)
for which H is an infinite almost normal subgroup of G. For example,
we find a class of groups all of whose subgroups are almost normal, and
all such Hecke pairs have (RD). Another class of examples of Hecke
pairs is also given in Example 2.10.

We conclude this section by recalling some notation. Let H be a
subgroup of a group G, the index of H in G is denoted by |G : H|.
For g ∈ G, the number of left (respectively, right) cosets of H in the
double coset HgH is denoted by L(g) (respectively, R(g)). Therefore,
H is almost normal in G if L(g) < ∞ for all g ∈ G (or equivalently,
R(g) < ∞ for all g ∈ G). We have L(g) = |H : H ∩ gHg−1| and
R(g) = |H : H ∩ g−1Hg|, and so L(g) = R(g−1), see [17, page
170]. The reader should be careful as we use the symbol L for length
functions, too. The set of all double cosets of a Hecke pair (G,H) is
denoted by G//H. An arbitrary set of representatives of right cosets
(respectively, double cosets and left cosets) of H in G is denoted by
⟨H \ G⟩ (respectively, ⟨G/H⟩ and ⟨G/H⟩). The vector space of all
complex functions on the set H \G of right cosets with finite support
is denoted by C(H \G). The subsets of non-negative real functions in
H(G,H), C(H \ G) and CG are denoted by H+(G,H), R+(H \ G),
and R+(G), respectively. A length function on a Hecke pair (G,H) is
a length function L on G such that H ⊆ NL := {g ∈ G;L(g) = 0}.
It follows from this latter condition that L is constant on each double
coset. Thus, for every non-negative real number r, we are allowed to
define

Br,L(G,H) := {HgH ∈ ⟨G//H⟩;L(g) ≤ r}.

We also denote similar sets in ⟨H \ G⟩ and G by Br,L(H \ G) and
Br,L(G), respectively. For f ∈ H(G,H), the operator norm of λ(f)
is denoted by ∥λ(f)∥ and, for s ≥ 0, the weighted ℓ2-norm of f with
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respect to L is defined by

∥f∥s,L :=

( ∑
g∈⟨H\G⟩

|f(g)|2(1 + L(g))2s
)1/2

.

For f ∈ C(H \ G) or f ∈ H(G,H), the norm of f in ℓ2(H \ G) is
denoted by ∥f∥2.

Definition 1.3. Let L be a length function on a Hecke pair (G,H).
We say (G,H) has property (RD) with respect to L if the following
equivalent conditions hold:

(i) There are positive real numbers C and s such that the Haagerup
inequality

(3) ∥λ(f)∥ ≤ C∥f∥s,L

holds for all f ∈ H(G,H).
(ii) There exists a polynomial P such that, for any r > 0, f ∈

H+(G,H) so that supp f ⊆ Br,L(G,H) and k ∈ R+(H \ G).
We have

(4) ∥f ∗ k∥2 ≤ P (r)∥f∥2∥k∥2.

Item (i) in the above is the original definition of property (RD). The
equivalence of these conditions was shown in [14, Proposition 2.10].
Let L1 and L2 be two length functions on some Hecke pair. We say
L1 dominates L2 if there exist positive real numbers a, b such that
L2 ≤ aL1 + b. The length functions L1 and L2 are called equivalent if
they dominate each other.

Remark 1.4. If a Hecke pair has (RD) with respect to a length
function L it has (RD) with respect to all length functions dominating
L, in particular those which are equivalent to L.
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2. Property (RD) and commensurable subgroups of Hecke
pairs.

Remark 2.1. If H and K are two commensurable subgroup of G and
H is almost normal, then gKg−1 is almost normal in G for some g ∈ G,
see [17, page 179], and this implies that K is almost normal in G.

Theorem 2.2. Let H and K be two strongly commensurable and
almost normal subgroups of a group G. If there exists a length function
L on G such that H,K ⊆ NL, then the Hecke pair (G,H) has (RD)
with respect to L if and only if the Hecke pair (G,K) has (RD) with
respect to L.

Proof. By replacing K with K ∩ H, without loss of generality, we
can assume K is a subgroup of H of finite index n.

Suppose (G,K) has (RD) with respect to L and P is the polyno-
mial appearing in Definition 1.3. Let f ∈ H+(G,H) with supp f ⊆
Br,L(G,H), and let k ∈ R+(H \G). We define k̃ ∈ R+(K \G) (respec-
tively, f̃ ∈ H+(G,K)) by k̃(x) = k̃(Kx) := k(Hx) = k(x) (respectively,

f̃(x) = f̃(KxK) := f(HxH) = f(x)) for all x ∈ G. One notes that

f̃ ∈ Br,L(G,K). On the other hand, since every right coset of H is the
disjoint union of exactly n right cosets of K, we have

∥k̃∥22 = n∥k∥22, and ∥f̃∥22 = n∥f∥22,

where the norms are taken in ℓ2(K \ G) and ℓ2(H \ G), accord-

ingly. If Hx =
∪n

i=1Kxi (which implies that k(x) = k̃(xi) for all
i = 1, . . . , n), then yx−1 ∈

∪n
i=1 yxi

−1KH =
∪n

i=1 yxi
−1H, and so

Hyx−1 ⊆
∪n

i=1Hyxi
−1H. This means f(yx−1) = f̃(yxi

−1) for all
i = 1, . . . , n. Hence, we have

∥f̃ ∗ k̃∥22 =
∑

y∈⟨K\G⟩

( ∑
x∈⟨K\G⟩

f̃(yx−1)k̃(x)

)2

=
∑

y∈⟨K\G⟩

( ∑
x∈⟨H\G⟩

[ n∑
i=1

Hx=
∪n

i=1 Kxi

f̃(yx−1
i )k̃(xi)

])2
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=
∑

y∈⟨K\G⟩

( ∑
x∈⟨H\G⟩

nf(yx−1)k(x)

)2

=
∑

y∈⟨K\G⟩

n2(f ∗ k(y))2

= n3∥f ∗ k∥22.

Now, we compute ∥f ∗ k∥22 = 1/n3∥f̃ ∗ k̃∥22 ≤ 1/n3P (r)2∥f̃∥22∥k̃∥22 ≤
1/nP (r)2∥f∥22∥k∥22. Thus, (G,H) has (RD) with respect to L.

Conversely, assume (G,H) has (RD) with respect to L, and let P
be the polynomial in Definition 1.3. Let {h1, . . . , hn} be a complete set
of representatives of right cosets of K in H. For f ∈ H+(G,K) with
supp f ⊆ Br,L(G,K), define f ∈ H+(G,H) by f(x) = f(HxH) :=∑n

i,j=1 f(KhixhjK) =
∑n

i,j=1 f(hixhj) for all x ∈ G//H. For m ∈ N,

let c(m) be the least constant for which (
∑m

i=1 ai)
2 ≤ c(m)

∑m
i=1 a

2
i for

all ai ≥ 0. One computes

∥f∥22 =
∑

x∈⟨H\G⟩

( n∑
i,j=1

f(hixhj)

)2

≤ c(n2)
∑

x∈⟨H\G⟩

n∑
i,j=1

(
f(hixhj)

)2

≤ n2c(n2)∥f∥22,

where the last inequality follows from the fact that every right coset of
K appears at least once and at most n2 times in the last summation.
For k ∈ R+(K \ G), define k ∈ R+(H \ G) by k(g) = k(gH) :=∑n

i=1 k(Khig) =
∑n

i=1 k(hig). A similar computation as above shows

that ∥k∥22 ≤ nc(n)∥k∥22. We also note that f ≤ f̃ and k ≤ k̃. Therefore,
for every g ∈ ⟨K \ G⟩, we have f ∗ k(g) =

∑
x∈⟨K\G⟩ f(gx

−1)k(x) ≤∑
x∈⟨K\G⟩ f̃(gx

−1)k̃(x) = f̃ ∗ k̃(g). Hence,

∥f ∗ k∥22 ≤ ∥f̃ ∗ k̃∥22
= n3∥f ∗ k∥22
≤ n3P (r)2∥f∥22∥k∥22
≤ n6c(n)c(n2)P (r)2∥f∥22∥k∥22.
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This shows that (G,K) has (RD) with respect to L and completes the
proof. �

The proof of this theorem is a modification of the proof of Theo-
rem 2.11 of [14]. The only weakness of the above theorem is that it
assumes the existence of the length function L such that H,K ⊆ NL.
This difficulty can be resolved when one of the subgroups H or K is
normal in G. First we need some basics about extensions of groups.

Remark 2.3. Let H be a normal subgroup of G, and set Q := G/H.
Then we can consider G as the extension of Q by H;

(5) 1 // H // G
π // Q // 1.

As was explained at the beginning of Section 2 of [6], one equips H×Q
with the multiplication defined by the formula

(6) (h1, x1)(h2, x2)

:= (h1ρ(x1)(h2)f(x1, x2), x1x2), for all (h1, x1), (h2, x2) ∈ H ×Q,

where f and ρ are defined as follows. First, we fix a set-theoretic
cross-section σ : Q → G of π such that σ(1Q) = 1G. Then we define
f : Q×Q→ H by f(x1, x2) := σ(x1)σ(x2)σ(x1x2)

−1. For every x ∈ Q,
ρ(x) is the automorphism of H defined by conjugation of σ(x), that is,
ρ(x)(h) = σ(x)hσ(x)−1. We also note that f and ρ are related as
follows:

f(x1, x2)f(x1x2, x3) = ρ(x1)(f(x2, x3))f(x1, x2x3)(7)

and

ρ(x1)ρ(x2) = Ad (f(x1, x2))ρ(x1x2),(8)

for all x1, x2, x3 ∈ Q, where Ad (h) is the inner automorphism of H
defined by h for all h ∈ H, i.e., Ad (h)(a) = hah−1 for all a ∈ H, see
[4, page 104]. The multiplication defined by 6 is associative, and one
easily checks that the inverse of an element (h, x) ∈ H×Q with respect
to this multiplication is given by the following formula:

(9) (h, x)−1 = (σ(x)−1h−1σ(x−1)−1, x−1).
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Then the map H × Q → G defined by (h, x) 7→ hσ(x) is a group
isomorphism. Since our decomposition of G depends on σ, we denote
the group H ×Q by Gσ.

Lemma 2.4. Let H be a normal subgroup of a group G, and let K
be a subgroup of G which is commensurable with H. If L is a length
function on either the Hecke pair (G,H) or the Hecke pair (G,K), then
there exists a length function L′ on G equivalent with L such that NL′

contains both H and K.

Proof. One notes that K and H are strongly commensurable, be-
cause H is normal in G. As in the first case, assume that K ⊆ NL.
We consider the group extension (5) and constructions described in
Remark 2.3. Using the isomorphism Gσ = H × Q → G, we con-
sider L as a length function over Gσ. We define L′ : Gσ → [0,∞[ by
(h, x) 7→ L(1H , x) for all (h, x) ∈ Gσ. One easily checks that L′ is a
length function on Gσ. One also notes that m := |H : H ∩NL| < ∞.
Let ⟨(H ∩ NL) \ H⟩ = {(H ∩ NL)h1, . . . , (H ∩ NL)hm}, and set
M = max{L(hi, 1Q); 1 ≤ i ≤ m}. Then, for all (h, x) ∈ Gσ, we have
L(h, x) = L((h, 1Q)(1H , x)) ≤ L(h, 1Q) + L(1H , x) ≤M + L′(h, x) and
similarly L′(h, x) −M ≤ L(h, x). Therefore, L and L′ are equivalent.
It is also clear that H,K ⊆ NL′ .

As in the second case, assume that H ⊆ NL. By [14, Remark 2.3],
L is constant on each left coset of H, so it can be considered as a
length function on G/H. Since H and K are strongly commensurable,
the quotient group (HK)/H is a finite subgroup of G/H. It follows

from [6, Lemma 2.1.3] that there exists a length function L̃ on G/H
equivalent to L such that (HK)/H ⊆ NL̃. Define L′ : G → [0,∞[ by

L′(g) := L̃(gH) for all g ∈ G. The function L′ is a length function on
G equivalent to L and NL′ contains both H and K. �

Corollary 2.5. Let H and K be two commensurable subgroups of a
group G and let H be normal in G. Then the quotient group G/H has
(RD) if and only if the Hecke pair (G,K) has (RD).

Proof. Since property (RD) of G/H is the same as property (RD)
of the Hecke pair (G,H), the statement follows from Theorem 2.2 and
Lemma 2.4. �
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Now, using the above corollary, we are able to introduce a class of
groups all of whose subgroups are almost normal and every such Hecke
pair has property (RD). First we need some definitions and results from
group theory. Our main reference is the paper [11] by Neumann.

Definition 2.6. Let H be a subgroup of a group G. The normal
closure of H in G is the smallest normal subgroup of G containing H.
It is denoted by HG. H is called nearly normal in G if |HG : H| <∞.

The following classes of groups are important for our discussion.

Definition 2.7. Let G be a group.

(i) It is called an FD-group or a commutator-finite group if its
commutator (derived) subgroup, G′, is finite.

(ii) It is called an FIZ-group if the group of inner automorphisms of
G, Inn (G) = G/Z(G), is finite, where Z(G) denotes the center
of G.

(iii) It is called an FC-group if all conjugacy classes of elements of
G are finite or equivalently the centralizer of every element of
G is a subgroup of finite index.

In the following theorem we summarize those results of [11] that we
need for our purposes.

Theorem 2.8 ([11]).

(i) Every FIZ-group is an FD-group and every FD-group is an FC-
group.

(ii) In the class of finitely generated groups the converses of the
above implications are also true. In other words, if G is a
finitely generated FC-group, then it is an FIZ-group.

(iii) Subgroups and quotients of an FD-group, (respectively, FIZ-
group), (respectively, FC-group) are FD-groups, (respectively,
FIZ-groups), (respectively, FC-groups).

(iv) A group G is an FD-group if and only if every subgroup of G
is a nearly normal subgroup of G.

The following corollary relates the above theorem to our discussion.
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Corollary 2.9. Let G be a finitely generated FD-group (or FIZ-group,
or FC-group), and let H be a subgroup of G. Then the Hecke pair
(G,H) has (RD).

Proof. First we prove that every finitely generated FD-group Γ has
(RD). By definition, the commutator subgroup Γ′ of Γ is finite. On the
other hand, Γ/Γ′ is a finitely generated abelian group and has (RD)
because it is isomorphic to a direct product of finitely many cyclic
(finite or infinite) groups which all have (RD), see [6, Example 1.2.3]
and [14, Example 2.8]. Therefore, by [6, Proposition 2.1.4] (or by
Theorem 2.2), Γ has (RD).

Let H be a subgroup of G. Then G/HG is a finitely generated FD-
group, and so it has (RD). Now, since |HG : H| < ∞, HG and H are
strongly commensurable. Therefore, by Corollary 2.5, the Hecke pair
(G,H) has (RD). �

One can use Corollary 2.5 to construct more multifarious examples
of Hecke pairs with property (RD). We use the fact that, if A and
B are two groups, the kernel of the natural surjective homomorphism
π : A ∗B → A×B is a free group generated by commutators [a, b] for
all a ∈ A − {1A} and b ∈ B − {1B}, see [12, Proposition 4, Chapter
1]. Denote this kernel by RA,B .

Example 2.10. Pick two groups A and B having property (RD). Then
the quotient group A ∗B/RA,B ≃ A× B has (RD). For any subgroup
H of A ∗ B commensurable with RA,B , the Hecke pair (A ∗ B,H)
has (RD). There are basically two ways to construct subgroups like H
commensurable with RA,B . Firstly, one can pick any finite subgroup
of A×B, say K, and consider its preimage in A ∗B. Clearly, π−1(K)
contains RA,B as a finite index subgroup. Secondly, since RA,B is a free
group, for every integer n, one can define a surjective homomorphism
RA,B → Z/nZ by mapping one of the generators to 1 ∈ Z/nZ and
mapping other generators to zero. The kernel of this homomorphism is
a finite index subgroup of RA,B . One should note that the subgroups
of A ∗B commensurable with RA,B , constructed in the above, are not
necessarily normal inA∗B. Our discussion gives huge freedom to choose
A and B and construct Hecke pairs with property (RD). Obviously, one
can also apply our discussion to construct non-elementary Hecke pairs
which do not have property (RD).
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The rest of this section is devoted to showing how one can pull
back or push forward property (RD) using specific types of group
homomorphisms.

Proposition 2.11. Let φ : G1 → G2 be a group homomorphism whose
kernel is finite. If H2 ⊆ φ(G1) is an almost normal subgroup of G2 and
the Hecke pair (G2, H2) has (RD), then the Hecke pair (G1, φ

−1(H2))
has (RD).

Proof. It was shown in [17, page 170] that H1 := φ−1(H2) is almost
normal in G1. Assume (G2,H2) has (RD) with respect to a length
function L2 and P is the polynomial in Definition 1.3. Define L1 :=
L2φ. Then L1 is a length function on the Hecke pair (G1,H1). For
f1 ∈ H+(G1,H1) with supp f1 ⊆ Br,L1

(G1,H1) and k1 ∈ R+(H1 \G1),
define f2 ∈ H+(G2,H2) by f2(x) := f1(y) if there exists some y ∈ G1

such that x = φ(y) and otherwise define f2(x) := 0. Similarly define
k2 ∈ R+(H2 \ G2). Since Ker (φ) ⊆ H1, the definition of f2(x) and
k2(x) does not depend on the pre-image of x, and they are well-defined.
For instance, we check the invariance of f2 under multiplication of
the elements of H2 from the left. For h2 ∈ H2, choose h1 ∈ H1

such that φ(h1) = h2. Then, for all x ∈ φ(G1), if h2x = φ(y),
then x = φ(h−1

1 y) and so f2(h2x) = f1(y) = f1(h
−1
1 y) = f2(x) as

claimed. It is also easy to see that supp f2 ⊆ Br,L2(G2,H2). We
compute ∥f2∥22 =

∑
x∈⟨H2\G2⟩(f2(x))

2 =
∑

y∈⟨H1\G1⟩(f1(y))
2 = ∥f1∥22

and similarly ∥k2∥22 = ∥k1∥22. If x = φ(y) and s = φ(t), then
sx−1 = φ(ty−1). Thus, we have

∥f2 ∗ k2∥22 =
∑

s∈⟨H2\G2⟩

( ∑
x∈⟨H2\G2⟩

f2(sx
−1)k2(x)

)2

=
∑

t∈⟨H1\G1⟩

( ∑
y∈⟨H1\G1⟩

f1(ty
−1)k1(y)

)2

= ∥f1 ∗ k1∥22.

The above computations are based on the fact that a right coset of H2

either has a pre-image which has to be unique or it has no pre-image
and, in the latter case, f2 and k2 at this right coset have to be zero.



HECKE PAIRS AND PROPERTY (RD) 1643

From these equalities we conclude that ∥f1 ∗ k1∥22 ≤ P (r)∥f1∥22∥k1∥22,
and so (G1,H1) has (RD) with respect to L1. �

Two immediate corollaries of the above proposition are as follows.

Corollary 2.12. Let H be an almost normal subgroup of a group G,
and let Γ be a subgroup of G containing H. If the Hecke pair (G,H)
has (RD), then the Hecke pair (Γ,H) has (RD).

One notes that the above corollary is a generalization of [6, Propo-
sition 2.1.1].

Corollary 2.13. Let H and K be two almost normal subgroups of a
group G which are conjugate, namely, there exists g ∈ G such that
K = gHg−1. Then the Hecke pair (G,H) has (RD) if and only if the
Hecke pair (G,K) has (RD).

The invariance of property (RD) of Hecke pairs under commensura-
bility of subgroups follows immediately from the above corollary and
Theorem 2.2.

Corollary 2.14. Let H and K be two almost normal subgroups of a
group G. Assume there exists a g ∈ G such that gKg−1 is strongly
commensurable with H. If there is a length function L such that
gKg−1 ∪ H ⊆ NL, then the Hecke pair (G,H) has (RD) with respect
to L if and only if (G,K) has (RD) with respect to L.

The following proposition is somehow the dual of Proposition 2.11.

Proposition 2.15. Let φ : G1 → G2 be a surjective group homo-
morphism, and let H1 be an almost normal subgroup of G1 containing
Kerφ. If the Hecke pair (G1,H1) has (RD), then (G2, φ(H1)) is a
Hecke pair with property (RD).

Proof. Set H2 := φ(H1). It is shown in [17, page 170] that (G2,H2)
is a Hecke pair. Assume that (G1,H1) has (RD) with respect to L1

and P is the polynomial in Definition 1.3. For a given y ∈ G2, let x be
an element of G1 such that y = φ(x), and define L2(y) := L1(x).
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Since Kerφ ⊆ H1 ⊆ NL1 , the function L2 : G2 → [0,∞[ is well
defined. Indeed, it is a length function on the Hecke pair (G2, H2). For
f2 ∈ H+(G2,H2) with supp f2 ⊆ Br,L2(G2,H2) and k2 ∈ R+(H2 \G2),
we define f1 := f2φ and k1 := k2φ. It follows from the definition that
f1 ∈ H+(G1,H1) with supp f1 ⊆ Br,L1(G1,H1) and k1 ∈ R+(H1 \G1).
In fact, φ induces a bijection between the set of right cosets and a
bijection between the set of double cosets of the Hecke pairs (G1,H1)
and (G2,H2). It follows from these bijections that ∥f2∥22 = ∥f1∥22,
∥k2∥22 = ∥k1∥22 and ∥f1 ∗ k2∥22 = ∥f1 ∗ k1∥22. The rest of the proof is
straightforward. �

We note that Propositions 2.11 and 2.15 together are a generalization
of [6, Proposition 2.1.4]. Note that the condition Kerφ ⊆ H is
necessary in the above proposition, as is apparent from the proof.
Otherwise, since every finitely generated group is the quotient of a
free group of finite rank, it would have (RD). However the condition φ
being surjective can be relaxed in some cases that will be discussed in
the following section.

3. Property (RD) and extensions of groups by Hecke pairs.
In this section we consider a group extension

(10) 1 // G // E
π // Γ // 1

and an almost normal subgroup H of G and study when H is an almost
normal subgroup of E and when property (RD) of the Hecke pair (E,H)
follows from property (RD) of the Hecke pair (G,H) and the group Γ.

Definition 3.1. In the above situation, we call a set-theoretic cross-
section σ : Γ → E consistent with the Hecke pair (G,H), if ρ(γ)(H) =
σ(γ)Hσ(γ)−1 = H for all γ ∈ Γ. We also call the group extension 10
consistent with the Hecke pair (G,H) if there is a set-theoretic cross-
section σ : Γ → E consistent with (G,H).
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Remark 3.2.

(i) The group extension (10) is split, namely, there exist a homo-
morphism s : Γ → E such that s is a cross-section if and only
if E is a semi-direct product of G and Γ. In this case, the
condition s(γ)Hs(γ)−1 ⊆ H for all γ ∈ Γ implies that s is a
cross-section consistent with the Hecke pair (G,H).

(ii) If a cross-section σ is consistent with the Hecke pair (G,H),
then the number, L(σ(γ)), of distinct left cosets of H in
Hσ(γ)H equals 1 for all γ ∈ Γ.

Lemma 3.3. Assume (10) is a group extension consistent with the
Hecke pair (G,H) and σ is the consistent cross-section described above.
Let f and ρ be as defined in Remark 2.3.

(i) The pair (E,H) is a Hecke pair.
(ii) If H is normal in G, then it is normal in E too.
(iii) For every β, γ ∈ Γ, the map θγ,β : ⟨G/H⟩ → ⟨G⟩ defined by

g 7→ σ(γ)σ(β)−1gσ(γβ−1)−1 for all g ∈ G is a well-defined
bijective map.

(iv) The map (Hg, γ) 7→ H(g, γ) is a bijection between the sets
⟨H \ G⟩ × Γ and ⟨H \ (G × Γ)⟩ = ⟨H \ Eσ⟩, where the
multiplication between elements of G and elements of Γ in both
sides is as in Eσ.

Proof.

(i) Let g ∈ G and h ∈ H ∩ gHg−1. Then there exists an
h1 ∈ H such that hg = gh1. For a given γ ∈ Γ, set h2 :=
σ(γ)−1h1σ(γ). Then h2 ∈ H, and we have (g, γ)(h2, 1Γ) =
(gσ(γ)h2σ(γ)

−1, γ) = (gh1, γ) = (hg, γ) = (h, 1Γ)(g, γ). This
shows that h ∈ (g, γ)H(g, γ)−1, so H ∩ gHg−1 ⊆ H ∩
(g, γ)H(g, γ)−1. Hence,

(11) |H : H ∩ (g, γ)H(g, γ)−1| ≤ |H : H ∩ gHg−1| <∞.

Since this is true for every g ∈ G and γ ∈ Γ, H is almost normal
in Eσ and so is in E.

(ii) It is clear from (11).
(iii) One easily computes

θγ,β(g) = σ(γ)σ(β)−1σ(γβ−1)−1ρ(γβ−1)(g).
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Since ρ(x) is an automorphism on G for all x ∈ Γ and the
group extension is consistent with the Hecke pair, the map
defined by g 7→ ρ(γβ−1)(g) is a bijective map from ⟨G/H⟩
onto ⟨G/H⟩. On the other hand, the left multiplication of an
element (here σ(γ)σ(β)−1σ(γβ−1)−1) of G in left cosets is a
permutation of the set of left cosets. Therefore, θγ,β is well
defined and bijective for every γ, β ∈ Γ.

(iv) It is straightforward. �

The existence of a consistent cross-section in a group extension like
(10) is not the only case that leads to an extension of a group Γ
by a Hecke pair (G,H). For example, the famous Hecke pair used
by Bost and Connes in [2] comes from the following group extension
0 → Q → QoQ×

+ → Q×
+ → 1. Here H = Z and is a normal subgroup

of Q, and so the Bost-Connes Hecke pair is (Q o Q×
+,Z o 1). To see

the action of Q×
+ on Q, one needs to consider them as matrix groups:

Q =

{(
1 b
0 1

)
; b ∈ Q

}
and

Q×
+ =

{(
1 0
0 a

)
; a ∈ Q×

+

}
.

In [16], we use this realization of the Bost-Connes Hecke pair to show
that this Hecke pair does not have (RD). One notes that the above
group extension is not consistent with the Hecke pair (Q,Z), because
otherwise Z o 1 would be normal in Q o Q×

+ by Lemma 3.3 (ii).
Brenken generalized this example and proved that, regarding the group
extension (10), if H is a normal subgroup of G and for every γ ∈ Γ, the
subgroup [ρ(γ)(H)H]/H of G/H is finite, then H is an almost normal
subgroup of E, see [3, Lemma 1.9]. Similar conditions were given in [8,
Proposition 1.7], see also [1]. Although in the above papers there are
weaker conditions which implyH is almost normal in E, generally these
weaker conditions do not imply Lemma 3.3 (iii) which is an important
ingredient in the proof of the following proposition.

Proposition 3.4. Let H be an almost normal subgroup of a group G,
and let 1 → G → E → Γ → 1 be a group extension consistent with the
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Hecke pair (G,H). Assume L0, L and L1 are length functions on the
Hecke pairs (G,H), (E,H) and the group Γ, respectively, such that:

(i) the Hecke pair (G,H) and the group Γ have (RD) with respect
to L0 and L1, respectively, and

(ii) there are positive constants c and e such that

(12) L0(s) + L1(γ) ≤ cL(s, γ)e, for all (s, γ) ∈ Eσ,

where Eσ denotes the decomposition of E as constructed in
Remark 2.3.

Then the Hecke pair (E,H) has (RD) with respect to L.

Proof. Let P0 and P1 be the polynomials appearing in the definition
of property (RD) for the Hecke pair (G,H) and the group Γ, respec-
tively. Let σ : Γ → E be the cross-section consistent with the Hecke
pair (G,H), and let ρ : Γ → Aut (G) be as defined in Remark 2.3. In
the following, the subgroup H×{1Γ} of Eσ is denoted by the same no-
tation as H considered as the subgroup in G or E. Let ϕ ∈ H+(Eσ,H)
be such that supp (ϕ) ⊆ Br,L(Eσ,H), and let ψ ∈ R+(H \Eσ). For all
g ∈ H \G and β, γ ∈ Γ, we define

ϕγ,β(g) := ϕ(g, γβ−1), ψβ(g) := ψ(g, β).

Then ϕγ,β ∈ H+(G,H) and ψβ ∈ R+(H \ G) and by applying
inequality (12), we have supp (ϕγ,β) ⊆ Bcre,L0(G,H). Using (6), (9),
Lemma 3.3 (iii),(iv) and the fact that t ∈ ⟨H \ G⟩ if and only if
t−1 ∈ ⟨G/H⟩, we compute

∥ϕ ∗ ψ∥22 =
∑

(s,γ)∈⟨H\Eσ⟩

( ∑
(t,β)∈⟨H\Eσ⟩

ϕ(sθγ,β(t
−1), γβ−1)ψ(t, β)

)2

=
∑

(s,γ)∈⟨H\G⟩×Γ

( ∑
(t,β)∈⟨H\G⟩×Γ

ϕ(st−1, γβ−1)ψ(t, β)

)2

=
∑
γ∈Γ

∑
s∈⟨H\G⟩

(∑
β∈Γ

∑
t∈⟨H\G⟩

ϕγ,β(st
−1)ψβ(t)

)2

=
∑
γ∈Γ

∥∥∥∥∑
β∈Γ

ϕγ,β ∗ ψβ(s)

∥∥∥∥2
2
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≤
∑
γ∈Γ

(∑
β∈Γ

∥ϕγ,β ∗ ψβ∥2

)2

≤
∑
γ∈Γ

(∑
β∈Γ

P0(cr
e)∥ϕγ,β∥2∥ψβ∥2

)2

.

Now, we set ϕ′(β) := (
∑

g∈⟨H\G⟩ ϕ(g, β)
2)1/2 and ψ′(β) := ∥ψβ∥2.

One notes that ϕ′, ψ′ ∈ R+(Γ) and supp (ϕ′) ⊆ Bcre,L1(Γ) again
by inequality (12). One also easily computes ∥ϕ′∥2 = ∥ϕ∥2 and
∥ψ′∥2 = ∥ψ∥2. Then we have

ϕ′(γβ−1) =

( ∑
g∈⟨H\G⟩

ϕ(g, γβ−1)2
)1/2

=

( ∑
g∈⟨H\G⟩

ϕγ,β(g)
2

)1/2

= ∥ϕγ,β∥2.

Hence, we have

∥ϕ ∗ ψ∥22 ≤ P0(cr
e)2

∑
γ∈Γ

(∑
β∈Γ

ϕ′(γβ−1)ψ′(β)

)2

= P0(cr
e)2∥ϕ′ ∗ ψ′∥22

≤ P0(cr
e)2P1(cr

e)2∥ϕ′∥22∥ψ′∥22 ≤ P (r)2∥ϕ∥22∥ψ∥22,

where P is a polynomial such that P0(cr
e)P1(cr

e) ≤ P (r) for all
r > 0. �

The above proposition is a generalization of [6, Lemma 2.1.2].
An immediate corollary of the above proposition is that, if a Hecke
pair (G,H) and a group Γ have property (RD), then the Hecke pair
(G × Γ, H × 1Γ) has (RD). This situation can be generalized further
in the form of the following proposition which clearly follows from a
similar argument as the proof of the above proposition.

Proposition 3.5. Let (Gi,Hi) be Hecke pairs for i = 1, . . . , n. Then
the Hecke pair (

∏n
i=1Gi,

∏n
i=1Hi) has (RD) if and only if every Hecke

pair (Gi,Hi) has (RD) for i = 1, . . . , n.
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Remark 3.6. Let (G,H) be a Hecke pair. Assume the group extension
(10) is consistent with the Hecke pair (G,H). When Γ is a finite group,
it always has property (RD) with respect to the zero length function,
which is denoted here by L1. If the Hecke pair (G,H) has (RD) with
respect to a length function L0, one can use L0 to construct a length
function L on E which satisfies inequality (12).

For all (g, γ) ∈ Eσ, define p(g, γ) := g. One checks that

p((g1, γ1)(g2, γ2)) = p(g1, γ1)p((1G, γ1)(g2, γ2)),

for all (g1, γ1), (g2, γ2) ∈ Eσ.

Now, for all (g, γ) ∈ Eσ, define k(g, γ) := maxβ∈Γ L0(p((1G, β)(g, γ))).
Then, for all (g1, γ1), (g2, γ2) ∈ Eσ, we have

k((g1, γ1)(g2, γ2)) = max
β∈Γ

L0(p((1G, β)[(g1, γ1)(g2, γ2)]))

= max
β∈Γ

L0(p([(1G, β)(g1, γ1)](g2, γ2)))

= max
β∈Γ

L0(p((1G, β)(g1, γ1))p((1G, βγ1)(g2, γ2)))

≤ max
β∈Γ

[L0(p((1G, β)(g1, γ1)))

+ L0(p((1G, βγ1)(g2, γ2)))]

≤ max
β∈Γ

L0(p((1G, β)(g1, γ1)))

+ max
δ∈Γ

L0(p((1G, δ)(g2, γ2)))

= k(g1, γ1) + k(g2, γ2).

Define L(g, γ) := k(g, γ) + k((g, γ)−1). Clearly, L is a length function
on Eσ and inequality (12) holds for c = 1 and e = 1.

This discussion allows us to drop condition (ii) about the length
functions from Proposition 3.4.

The idea applied in the above remark is taken from [6, Proposition
2.1.5]. The following corollary is the generalization of [6, Proposition
2.1.5] in the setting of Hecke pairs. It is helpful to extend property
(RD) to bigger Hecke pairs subject to some conditions. This is done in
the following corollary.

Corollary 3.7. Consider a Hecke pair (G,H) with property (RD),
and let E be a group containing G as a subgroup of finite index.
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Set G1 :=
∩

x∈E xGx
−1 and H1 := G1 ∩ H. The pair (G1,H1)

is a Hecke pair and has (RD). Furthermore, if the group extension
1 → G1 → E → E/G1 → 1 is consistent with the Hecke pair (G1,H1),
the Hecke pair (E,H) has (RD).

Proof. G1 is a normal subgroup of E of finite index. Thus, H1 is a
subgroup of H of finite index. This implies that the pair (G,H1) is a
Hecke pair with property (RD). By Proposition 2.11, the pair (G1,H1)
is a Hecke pair with (RD). The rest follows from the above remark and
Proposition 3.4. �

Acknowledgments. Example 2.10 is the result of a helpful discus-
sion that I have had with Will Sawin about nearly normal subgroups in
mathoverflow.net. I would also like to thank the anonymous referee
of this paper for suggesting several corrections.

REFERENCES

1. U. Baumgartner, J. Foster, J. Hicks, H. Lindsay, B. Maloney, I. Raeburn
and S. Richardson, Hecke algebras and group extensions, Comm. Alg. 33 (2005),

4135–4147.

2. J.B. Bost and A. Connes, Hecke algebras, Type III factors and phase transi-
tion with spontaneous symmetry breaking in number theory, Select. Math. 1 (1995),

411–456.

3. B. Brenken, Hecke algebras and semigroup crossed product C∗-algebras, Pac.
J. Math. 187 (1999), 241–262.

4. K.S. Brown, Cohomology of groups, Springer-Verlag, New York, 1982.

5. P. de la Harpe, Topics in geometric group theory, The University of Chicago

Press, Chicago, 2000.

6. P. Jolissaint, Rapidly decreasing functions in reduced C∗-algebras of groups,

Trans. Amer. Math. Soc. 317, (1990), 167–196.

7. A. Krieg, Hecke algebras, Mem. Amer. Math. Soc. 87 (1990), 435.

8. M. Laca and N.S. Larsen, Hecke algebras of semidirect products, Proc. Amer.
Math. Soc. 131 (2003), 2189–2199.

9. W. Lück, Survey on geometric group theory, Münster J. Math. 1 (2008),

73–108.

10. J. Meier, Groups, graphs and trees, An introduction to the geometry of
infinite groups, Cambridge University Press, Cambridge, 2008.

11. B.H. Neumann, Groups with finite classes of conjugate subgroups, Math. Z.
63 (1955), 76–96.

12. J-P. Serre, Trees, Springer-Verlag, Berlin, 1980.



HECKE PAIRS AND PROPERTY (RD) 1651

13. G. Shimura, Introduction to the arithmetic theory of automorphic functions,
Iwanami Shoten and Princeton University Press, Princeton, 1971.

14. V. Shirbisheh, Property (RD) for Hecke pairs, Math. Phys., Anal. Geom.
15 (2012), 173–192.

15. , An erratum to “Property (RD) for Hecke pairs” (2012).

16. , Locally compact Hecke pairs, amenability and property (RD), in
preparation.

17. K. Tzanev, Hecke C∗-algebras and amenability, J. Oper. Theor. 50 (2003),
169–178.

Tehran, Iran
Email address: shirbisheh@gmail.com


