
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 44, Number 4, 2014

ON SHARP HEAT AND SUBORDINATED KERNEL
ESTIMATES IN THE FOURIER-BESSEL SETTING

ADAM NOWAK AND LUZ RONCAL

ABSTRACT. We prove qualitatively sharp heat kernel
bounds in the setting of Fourier-Bessel expansions when
the associated type parameter ν is half-integer. Moreover,
still for half-integer ν, we also obtain sharp estimates of all
kernels subordinated to the heat kernel. Analogous estimates
for general ν > −1 are conjectured. Some consequences
concerning the related heat semigroup maximal operator are
discussed.

1. Introduction. Let Jν denote the Bessel function of the first kind
and order ν, and let {λn,ν : n ≥ 1} be the sequence of successive positive
zeros of Jν in increasing order. It is well known that, for each fixed
ν > −1, the functions

ϕνn(x) = dn,ν x
−ν−1/2(λn,νx)1/2Jν(λn,νx), n = 1, 2, . . . ,

form an orthonormal basis in L2((0, 1), dµν); here

dn,ν =
√

2|λ1/2n,νJν+1(λn,ν)|−1

are normalizing constants, and the measure is given by

dµν(x) = x2ν+1 dx.

The system {ϕνn : n = 1, 2, . . .} is usually referred to as the Fourier-
Bessel system. Another Fourier-Bessel system arises by considering the
functions

ψν
n(x) = xν+1/2ϕνn(x), n = 1, 2, . . . ,
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which form an orthonormal basis in L2((0, 1), dx). Fourier-Bessel
expansions are of interest and have existed in the literature for a
long time, see [32, Chapter XVIII]. The related convergence problems
were investigated in [2, 3, 33]. For the study of several fundamental
harmonic analysis operators in the Fourier-Bessel context, see [10, 11,
13, 12, 14, 15, 23] and references therein. Some interesting open
questions concerning harmonic analysis of Fourier-Bessel expansions
can be found in a recent paper by Betancor [4].

Given ν > −1, consider the differential operator

Lν = −∆ − 2ν + 1

x

d

dx
,

which is symmetric and nonnegative on C2
c (0, 1) ⊂ L2((0, 1), dµν).

Each ϕνn, n = 1, 2, . . ., is an eigenfunction of Lν with the corresponding
eigenvalue λ2n,ν ,

Lνϕ
ν
n = λ2n,νϕ

ν
n.

This leads to a natural self-adjoint extension of Lν given by

Lνf =
∞∑

n=1

λ2n,ν ⟨f, ϕνn⟩dµν ϕ
ν
n

on the domain DomLν consisting of all f ∈ L2((0, 1), dµν) for which the
series converges in L2((0, 1), dµν); here ⟨f, ϕνn⟩dµν is the nth Fourier-
Bessel coefficient of f . Clearly, the spectral decomposition of Lν is
given by the ϕνn.

The aim of this paper is to find sharp estimates for the kernels

(1) Gν,α
t (x, y) =

∞∑
n=1

exp
(
− tλαn,ν

)
ϕνn(x)ϕνn(y),

where x, y ∈ (0, 1), t > 0 and α ∈ (0, 2] is the index of subordination.
These are precisely the integral kernels of the semigroups{

T ν,α
t

}
t>0

:=
{

exp(−tLα/2
ν )

}
t>0

generated either by Lν itself (α=2) or by its fractional powers (α<2).
Needless to say, the cases α= 2, 1 are of prior importance since then
(1) becomes the heat or the Poisson kernel, respectively, related to
system {ϕνn}. It is well known, see for instance [30], that heat and
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Poisson semigroups are powerful tools for developing harmonic analysis
of operators. In fact, in the problems posed in [4], heat and Poisson
semigroups play an essential role, and in this connection it is very
desirable to have a sharp description for the corresponding integral
kernels.

The behavior of Gν,α
t (x, y) does not seem to have been studied

before, except for some rough estimates for the Poisson kernelGν,1
t (x, y)

that can be found in [12, Proposition 6]. However, they are only from
above, and the way to get them is relatively sophisticated by performing
an involved analysis of the related series. Besides, such estimates do
not reveal the interplay between t, x and y. Note that, for short times
t, a direct analytic treatment of the series (1) is a complicated matter
except for a few particular cases discussed in Section 4. First of all,
the series defining Gν,α

t (x, y) is highly oscillating, and its behavior is
hidden behind subtle cancelations between the oscillations. Moreover,
Jν is in general a transcendental function, and there is no explicit
formula for its zeros. Finally, the power α of the eigenvalues in
the argument of the exponential makes an even more sophisticated
situation. These obstacles can be better understood by means of the
explicit computations in Section 4 for the cases ν=±1/2, α=1, 2.

Our method of estimating Gν,α
t (x, y) is based on a connection be-

tween the Fourier-Bessel context and the classical setting related to
multi-dimensional Euclidean balls. More precisely, we show that the

fundamental solution G(d),2
t (x, y) of the classical heat equation in the

d-dimensional unit ball, subject to the Dirichlet boundary condition, is
related to Gν,2

t (x, y) with ν=d/2−1. This allows us to transfer known

bounds for G(d),2
t (x, y) to the Fourier-Bessel framework on the interval

(0, 1) and conclude qualitatively sharp estimates for Gν,2
t (x, y) when

ν is half-integer, see Theorem 3.3. Therefore, the method of transfer-
ence enables us to obtain sharp estimates for the heat kernel in the
Fourier-Bessel setting in a relatively straightforward manner. Essen-

tially, the same procedure applies to subordinated kernels G(d),α
t (x, y)

and Gν,α
t (x, y), see Theorem 3.4. For large values of t, sharp estimates

of Gν,α
t (x, y) can be derived directly from series representation (1),

thanks to exponential decay. In this case all ν>−1 are covered, see
Theorem 3.7. Notice that all the results can be immediately translated
to the setting of system {ψν

n} since the relevant kernels coincide up to
the factor (xy)ν+1/2.
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We emphasize that the sharp bounds for G(d),α
t (x, y), 0 < α ≤ 2,

are quite strong results and seem to have been obtained in a complete
form only recently [29, 34]; this may be a bit surprising, in view of
simplicity of the geometry of the underlying domain, the Euclidean
ball. On the other hand, a part of these results has been established
on a probabilistic background. It seems that the connection between
them and the problem we investigate in the present paper, posed as a
harmonic analysis problem, has not been properly noticed before.

The paper is organized as follows. In Section 2 we first discuss
the connection between the Fourier-Bessel setting in the interval (0, 1)
and the situation associated with Euclidean balls and then relate the
kernels Gν,α

t (x, y) and G(d),α
t (x, y). In Section 3 we invoke necessary

bounds for G(d),α
t (x, y) and transfer them to the Fourier-Bessel setting

in the interval. We also establish the long time behavior of Gν,α
t (x, y)

by analyzing the defining series. Finally, Section 4 is devoted to
various comments and remarks. These concern, in particular, mapping
properties of the maximal operators of the semigroups {T ν,α

t }t>0,
0 < α ≤ 2.

Throughout the paper, we use a standard notation. While writing
estimates, we will use the notation X . Y to indicate that X ≤ CY
with a positive constant C independent of significant quantities. We
shall write X ≃ Y when simultaneously X . Y and Y . X.

2. Connection with multi-dimensional balls. For d ≥ 1, let
Bd = {x ∈ Rd : |x| < 1} be the unit ball in Rd and denote Sd−1 = ∂Bd.
It is well known (see for instance [19, Chapter 2, H]) that there exists
an orthonormal basis of eigenfunctions associated with the Dirichlet
Laplacian in Bd. These are expressed explicitly by the functions ϕνn
and spherical harmonics, as described below. For more details on
spherical harmonics and their connections with symmetry properties
of the Fourier transform we refer to [31, Chapter IV].

Given k ≥ 0, let Pk be the space of homogeneous polynomials of
degree k in Rd. Taking harmonic polynomials in Pk and restricting
them to Sd−1 we obtain the space

Hk = {P |Sd−1 : P ∈ Pk and ∆P = 0} .

The elements of Hk are called spherical harmonics of degree k. The



HEAT KERNEL BOUNDS IN THE F-B SETTING 1325

dimension of Hk is finite; in fact, we have

dk = dimHk = (2k + d− 2)
(k + d− 3)!

k!(d− 2)!
, d ≥ 2.

The case d = 1 is degenerate: S0 consists of two points and so
d0 = d1 = 1 and dk = 0 for k > 1.

Let {Y k
m : 1 ≤ m ≤ dk} be an orthonormal basis for Hk in

L2(Sd−1, dσ), where σ is the standard (non-normalized) surface area
measure on Sd−1. Define the functions

Φ
(d)
n,k,m(x) = ϕk+d/2−1

n

(
|x|

)
Y k
m

(
x

|x|

)
,

n ≥ 1, k ≥ 0, 1 ≤ m ≤ dk;

here and later on, we tacitly assume that for d = 1 only k = 0, 1 are
considered. The system{

Φ
(d)
n,k,m : n ≥ 1, k ≥ 0, 1 ≤ m ≤ dk

}
is orthonormal and complete in L2(Bd, dx). Moreover, it consists of
eigenfunctions of the Dirichlet Laplacian in Bd,

∆Φ
(d)
n,k,m = −λ2n,k+d/2−1Φ

(d)
n,k,m, Φ

(d)
n,k,m

∣∣∣
Sd−1

= 0.

Thus, the associated heat kernel and the subordinated kernels are
expressed, for x, y ∈ Bd, t > 0, as

G(d),α
t (x, y) =

∑
n≥1

∑
k≥0

∑
1≤m≤dk

exp
(
−tλαn,k+d/2−1

)
Φ

(d)
n,k,m(x)Φ

(d)
n,k,m(y),

where α ∈ (0, 2] is the subordination index. These are the integral
kernels of the semigroups{

T (d),α
t

}
t>0

:=
{

exp
(
− t(−∆)α/2

)}
t>0

,

where −∆ is understood to be the nonnegative self-adjoint operator

in L2(Bd, dx) whose spectral resolution is given by the Φ
(d)
n,k,m. The

domain of this operator can be identified with the Sobolev space
H1

0 (Bd), cf., [1].

We now observe that the analysis of the radial case in the context

of expansions with respect to {Φ
(d)
n,k,m} reduces to the Fourier-Bessel
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setting in the interval (0, 1) with the type index ν = d/2 − 1. Indeed,
if F (x) = f(|x|) is radial, then integrating in polar coordinates and
taking into account that Y 0

1 ≡ (σ(Sd−1))−1/2 we see that

⟨F,Φ(d)
n,0,1⟩ =

∫
Bd

F (x)Φ
(d)
n,0,1(x) dx = cd

∫ 1

0

f(x)ϕd/2−1
n (x)xd−1 dx

= cd⟨f, ϕd/2−1
n ⟩dµd/2−1

,

where cd = (σ(Sd−1))1/2. On the other hand, another integration
in polar coordinates shows that, for k > 0, the Fourier coefficients

⟨F,Φ(d)
n,k,m⟩ vanish since then Y k

m ⊥ Y 0
1 ≡ const. Thus, the expansion

of F in Bd is in fact the expansion of its profile f with respect to

the system {ϕd/2−1
n } on (0, 1). Similarly, the associated heat and

subordinated semigroups are also related via the radial case, as stated
below.

Proposition 2.1. Let d ≥ 1, ν = d/2 − 1 and f ∈ span {ϕνn : n ≥ 1}.
Then (

T ν,α
t f

)
◦ φ(x) = T (d),α

t (f ◦ φ)(x), x ∈ Bd,

where φ(x) = |x|.

Proof. For f = ϕνn, we have(
T ν,α
t ϕνn

)
◦ φ(x) = e−tλα

n,νϕνn(|x|) = cde
−tλα

n,d/2−1Φ
(d)
n,0,1(x)

= cdT (d),α
t Φ

(d)
n,0,1(x) = T (d),α

t

(
ϕνn ◦ φ

)
(x),

where cd = (σ(Sd−1))1/2. The conclusion follows. �

In fact the semigroups are related in the same way for more general
functions f . This is confirmed by the relation between the correspond-
ing integral kernels established below.

Theorem 2.2. Let d ≥ 1 and ν = d/2 − 1. Then

Gν,α
t (x, y) =

∫
Sd−1

G(d),α
t (x, yξ) dσ(ξ), x, y ∈ (0, 1), t > 0,

where x = (x, 0, . . . , 0) ∈ Bd.
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Proof. Let f ∈ span {ϕνn}. Using Proposition 2.1 and then, integrat-
ing in polar coordinates, we get∫ 1

0

Gν,α
t (|x|, y)f(y)y2ν+1 dy =

∫
Bd

G(d),α
t (x, y)f(|y|) dy

=

∫ 1

0

∫
Sd−1

G(d),α
t (x, yξ) dσ(ξ) f(y)yd−1 dy.

Since the subspace spanned by the ϕνn is dense in L2((0, 1), dµν) we
conclude the desired identity up to an exceptional set of y of measure
0. This set, however, must be empty because the kernels involved are
continuous with respect to their arguments. �

Actually, each of the kernels Gν,α
t (x, y) and G(d),α

t (x, y) is a jointly
smooth function of t > 0 and its arguments. This can be verified even
directly, by term-by-term differentiation of the defining series, with the
aid of basic bounds for dn,ν , λn,ν and Jν (see [14, Section 2]) and
the fact that |Y k

m(ξ)| can be dominated, uniformly in m and ξ, by a
polynomial in k (see for instance [31, Chapter IV, Corollary 2.9 (b)]).
We leave details to interested readers.

3. Kernel estimates. Heat kernels in various contexts were exten-
sively investigated in the literature. In particular, it is well known that
the heat kernel corresponding to the Dirichlet Laplacian in Bd, d ≥ 1,
satisfies the bounds (cf., [17, (1.9.1)])

(2) 0 < G(d),2
t (x, y) ≤ 1

(4πt)d/2
exp

(
−|x− y|2

4t

)
,

uniformly in x, y ∈ Bd and t > 0. These bounds are perhaps

most clear from the probabilistic point of view since G(d),2
t (x, y) is

just the transition probability density of the time-scaled Brownian
motion B2t killed upon leaving Bd. However, finding sharp bounds

for G(d),2
t (x, y) that describe precisely the interplay between x, y and

t, and the boundary behavior, is a much more complicated matter.
The complete and qualitatively sharp estimates are available only
recently, for bounded C1,1 domains. The case of Bd, obviously being
geometrically simpler, does not seem to have been known earlier.
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Theorem 3.1 ([16, 18, 29, 34]). Let d ≥ 1. Given T > 0, there
exists a constant c > 1 such that[

(1 − |x|)(1 − |y|)
t

∧ 1

]
1

td/2
exp

(
−c|x− y|2

t

)
. G(d),2

t (x, y) .(3) [
(1 − |x|)(1 − |y|)

t
∧ 1

]
1

td/2
exp

(
−|x− y|2

ct

)
,

uniformly in x, y ∈ Bd and 0 < t ≤ T . Moreover,

G(d),2
t (x, y) ≃ (1 − |x|)(1 − |y|) exp

(
−tλ21,d/2−1

)
,(4)

uniformly in x, y ∈ Bd and t ≥ T .

The upper bound in (3) as well as the large time behavior (4) has
been known at least since the 1980s, cf., Davies [16] and Davies and
Simon [18], see also the related comments in [34]. The existence of
the lower bound in (3) was shown by Zhang [34, Theorem 1.1] under
the assumption d ≥ 3 and with an implicitly fixed T . Later these
restrictions were removed by Song [29, Theorems 3.8 and 3.9]. Note
that the upper estimate in (3) holds in fact for all t > 0, which is not
the case of the lower bound.

Sharp estimates for the subordinated kernels were found recently by
Song [29].

Theorem 3.2 ([29, Theorem 4.7]). Let d ≥ 1 and 0 < α < 2. Given
T > 0, we have

(5) G(d),α
t (x, y) ≃

[
(1 − |x|)(1 − |y|)
t2/α + |x− y|2

∧ 1

]
t

(t2/α + |x− y|2)(d+α)/2
,

uniformly in x, y ∈ Bd and 0 < t ≤ T .

Similarly as in (3), the upper bound in (5) holds in fact for all t > 0,
which is not the case of the lower bound. The expected large time
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behavior for 0 < α < 2 is of course

G(d),α
t (x, y) ≃ (1 − |x|)(1 − |y|) exp

(
−tλα1,d/2−1

)
,

x, y ∈ Bd, t ≥ T.

When T is chosen sufficiently large, these bounds can be proved by a

direct analysis of the series defining G(d),α
t (x, y), similar to that in the

proof of Theorem 3.7 below. This, however, is beyond the scope of this
paper.

We now transfer the above bounds for G(d),α
t (x, y) to the Fourier-

Bessel setting on the interval (0, 1). More precisely, we shall prove the
following.

Theorem 3.3. Let ν = d/2 − 1 for some d ≥ 1. Given T > 0, there
exists a constant c > 1 such that

(xy)−ν−1/2

(
xy

t
∧ 1

)ν+1/2[
(1 − x)(1 − y)

t
∧ 1

]
1√
t

exp

(
−c (x− y)2

t

)
. Gν,2

t (x, y) .

(xy)−ν−1/2

(
xy

t
∧ 1

)ν+1/2[
(1 − x)(1 − y)

t
∧ 1

]
1√
t

exp

(
− (x− y)2

ct

)
,

uniformly in x, y ∈ (0, 1) and 0 < t ≤ T . Moreover,

Gν,2
t (x, y) ≃ (1 − x)(1 − y) exp

(
−tλ21,ν

)
, x, y ∈ (0, 1), t ≥ T.

Theorem 3.4. Let α ∈ (0, 2) and ν = d/2 − 1 for some d ≥ 1. Given
T > 0, we have

Gν,α
t (x, y) ≃ (xy)−ν−1/2

(
xy

t2/α + (x− y)2
∧ 1

)ν+1/2

×
[

(1 − x)(1 − y)

t2/α + (x− y)2
∧ 1

]
t

(t2/α + (x− y)2)(α+1)/2
,

uniformly in x, y ∈ (0, 1) and 0 < t ≤ T .

At the end of this section we will complement these results by
deriving, directly and for all ν > −1, sharp large time bounds for
the kernels Gν,α

t (x, y), 0 < α ≤ 2.
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To prove Theorem 3.3, we need the following.

Lemma 3.5. Let d ≥ 1 and x, y, t, c > 0 be fixed. Then∫
Sd−1

exp

(
−|x− yξ|2

ct

)
dσ(ξ)

= (2π)ν+1 exp

(
−x

2 + y2

ct

)(
ct

2xy

)ν

Iν

(
2xy

ct

)
,

where x = (x, 0, . . . , 0) ∈ Rd, ν = d/2 − 1 and Iν denotes the modified
Bessel function of the first kind and order ν.

Proof. We first deal with the case d ≥ 2. Observe that for ξ ∈ Sd−1

exp

(
−|x− yξ|2

ct

)
= exp

(
−x

2 + y2

ct

)
exp

(
2xyξ1
ct

)
.

Thus, the integrand is a zonal function depending only on ξ1. In this
case, the integration over Sd−1 reduces to a one-dimensional integral
against dξ1, see for instance the proof of [31, Chapter IV, Corollary
2.16]. Precisely, we have∫
Sd−1

exp

(
2xyξ1
ct

)
dσ(ξ) = σ(Sd−2)

∫ 1

−1

exp

(
2xy

ct
ξ1

)
(1−ξ21)(d−3)/2 dξ1,

where σ(Sd−2) = 2π(d−1)/2/Γ((d − 1)/2) is the surface area measure
of Sd−2. To evaluate the last integral we invoke Schläfli’s Poisson type
representation for the Bessel function Iν (cf., [32, Chapter III, Section
3·71, (9)])

Iν(z) =
1√

π2νΓ(ν + 1/2)
zν

∫ 1

−1

exp(zs)(1 − s2)ν−1/2 ds, ν > −1/2.

Now putting all the facts together we arrive at the desired identity.

When d = 1 the identity is verified directly, taking into account that
(cf., [32, Chapter III, Section 3·71, (10)]) I−1/2(z) = (2/(πz))1/2 cosh z.

�

Proof of Theorem 3.3. The large time behavior is a consequence of
Theorem 2.2 and Theorem 3.1. To show the remaining estimates we
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use in addition Lemma 3.5. This produces the bounds

(xy)−ν

[
(1 − x)(1 − y)

t
∧ 1

]
1

t
exp

(
−cx

2 + y2

t

)
Iν

(
c
2xy

t

)
. Gν,2

t (x, y) .

(xy)−ν

[
(1 − x)(1 − y)

t
∧ 1

]
1

t
exp

(
−x

2 + y2

ct

)
Iν

(
2xy

ct

)
.

Now the conclusion follows by applying the standard asymptotics for
Iν , ν > −1,

Iν(z) ≃ zν , z → 0+, Iν(z) ≃ z−1/2 exp(z), z → ∞,

together with the fact that Iν is continuous on (0,∞). �

In order to prove Theorem 3.4 we first analyze the behavior of a
one-dimensional integral depending on several parameters.

Lemma 3.6. Let γ and η be such that γ > η + 1 > 0. Then, for
0 < B < A < D,∫ 1

−1

(1 − s2)η ds

(D −Bs)(A−Bs)γ
≃ 1

(D −B)Aη+1(A−B)γ−η−1
.

Proof. Observe that∫ 1

−1

(1 − s2)η ds

(D −Bs)(A−Bs)γ
≃

∫ 1

0

(1 − s2)η ds

(D −Bs)(A−Bs)γ

≃
∫ 1

0

(1 − s)η ds

(D −Bs)(A−Bs)γ
,

so it is enough to analyze the last integral, which we further denote by
I. It is convenient to consider the following three cases. Altogether,
they cover all admissible configurations of A,B,D.

Case 1. D > A ≥ 2B. Since in this case A−Bs ≃ A ≃ A−B and
D −Bs ≃ D ≃ D −B, for s ∈ (0, 1), the conclusion is trivial.

Case 2. D ≥ 2B > A > B. Now D − Bs ≃ D ≃ D − B for
s ∈ (0, 1), and therefore

I ≃ 1

D −B

∫ 1

0

(1 − s)η ds

(A−Bs)γ
.
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Changing the variable u = 1 − s we get

I ≃ 1

D −B

∫ 1

0

uη du

(A−B +Bu)γ
.

Splitting the last integral at the point u = (A− B)/B and estimating
the resulting integrals separately we obtain∫ (A−B)/B

0

uη du

(A−B +Bu)γ
≃ 1

(A−B)γ

∫ (A−B)/B

0

uη du

≃ 1

Aη+1(A−B)γ−η−1

and ∫ 1

(A−B)/B

uη du

(A−B +Bu)γ
. 1

Bγ

∫ 1

(A−B)/B

uη−γ du

. 1

Bγ

(
A−B

B

)η−γ+1

≃ 1

Aη+1(A−B)γ−η−1
.

This implies the desired conclusion.

Case 3. 2B > D > A > B. Changing the variable u = 1−s we get

I =

∫ 1

0

uη du

(D −B +Bu)(A−B +Bu)γ
.

We now split the above integral at the points u1 = (A − B)/B and
u2 = (D − B)/B and estimate the resulting integrals separately. We
have ∫ (A−B)/B

0

uη du

(D −B +Bu)(A−B +Bu)γ

≃ 1

(D −B)(A−B)γ

∫ (A−B)/B

0

uη du

≃ 1

(D −B)Aη+1(A−B)γ−η−1
.



HEAT KERNEL BOUNDS IN THE F-B SETTING 1333

Further, ∫ (D−B)/B

(A−B)/B

uη du

(D −B +Bu)(A−B +Bu)γ

. 1

(D −B)Bγ

∫ (D−B)/B

(A−B)/B

uη−γ du

. 1

(D −B)Bγ

(
A−B

B

)η−γ+1

≃ 1

(D −B)Aη+1(A−B)γ−η−1
.

Finally, ∫ 1

(D−B)/B

uη du

(D −B +Bu)(A−B +Bu)γ

. 1

Bγ+1

∫ 1

(D−B)/B

uη−γ−1 du

. 1

Bγ+1

(
D −B

B

)η−γ

. 1

(D −B)Aη+1(A−B)γ−η−1
.

The conclusion again follows. �

Proof of Theorem 3.4. We assume d ≥ 2; the case d = 1 is a
simplified version of what follows. According to Theorem 2.2 we must
integrate the right-hand side in (5) with x = (x, 0, . . . , 0) ∈ Bd and y

replaced by yξ, over Sd−1 and with respect to dσ(ξ). To do that, we
first use the relation z ∧ 1 ≃ z/(z + 1), z > 0, in order to switch to a
comparable expression that is more suitable for the integration. This
leads to

Gν,α
t (x, y) ≃

∫
Sd−1

(1−x)(1−y)

t2/α+|x−yξ|2+(1−x)(1−y)

× t

(t2/α+|x−yξ|2)(d+α)/2
dσ(ξ).
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Here |x− yξ|2 = x2 + y2 − 2xyξ1 so, in fact, the integrated function is
zonal. Thus (see the proof of Lemma 3.5)

Gν,α
t (x, y) ≃ (1 − x)(1 − y)t

∫ 1

−1

1

(t2/α + x2 + y2 − 2xyξ1)(d+α)/2

× (1 − ξ21)(d−3)/2 dξ1
(t2/α + x2 + y2 + (1 − x)(1 − y) − 2xyξ1)

.

Finally, the last integral is handled by Lemma 3.6 applied with A =
t2/α + x2 + y2, B = 2xy, D = A + (1 − x)(1 − y), γ = (d + α)/2 and
η = (d− 3)/2 = ν − 1/2. Consequently, we obtain

Gν,α
t (x, y) ≃ (1 − x)(1 − y)

(t2/α + (x− y)2 + (1 − x)(1 − y))

× t

(t2/α + x2 + y2)ν+1/2(t2/α + (x− y)2)(α+1)/2
.

This, combined with the relations x2 + y2 ≃ (x − y)2 + xy and z/
(1 + z) ≃ z ∧ 1, z > 0, finishes the proof. �

We close this section by describing the long time behavior of
Gν,α

t (x, y) for all ν > −1 and 0 < α ≤ 2.

Theorem 3.7. Let ν > −1 and 0 < α ≤ 2. There exists T > 0 such
that

Gν,α
t (x, y) ≃ (1 − x)(1 − y) exp

(
− tλα1,ν

)
,

for x, y ∈ (0, 1) and t ≥ T . Moreover, the upper bound holds for an
arbitrary fixed T > 0.

Proof. We decompose, see (1),

Gν,α
t (x, y) = e−tλα

1,νϕν1(x)ϕν1(y) +

∞∑
n=2

e−tλα
n,νϕνn(x)ϕνn(y).

To treat the first term here we note that

ϕν1(x) ≃ (1 − x), x ∈ (0, 1).

Indeed, ϕν1(x) is strictly positive for x ∈ (0, 1), continuous for x ∈ [0, 1]

(see [15, (2.3)]), ϕν1(0) > 0, ϕν1(1) = 0 and [(d/dx)ϕν1 ](1) = −
√

2λ1,ν <
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0. Here the last identity follows from the formula

(6)
d

dx
ϕνn(x) = −x−ν−1/2λn,ν dn,ν(λn,νx)1/2Jν+1(λn,νx),

which is a straightforward consequence of the differentiation rule for
Jν , see [15, (2.1)].

The proof will be finished once we show that the bound∣∣∣∣ ∞∑
n=2

e−tλα
n,νϕνn(x)ϕνn(y)

∣∣∣∣ . (1 − x)(1 − y)e−tλα
1,νe−tε,

holds uniformly in x, y ∈ (0, 1) and t ≥ T , for an arbitrary fixed T > 0
and certain ε > 0. To proceed, we first justify the bound

(7)
∣∣ϕνn(x)

∣∣ . (1 − x)nν+2, x ∈ (0, 1), n ≥ 1.

By the mean value theorem, for each x ∈ (0, 1) there exists θ ∈ (x, 1)
such that ∣∣ϕνn(x)

∣∣ =
∣∣ϕνn(x) − ϕνn(1)

∣∣ = (1 − x)

∣∣∣∣ ddxϕνn(x)
∣∣∣
x=θ

∣∣∣∣.
To estimate the last derivative we combine (6) with the bounds given
in [15, Section 2], see [15, (1.3),(2.5),(2.6)], getting∣∣∣∣ ddxϕνn(x)

∣∣∣
x=θ

∣∣∣∣ . n
(
1 ∨ nν+1/2

)
≤ nν+2, n ≥ 1, θ ∈ (0, 1).

This gives (7). Now we may write

∞∑
n=2

e−tλα
n,ν

∣∣ϕνn(x)ϕνn(y)
∣∣

. (1 − x)(1 − y)e−tλα
1,νe−tε

∞∑
n=2

n2ν+4e−t(λα
n,ν−λα

1,ν−ε).

Choosing ε such that 0 < ε < λα2,ν − λα1,ν and taking into account that
λn,ν ≃ n, n→ ∞ (cf., [15, (2.6)]), we see that the last series is bounded
uniformly in t ≥ T , for any fixed T > 0. The conclusion follows. �
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4. Comments and remarks.

4.1. Elementary cases. There are only two cases, ν = ±1/2, when
the Fourier-Bessel system has an explicit form, i.e., dn,ν , Jν and λn,ν
are all given explicitly. We have (see [14, Section 1]) λn,−1/2 = π(n−1/
2), λn,1/2 = πn, and

ϕ−1/2
n (x) =

√
2 cos

(
π(n− 1/2)x

)
,

ϕ1/2n (x) = x−1
√

2 sin(πnx).

Consequently, the Poisson kernel Gν,1
t (x, y) can be computed when

ν = ±1/2. Indeed, using basic trigonometric identities and the formulas
(cf., [28, 5.4.12 (1), (2)])

∞∑
j=1

e−Aj sin(Bj) =
1

2

sinB

coshA− cosB
,

∞∑
j=1

e−Aj cos(Bj) =
1

2

sinhA

coshA− cosB
− 1

2
,

we arrive at

G
−1/2,1
t (x, y) =

sinh πt
2 cos π

2 (x− y)

coshπt− cosπ(x− y)
+

sinh πt
2 cos π

2 (x+ y)

coshπt− cosπ(x+ y)
,

G
1/2,1
t (x, y) =

1

2xy

[
sinhπt

coshπt− cosπ(x− y)
− sinhπt

coshπt− cosπ(x+ y)

]
.

Of course, sharp estimates for G
±1/2,1
t (x, y) can be obtained directly

from these formulas, though it is not immediate.

The heat kernel Gν,2
t (x, y) is ‘computable’ as well for ν = ±1/2, in

the sense that the resulting expressions (in fact series) do not contain
oscillations. For the simpler case ν = 1/2 we have

G
1/2,2
t (x, y) =

1

xy

∑
j∈Z

[
1√
4πt

exp

(
− (x− y − 2j)2

4t

)

− 1√
4πt

exp

(
− (x+ y − 2j)2

4t

)]
.

This is essentially a well-known Jacobi type identity. The series
above represents the heat kernel in the setting of the system {ψν

n}
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with ν = 1/2. Note that the corresponding differential operator is

L̃νf(x) = xν+1/2Lν((·)−ν−1/2f)(x), and we have L̃1/2 = −∆. The
formula in question can be derived by solving the initial-value problem
for the classical heat equation in the interval (0, 1) with Dirichlet
boundary conditions, see [8, Chapter 3, Exercises 3.5–3.7]. Here the
trick relies on extending a function f prescribing initial values on
(0, 1) to an odd function on (−1, 1) and then considering its periodic

extension f̃ to R with period 2. The solution of the heat equation on R

with initial values prescribed by f̃ , which is given by convolving f̃ with
the Gauss-Weierstrass kernel, also provides the solution of our initial-
value problem in the interval (0, 1). The convolution can be written in
terms of an integral involving the above series, due to the symmetries

of f̃ .

The case ν = −1/2 is slightly more involved, but follows in the same
spirit. Now Lν = −∆, and one solves the initial-value problem for
the heat equation in (0, 1) with the Neumann condition at x = 0 and

the Dirichlet condition at x = 1. The relevant extension f̃ is obtained
by extending f to (−1, 1) as an even function, then taking extension
to (−1, 3) that is antisymmetric with respect to x = 1 (i.e., satisfies
f(x) = −f(2 − x) for x ∈ (−1, 3)), and finally extending this function
from (−1, 3) to R as periodic with period 4. Solving the heat equation

with initial values f̃ and taking into account the symmetries of f̃ , one
concludes that

G
−1/2,2
t (x, y) =

∑
j∈Z

[
1√
4πt

exp

(
− (x− y − 4j)2

4t

)

+
1√
4πt

exp

(
− (x+ y − 4j)2

4t

)
− 1√

4πt
exp

(
− (x− y − 4(j + 1/2))2

4t

)
− 1√

4πt
exp

(
− (x+ y − 4(j + 1/2))2

4t

)]
.

The formulas for G
±1/2,2
t (x, y) are suitable for studying short time

behavior since for that only the terms corresponding to j = 0 (the case
of ν = −1/2) or to j = 0, 1 (the case of ν = 1/2) are essential. On the
other hand, they indicate that the related analysis for general ν > −1
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is far from being trivial. We remark that the kernels G
±1/2,2
t (x, y) can

also be expressed by Jacobi’s elliptic theta functions θ2, θ3 (see [28,
page 792] for the definitions), but this representation does not seem to
be very useful for our purposes.

4.2. Transference. Next we comment on the transference from the
situation of Euclidean balls to the Fourier-Bessel setting on the interval
(0, 1). Since the semigroups in both settings are related via the
mapping φ from Proposition 2.1, the same is true for many fundamental
operators expressible through these semigroups. This concerns, for
example, maximal operators of the semigroups, fractional integrals
(potential operators) and Laplace transform type multipliers in both
settings. Moreover, since Lebesgue measure in Bd transforms to
the measure dµν , ν = d/2 − 1, when projecting via φ to (0, 1),
mapping properties such as Lp-boundedness and weak type estimates of
operators defined in the context of Euclidean balls imply the same kind
of mapping properties for the corresponding operators in the Fourier-
Bessel setting on (0, 1). Similar concepts of transference are well known
also in other settings of classical orthogonal expansions, for instance,
in the direction Hermite−→Laguerre, see [21] and [26, Section 5].

4.3. Rough upper bounds. Another issue to discuss are conse-
quences of the rough estimate (2). Transferring it by means of Theo-
rem 2.2 and Lemma 3.5 to the Fourier-Bessel setting on (0, 1) we get

(8) 0 < Gν,2
t (x, y) ≤W

ν+1/2
t (x, y), x, y ∈ (0, 1), t > 0,

where ν = d/2 − 1, d ≥ 1, and

Wλ
t (x, y) = (xy)−λ+1/2 1

2t
exp

(
− x2 + y2

4t

)
Iλ−1/2

(
xy

2t

)
is the heat kernel in the setting of continuous Fourier-Bessel expansions
of type λ > −1/2 on (0,∞) (the context of the Hankel transform), see
[5] or [6]. The bounds (8) are easily explained from the probabilistic
point of view. Indeed, Wλ

t (x, y) is the transition probability density
for the time scaled Bessel process X2t on (0,∞), see [7, Appendix I,
Section 21] (here for λ ∈ (−1/2, 1/2) the endpoint x = 0 is assumed to

be reflecting), and G
λ−1/2,2
t (x, y) is the transition probability density

for X2t killed upon leaving (through x = 1) the interval (0, 1), see
[22, Section I]. Heuristically, this probabilistic argument works for
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all ν > −1 and justifies the claim that the bounds (8) hold for
arbitrary ν > −1, with both inequalities being strict. This claim has
several interesting consequences. One of them is, see [27, Section 6],
the fact that the semigroups {T ν,α

t }t>0, ν > −1, 0 < α ≤ 2, are
submarkovian symmetric diffusion semigroups (to get this for α < 2
we use the subordination principle), which are not Markovian. Similar
considerations are valid for the corresponding semigroups in the setting
of the system {ψν

n}, with the restriction ν ∈ {−1/2}∪ [1/2,∞), see [27,
Proposition 6.1].

4.4. Maximal operators. Interesting consequences of (8) concern
mapping properties of the maximal operators

T ν,α
∗ f = sup

t>0

∣∣T ν,α
t f

∣∣.
Since T ν,2

∗ is controlled by the analogous maximal operator W
ν+1/2
∗

in the Bessel setting on (0,∞) related to the measure dµν , it inherits

mapping properties of W
ν+1/2
∗ . The same is true in the context of

the system {ψν
n} and the Bessel setting on (0,∞) related to Lebesgue

measure. These observations allow to transmit positive parts of [6,
Theorem 2.1] to the Fourier-Bessel setting.

Theorem 4.1. Let ν > −1 be a half-integer, 1 ≤ p < ∞, δ ∈ R.
Then the maximal operator T ν,2

∗ , considered on the measure space
((0, 1), xδdx), has the following mapping properties:

(a) T ν,2
∗ is of strong type (p, p) if p > 1 and −1 < δ < (2ν+2)p−1;

(b) T ν,2
∗ is of weak type (p, p) if −1 < δ < (2ν+2)p−1 or δ = 2ν+1;

(c) T ν,2
∗ is of restricted weak type (p, p) if −1 < δ ≤ (2ν + 2)p− 1.

Moreover, T ν,2
∗ is of strong type (∞,∞).

Analogous results, with appropriate adjustments, hold also in the
setting of {ψν

n}, see [6, Remark 3.2]. Boundedness properties with
more general weights, and even in tensor product multi-dimensional
Fourier-Bessel settings, can be deduced in a similar manner from the
corresponding results in [5, 9]; we leave the details to interested
readers. The above consequences partially complement and extend
previous results on the heat semigroup maximal operator related to
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the system {ψν
n} and obtained in [13, 20]. Note that, in view of the

subordination principle, the above-mentioned mapping properties are
inherited by the maximal operators of the subordinated semigroups.
Note also that Theorem 4.1 is not optimal in the sense that it does
not take into account the boundary behavior at the right endpoint of
(0, 1), which in comparison to the continuous Bessel case is improved
by the decay of the heat kernel, see Theorem 3.3. Actually, this lack of
optimality pertains to many other weighted results obtained so far for
various operators in the Fourier-Bessel setting.

We believe that the results of this paper shed some new light on the
problems posed in [4] in which the heat semigroup comes into play. In
particular, in connection with the question [4, Question 6], it becomes
clear that there must be a pencil phenomenon associated with the heat
semigroup maximal operator related to the system {ψν

n}, and its nature
is the same as in the case of continuous Fourier-Bessel expansions in
the Lebesgue measure setting.

4.5. Final conjecture. We close the paper with the following natural
conjecture. Proving (or disproving) it is an interesting and important
open problem in the theory of Fourier-Bessel expansions.

Conjecture 4.2. The estimates from Theorems 3.3 and 3.4 hold for
all ν > −1.

Added in proof. Recently, Conjecture 4.2 has been confirmed by
the authors in the two special cases, α = 2, 1. See [24, Theorem 1.1]
and [25, Theorem 2.5], respectively.
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