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ENUMERATING QUASIPLATONIC CYCLIC
GROUP ACTIONS

ROBERT BENIM AND AARON WOOTTON

ABSTRACT. It is an open problem to determine the num-
ber of topologically distinct ways that a finite group can act
upon a compact oriented surface X of genus g(X) ≥ 2. We
provide an explicit answer to this problem for special classes of
cyclic groups and illustrate our results with detailed examples.

1. Introduction. A consequence of a resolution to the Nielsen
realization problem, see [10], is that there is a one-to-one correspon-
dence between conjugacy classes of finite subgroups of the mapping
class group Mσ of a compact oriented surface of genus σ and the topo-
logical equivalence classes of finite groups of homeomorphisms which
can act on such a surface. This correspondence has motivated a de-
tailed study of classes of topological group actions, and, in particular,
an attempt to classify or enumerate the different ways a group G can
act topologically on a surface X of genus σ ≥ 2, see for example, [2,
3, 6, 7] where Abelian groups are considered, and [13, 14] for other
examples. In general, the problem of enumerating classes of topologi-
cal group actions for arbitrary σ is highly computational and depends
very much upon how G acts on X as well as the general structure of
G. Indeed, the known results even for very simple classes of groups
such as Abelian groups are very technical, and so a general classifica-
tion for arbitrary groups seems unlikely. Moreover, for an arbitrary
G and σ, even answering the simple question, “does G act on a sur-
face of genus σ,” is typically non-trivial. These observations motivate
a study of classes of topological group actions of structurally simple
groups acting in a relatively simple way where it may be possible to
derive extremely explicit enumeration formulas as a stepping stone to
studying more complicated group actions.

The technical enumeration formulas derived in [3] for elementary
Abelian group actions of low rank illustrate how difficult it is to obtain
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explicit enumeration formulas for even structurally simple groups such
as Abelian groups. Therefore, we restrict our attention to the simplest
group structure possible cyclic groups. To restrict the action of G on
X , we specify that G is a so-called quasiplatonic group, that is, G has
exactly three fixed points and the quotient space X/G has genus 0
(see Section 2 for a formal definition). By restricting our attention to
groups acting in such a way, it is possible to derive general enumeration
formulas for the number of different actions, provided we know enough
structural information about G such as its character table, see [9, 15].
Of course, determining whether or not an arbitrary G acts on a surface
X of genus σ is a very difficult problem. However, for cyclic groups,
necessary and sufficient conditions are provided for the existence of
such an action, see [8]. Therefore, it seems that it should be possible
to determine explicit enumeration formulas for cyclic quasiplatonic
groups, that is, given a cyclic group G and a genus σ ≥ 2, a method to
determine the total number of distinct topological group actions of G
on a surface X of genus σ such that G is quasiplatonic.

There are a number of motivating reasons for our work. First, as
previously remarked, though some general classification results and
enumeration formulas are already known for classes of groups such
as Abelian groups, they are not always explicit and often extremely
technical. By restricting to quasiplatonic cyclic groups, we are able to
provide very simple enumeration formulas by invoking already known
results and a little elementary number theory. Secondly, many quasi-
platonic groups are maximal as finite subgroups of Mσ, and, for those
which are not, there are computational methods to determine precisely
which ones are not maximal, see for example, [4]. Thus, an enumera-
tion method for the number of different classes of cyclic group actions
which are quasiplatonic groups can be used to provide a lower bound
on the number of conjugacy classes of maximal finite cyclic subgroups,
or more generally, the number of conjugacy classes of maximal finite
subgroups of Mσ, thus providing insight into the general structure of
Mσ. Finally, though the groups we consider and their actions are ex-
tremely elementary, we hope that the techniques we have used may be
generalized to other classes of groups. Indeed, it seems that it would
be straightforward to derive explicit formulas for quasiplatonic Abelian
group actions and perhaps some simple semi-direct products, and this
could lead to new methods to the more general problem.
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Our paper is structured as follows. In Section 2 we develop the
necessary preliminary results. Following this, in Section 3, we use some
elementary number theory to derive explicit formulas for solutions to
certain congruences which will be used in our enumeration formulas.
Next, we shall derive all enumeration formulas in Section 4. We finish
in Section 5 by providing applications of our results and a number of
explicit examples.

2. Preliminaries. Let G be a finite group. The group G is said to
act topologically (in an orientation-preserving manner) on surface X
of genus σ ≥ 2, if there is an injection

ε : G ↪→ Homeo+(X)

into the group of orientation-preserving homeomorphisms (we shall
identify G with its image under ε). Two actions ε1, ε2 are said to
be topologically equivalent if there is a homeomorphism h of S and an
automorphism ω of G such that

ε2(ω(y)) = h ◦ ε1(y) ◦ h−1

for all y ∈ G. This is equivalent to saying that the images ε1(G) and
ε2(G) are conjugate in Homeo+(X).

Fuchsian groups provide us with a way to describe topological group
actions. Specifically, a surface X of genus σ ≥ 2 is topologically
equivalent to a quotient of the upper half plane H/Λ where Λ is any
torsion-free Fuchsian group isomorphic to the fundamental group of X
called a surface group for X . A finite group G acts on X if and only if
G = Γ/Λ for some Fuchsian group Γ containing such a Λ as a normal
subgroup of index |G|. The structure of Γ is completely determined by
the ramification data of the quotient map πG:X → X/G, which must
satisfy the Riemann-Hurwitz formula. Specifically, if the quotient map
πG branches over r points with ramification indices mi for 1 ≤ i ≤ r
and the quotient space X/G has genus g, then a presentation for Γ is:

Γ =
〈
a1, b1, . . . , ag, bg, c1, . . . , cr | cm1

1 , . . . , cmr
r ,

r∏
i=1

ci

g∏
j=1

[aj , bj]
〉
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where

σ = 1 + |G|(g − 1) +
|G|
2

r∑
i=1

(
1− 1

mi

)
.

Such a group is described by the tuple (g;m1, . . . ,mr) called the
signature of Γ (we also say that G has signature (g;m1, . . . ,mr), and
we call the numbers m1, . . . ,mr the periods of the signature). In the
special case that g = 0 and r = 3, we call Γ a triangle group. The
following is a formal definition of the central focus of our work.

Definition 2.1. Suppose that X is a surface and G = Γ/Λ where Λ
is a surface group for X and Γ is a triangle group. Then we call G a
quasiplatonic group.

Remark. Typically, when studying quasiplatonic groups, we are con-
sidering the actions as conformal actions rather than simply topologi-
cal actions, and under these circumstances, we call X a quasiplatonic
surface. For our purposes, since we are only considering topological
actions, we avoid using this terminology for the surface as there will
always exist at least one quasiplatonic topological group action on any
such surface, see [1, 11].

Group actions are usually described through the use of surface kernel
epimorphisms. Specifically, we have the following.

Theorem 2.2. A finite group G acts on a surface S of genus σ ≥ 2
with signature (g;m1, . . . ,mr) if and only if there exists a Fuchsian
group with signature (g;m1, . . . ,mr) and an epimorphism ρ: Γ → G
preserving the orders of the elements of finite order (called a surface
kernel epimorphism) such that

σ = 1 + |G|(g − 1) +
|G|
2

r∑
i=1

(
1− 1

mi

)
.

A useful way to describe surface kernel epimorphisms is through the
use of generating vectors defined as follows (see [2]).



QUASIPLATONIC CYCLIC GROUP ACTIONS 1463

Definition 2.3. A vector of group elements (α1, β1, . . . , αg, βg, η1,
. . . , ηr) in a finite group G is called a (g;m1, . . . ,mr)-generating vector
for G if all of the following hold:

(i) G = 〈α1, β1, . . . , αg, βg, η1, . . . , ηr〉.
(ii) Πg

i=1[αi, βi] · Πr
j=1ηj = 1 (where [ , ] denotes the commutator).

(iii) O(ηi) = mi (where O(.) denotes group order).

Clearly, any (g;m1, . . . ,mr)-generating vector V for G defines a
unique surface kernel epimorphism from a fixed Γ with signature
(g;m1, . . . ,mr) onto G, called the surface kernel epimorphism of V .
Conversely, any surface kernel epimorphism ρ: Γ → G uniquely defines
a generating vector called the generating vector of ρ. Thus, topological
group actions can be described through the utilization of generating
vectors of finite groups. The exact correspondence is given in the fol-
lowing.

Theorem 2.4. Two equivalence classes of (g;m1, . . . ,mr)-generating
vectors of the finite group G define the same topological equivalence
class of G-actions if and only if the generating vectors lie in the same
Aut (G) × Aut (Γ)-class where the action of Aut (G) × Aut (Γ) on a
generating vector V is defined by the action on a surface kernel epi-
morphism ρ with generating vector V given by (α, γ) · ρ = α ◦ ρ ◦ γ−1

for α ∈ Aut (G), γ ∈ Aut (Γ).

Proof. See [2, Proposition 2.2].

Thus, given a generating vector V for a group G, it defines a topo-
logical action, namely, the action of Γ/Λ on X = H/Λ where Λ is the
kernel of the surface kernel epimorphism of V where Γ is a Fuchsian
group with signature (g;m1, . . . ,mr) (note that Γ can be any subgroup
of ψ(2,R) with signature (g;m1, . . . ,mr)). Conversely, given a group
acting topologically on X with signature (g;m1, . . . ,mr), it defines
a (g;m1, . . . ,mr)-generating vector up to Aut (G) × Aut (Γ) equiva-
lence. Specifically, it defines the class containing the generating vector
of ρ: Γ → G where ρ is the surface kernel epimorphism from Γ with
signature (g;m1, . . . ,mr) and kernel Λ such that S is topologically
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equivalent to H/Λ and G is topologically equivalent to Γ/Λ. We call
any generating vector from this Aut (G) × Aut (Γ) class a generating
vector of G.

One of the main technical difficulties that arises when trying to
enumerate classes of topological group actions using generating vectors
is trying to describe the action of the group Aut (Γ). In the special case
when Γ is a triangle group, however, Aut (Γ) is very easy to describe.
Specifically, Aut (Γ) is trivial, cyclic of order 2 or isomorphic to the
symmetric group on three letters depending upon whether none, two
or all three of the periods are equal, see [5]. Thus, for quasiplantonic
groups, provided we know that a group G acts on a surface of genus σ
with signature (0;n1, n2, n3), we can derive very specific formulas for
the number of topologically distinct actions of a group G with signature
(0;n1, n2, n3) dependent upon the number of (0;n1, n2, n3)-generating
vectors for G, see [15].

As previously remarked, in general, determining whether a given
group acts on a surface with a given signature is a difficult problem, es-
pecially when considering arbitrarily large genus. In our case, however,
we are restricting to cyclic groups, and for such groups, necessary and
sufficient conditions for the existence of a cyclic group G acting on a
surface X of genus σ with signature (g;n1, . . . , nr) are provided in [8].
Therefore, we can combine the enumeration formulas from [15] with the
existence conditions provided in [8] to provide enumeration formulas
for the number of classes of topological actions of a cyclic group G on
a surface of genus σ ≥ 2 with signature (0;n1, n2, n3) dependent upon
the number of generating vectors of G with signature (0;n1, n2, n3). To
state these formulas, we need the following definitions.

Definition 2.5. Suppose (x, y, z) is a generating vector for a
quasiplatonic group G. Then we define the following permutations:

• i1 : x→ y, y → x, z → z,

• i2 : x→ x, y → z, z → y,

• i3 : x→ z, y → y, z → x,

• j : x→ y, y → z, z → x.

Definition 2.6. Fix a signature (0;n1, n2, n3), and let G be a cyclic
group of order M . The we define the following sets:
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(i) VG is the set of generating vectors of G with signature (0;n1, n2,
n3) for which none of the permutations i1, i2, i3 and j extend to an
automorphism of G.

(ii) VG,i is the set of generating vectors of G with signature
(0;n1, n2, n3) for which i1, i2 or i3 extends to an automorphism of
G but j does not.

(iii) VG,j is the set of generating vectors of G with signature
(0;n1, n2, n3) for which j extends to an automorphism of G but i1,
i2 and i3 do not.

(iv) VG,i,j is the set of generating vectors of G with signature
(0;n1, n2, n3) for which i1, i2, i3 and j extend to automorphisms of
G.

We can now state the two main results we shall be utilizing.

Theorem 2.7. Fix a signature (0;n1, n2, n3), and let m = lcm (n1,
n2, n3). Then the cyclic group G of order m acts on a surface X
of genus σ with signature (0;n1, n2, n3) if and only if the following
conditions are met:

(i) m = lcm (n1, n2) = lcm (n1, n3) = lcm (n2, n3);

(ii) if m is even, then exactly two of the periods ni must be divisible
by the maximum power of 2 that divides m;

(iii) the Riemann-Hurwitz formula is satisfied:

σ = 1 +
m

2
(1− 1

n1
− 1

n2
− 1

n3
).

Proof. This is Harvey’s theorem, [8], modified to the case where G is
quasiplatonic.

Theorem 2.8. Suppose the group G acts on a compact oriented
surface X with genus σ with signature (0;n1, n2, n3). Then the number
of distinct topological G actions on X with signature (0;n1, n2, n3), T ,
can be calculated as follows:
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(i) If n1 < n2 < n3, then

T =
|VG|

|Aut (G)| .

(ii) If n1 < n2 = n3, then

T =
|VG|

2|Aut (G)| +
|VG,i|

|Aut (G)| .

(iii) If n1 = n2 = n3, then

T =
|VG|

6|Aut (G)| +
|VG,i|

3|Aut (G)| +
|VG,j |

2|Aut (G)| +
|VG,i,j |

|Aut (G)| .

Proof. This is the main result of [15].

Thus, to derive explicit formulas, we need to determine the number
of generating vectors for which the maps i1, i2, i3 or j do not extend to
automorphisms of G. This is the primary focus of our work in Sections
3 and 4.

3. Solutions to congruences. Before we consider general enu-
meration formulas, we need to use some elementary number theory to
determine explicit values of two different congruences which will appear
in our formulas. These are the following:

Definition 3.1. Let N denote the positive integers and O the odd
positive integers. We define τ1 : N×N → N where τ1(m,n) represents
the number of noncongruent nonzero solutions x to x2+2x ≡ 0 mod m
where gcd (x,m) = m/n. Similarly, we define τ2 : O → N where τ2(m)
represents the number of noncongruent solutions x to x2 + x + 1 ≡
0 mod m.

Our main goal in this section is to derive explicit formulae for τ1 and
τ2. The general approach we take is to first derive explicit formulas
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in the case where m is a power of a prime, and then extend the
results by showing τ1 and τ2 are multiplicative over their prime power
decompositions. Since the proofs are very similar and rely only on
elementary number theory, we only provide the details for the more
complicated of the two congruences, τ2.

Theorem 3.2. Suppose that

m =

l∏
i=1

pki

i ,

for odd primes p1, . . . , pl where the ki are positive integers. Then, for
each i,

(i) if pki

i = 3, then τ2(p
ki

i ) = 1;

(ii) if 3 divides φ(pki

i ), then τ2(p
ki

i ) = 2;

(iii) and τ2(p
ki

i ) = 0 otherwise.

Further, τ2(m) =
∏l

i=1 τ2(p
ki

i ).

Proof. First suppose m = pk for some odd prime p, and suppose a is
a solution to this congruence. Then, since

0 ≡ a0 ≡ a(a2 + a+ 1) ≡ a3 + a2 + a mod pk,

we know that a3 ≡ 1 mod pk. So, either a = 1, or a has order 3
modulo pk. But, a = 1 is a solution if and only if pk = 3, and (i)
follows.

Now let us suppose that pk 
= 3. We know there are elements of
order 3 modulo pk if and only 3 divides φ(pki

i ), and in this case it follows
that there are φ(3) = 2 of them. (iii) follows from these observations.

To prove (ii), we need only show that any element of order 3 mod-
ulo pk satisfies x2 + x + 1 ≡ 0 mod pk. Suppose a is an element of
order 3 modulo pk. Then,

0 ≡ a3 − 1 ≡ (a− 1)(a2 + a+ 1) mod pk.

To show a2 + a + 1 ≡ 0 mod pk, we need only show that a − 1 is not
a zero divisor, since we know a 
= 1. We proceed by contradiction and
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suppose that a − 1 is a zero divisor. For some integer h, a − 1 = ph,
which tells us that a = ph+ 1. Then,

0 ≡ a2 + a+ 1 ≡ (ph+ 1)2 + (ph+ 1) + 1 ≡ p(ph2 + 3h) + 3 mod pk,

which forces p = 3. This tells us that we have

0 ≡ 9(h2 + h) + 3 mod 3k,

which will force pk = 3, which is a contradiction. So, (ii) follows.

Next, we show that τ2 is multiplicative. Let m and n be positive
integers such that gcd (m,n) = 1. We will construct a one-to-one
correspondence between solutions (a, b) for the system of congruences
(x2 +x+1) ≡ 0 mod m and (y2 + y+1) ≡ 0 mod n and solutions c for
(z2 + z + 1) ≡ 0 mod mn. First, suppose (a2 + a + 1) ≡ 0 mod m
and (b2 + b + 1) ≡ 0 mod n. Consider the unique solution c to
the system of linear congruences z ≡ a mod m and z ≡ b mod n,
given by the Chinese remainder theorem. Then, since (c2 + c + 1) ≡
0 mod m, (c2 + c + 1) ≡ 0 mod n and gcd (m,n) = 1, it follows that
(c2 + c+1) ≡ 0 mod mn. This gives us one direction of the one-to-one
correspondence. Now, instead, suppose that we have a solution c for
(z2+ z+1) ≡ 0 mod mn. Then, it is clear that (c2 + c+1) ≡ 0 mod m
and (c2 + c+ 1) ≡ 0 mod n. We need only reduce c modulo m and n,
respectively, to get values a and b that are congruent to c modulo m
and n, respectively, where 0 < a < m and 0 < b < n. This completes
our one-to-one correspondence and shows that τ2(mn) = τ2(m)τ2(n).

The following result can be derived in a similar way for τ1.

Theorem 3.3. Suppose m ≥ 3 is an integer and that n is a divisor
of m with 1 < n < m. Let p1, p2, . . . , pl be the distinct odd primes that
divide m. Write m and n in terms of these primes (and 2):

m = 2k0

( l∏
i=1

pki

i

)
, n = 2h0

( l∏
i=1

phi

i

)
,

where the ki are positive integers when i 
= 0, and the hi and k0 are
nonnegative integers. Then,



QUASIPLATONIC CYCLIC GROUP ACTIONS 1469

(i) τ1(m,n) = 0 if either of the following hold:

(a) h0 
= 0, 1, or k0 − 1

(b) hi 
= 0 or ki for any i > 0;

(ii) if none of the conditions of (i) hold, then τ1(m,n) = 1 if h0 = 0
or 1;

(iii) and τ1(m,n) = 2 for all other cases.

4. Enumerating actions. We are now ready to derive the
enumeration formulas for classes of cyclic group actions. As suggested
in Section 2, there are three different cases which need to be considered,
depending upon whether none, two or all three of the periods of
the signature are the same. As we derive each formula, we shall
present explicit examples to illustrate. We begin by deriving the total
number of generating vectors given a cyclic group G and signature
(0;n1, n2, n3).

Lemma 4.1. Consider a cyclic group G of order m, and fix a
signature (0;n1, n2, n3). Let p1, p2, . . . , pl be the distinct primes that
divide m. Write m and the periods in terms of these primes:

m =

l∏
i=1

pki

i , n1 =

l∏
i=1

prii , n2 =

l∏
i=1

psii , n3 =

l∏
i=1

ptii ,

where the ki are positive integers, and the ri, si and ti are nonnegative
integers. Then we have the following:

(i) There exists an integer w ≤ l so that, if 1 ≤ i ≤ w, then ri, si,
and ti are all equal to ki, and, if w < i ≤ l, then exactly one of ri, si,
and ti is less than ki. In the latter case, let hi represent this smaller
value.

(ii) If w 
= 0, the total number of generating vectors with signature
(0;n1, n2, n3) is

φ(m)φ(gcd (n1, n2, n3))

( w∏
i=1

pi − 2

pi − 1

)
,

where φ represents Euler’s phi-function. If w = 0, then the total number
of generating vectors with signature (0;n1, n2, n3) is

φ(m)φ(gcd (n1, n2, n3)).
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Proof. The existence of w, the reordering of the pi’s and the existence
of the hi’s is a result of Theorem 2.7. To find the number of generating
vectors that meet the conditions of Theorem 2.8, we outline a process
to construct valid generating vectors for this signature. During each
step of the process, we shall count the number of different choices made.

Let u be a generator of G. Observe that G = C
p
k1
1

×C
p
k2
2

×· · ·×C
p
kl
l

,

where C
p
ki
i

is the cyclic group of order pki

i . For each i, there exists an

element ui ∈ G such that u =
∏l

i=1 ui and ui generates Cp
ki
i

. We will

use these generators to construct a vector (x, y, z) where xi, yi and zi
will be powers of ui for each i, and x =

∏l
i=1 xi, y =

∏l
i=1 yi, and

z =
∏l

i=1 zi.

Fix i. Suppose exactly one of ri, si, and ti is less than ki. Then, there
are φ(phi

i ) choices of ai such that uai

i is an element in C
p
ki
i

of order phi

i .

For any such choice of ai, we know that u
−(ai+1)
i has order pki

i . Now,

assign uai

i as the one of xi, yi and zi whose order is phi

i . Then, let the
first of the two remaining from xi, yi and zi be ui, and let the last be

u
−(ai+1)
i . We observe that the other possible assignments of xi, yi and
zi will be counted when our initial choice of generator is an element v

such that vi = u
−(ai+1)
i and a parameter bi is chosen so that vbii = uai

i .
Also note that assigning xi, yi and zi in this manner prevents multiple
countings of generating vectors. The important thing to remember is
that there were φ(phi

i ) choices for ai, and therefore φ(phi

i ) choices for
the elements xi, yi and zi.

The only other case to consider is when ri, si, and ti are all equal

to ki. Now we must choose ai such that both uai

i and u
−(ai+1)
i have

order pki

i . So, pi cannot divide ai or −(ai + 1). There are φ(pki

i )
choices of ai where pi cannot divide ai. But, for 1/(pi − 1) of these
choices, pi will divide −(ai+1). So, there are ((pi − 2)/(pi − 1))φ(pki

i )

choices for ai. Now, let ui, u
ai

i and u
−(ai+1)
i be xi, yi and zi,

respectively. As in the first case, assigning in this manner prevents
multiple countings of generating vectors. The important thing to
remember is that there were ((pi − 2)/(pi − 1))φ(pki

i ) choices for ai,

and, therefore, ((pi − 2)/(pi − 1))φ(pki

i ) choices for the elements xi, yi
and zi.
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Now, let x =
∏l

i=1 xi, y =
∏l

i=1 yi and z =
∏l

i=1 zi. By construction,
(x, y, z) is a valid generating vector. Further, all generating vectors
satisfying Theorem 2.8 can be constructed in this manner. We have
also seen that the number of such vectors is

φ(m)

( w∏
i=1

pi − 2

pi − 1
φ(pki

i )

)( l∏
i=w+1

φ(phi

i )

)

= φ(m)φ(gcd(n1, n2, n3))

( w∏
i=1

pi − 2

pi − 1

)
,

since there were φ(m) choices for our generator u of G and because
we found the number of choices for ai in each case. In the event that
w = 0, then

∏w
i=1(pi − 2)/(pi − 1) = 1.

We now consider the case where each period of the signature is
distinct.

Theorem 4.2. Consider a cyclic group G of order m, and fix a
signature (0;n1, n2, n3) where all the ni are distinct. Let p1, p2, . . . , pl
be the distinct primes that divide m. Write m and the periods in terms
of these primes:

m =

l∏
i=1

pki

i , n1 =

l∏
i=1

prii , n2 =

l∏
i=1

psii , n3 =

l∏
i=1

ptii ,

where the ki are positive integers, and the ri, si and ti are nonnegative
integers, and let w ≤ l and hi where w < i ≤ l are the integers
specified in Lemma 4.1 (i). Then, if w 
= 0, the number of nonequivalent
generating vectors T with signature (0;n1, n2, n3) is

T = φ(gcd (n1, n2, n3))

( w∏
i=1

pi − 2

pi − 1

)
.

If w = 0, then the number of nonequivalent generating vectors T with
signature (0;n1, n2, n3) is

T = φ(gcd (n1, n2, n3)).
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Proof. By Theorem 2.8, we know that T = |VG|/|Aut (G)|. Since G
is a cyclic group, we know that |Aut (G)| = φ(m). So, we only need to
find |VG| to find T . But, by Lemma 4.1, we know that

|VG| = φ(m)φ(gcd (n1, n2, n3))

( w∏
i=1

pi − 2

pi − 1

)
.

It follows that

T = φ(gcd (n1, n2, n3))

( w∏
i=1

pi − 2

pi − 1

)
.

Example 4.3. Consider the cyclic group G of order 105 with
signature (0; 15, 21, 35) acting on a surface of genus 46. Theorem 4.2
tells us that

T = φ(gcd (n1, n2, n3)) = φ(gcd (15, 21, 35)) = φ(1) = 1.

We now look at the case where exactly two of the periods must be
identical. By Theorem 2.7, we know that the two identical periods
must be equal to the order of G.

Theorem 4.4. Consider a cyclic group G of order m, and fix a
signature (0;n,m,m) where n 
= m. Let p1, p2, . . . , pl be the distinct
primes that divide m. Write m and n in terms of these primes:

m =

l∏
i=1

pki

i , n =

l∏
i=1

phi

i ,

where the ki are positive integers, and the hi are nonnegative integers.
Let w ≤ l be the integer as specified in Lemma 4.1 (i) modified to this
case, i.e., for i > w, we have hi < ki and, for i ≤ w, hi = ki. When
w 
= 0, the number of nonequivalent generating vectors T with signature
(0;n,m,m) is

T =
1

2

(
τ1(m,n) + φ(n)

( w∏
i=1

pi − 2

pi − 1

))
.



QUASIPLATONIC CYCLIC GROUP ACTIONS 1473

When w = 0, the number of nonequivalent generating vectors T with
signature (0;n,m,m) is

T =
1

2
(τ1(m,n) + φ(n)) .

Proof. By Theorem 2.8, we know that T = |VG|/2|Aut (G)| +
|VG,i|/|Aut (G)|. Since G is a cyclic group, we know that |Aut (G)| =
φ(m). So, we only need to find |VG| and |VG,i| to find T . We note that
i1 and i3 cannot be extended to automorphisms. This leaves two cases:
when i2 is an automorphism of G, and when it is not an automorphism
of G. Choose a generator x ∈ G, and suppose we choose a such that
we have a generating vector (xa, x−(a+1), x). Further, let us suppose
that i2 does extend to an automorphism. That is, the map that sends
x→ x−(a+1), x−(a+1) → x, and xa → xa extends to an automorphism.
Observe that

xa = i2(x
a) = (i2(x))

a = (x−(a+1))a = x−a2−a,

which tells us that a2 + 2a ≡ 0 mod m. Recall that τ1(m,n) is the
number of noncongruent solutions x to x2 + 2x ≡ 0 mod m where
gcd (x,m) = m/n. Then, i2 extends to an automorphism if and only
if a is such a solution. So, |VG,i| = φ(m)τ1(m,n). We also know from
Lemma 4.1 that we can reorder the pi’s and find an integer w ≤ l so
that, if 1 ≤ i ≤ w, then ki = hi, and, if w < i ≤ l, then hi < ki, and
that

|VG|+ |VG,i| = φ(m)φ(gcd (n,m))

( w∏
i=1

pi − 2

pi − 1

)
.

So,

|VG| = φ(m)φ(n)

( w∏
i=1

pi − 2

pi − 1

)
− φ(m)τ1(m,n).

Thus,

T =
|VG|

2|Aut (G)| +
|VG,i|

|Aut (G)|

=

φ(m)φ(n)

(∏w
i=1(pi − 2)/(pi − 1)

)
− φ(m)τ1(m,n)

2φ(m)
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+
φ(m)τ1(m,n)

φ(m)

=
1

2

(
τ1(m,n) + φ(n)

( w∏
i=1

pi − 2

pi − 1

))
.

Example 4.5. Consider the cyclic group G of order 120 with
signature (0; 12, 120, 120) acting on a surface of genus 55. Our earlier
work tells us that τ1(120, 12) = 2. By Theorem 4.4, we see that

T =
1

2

(
τ1(m,n) + φ(n)

( w∏
i=1

pi − 2

pi − 1

))
=

1

2

(
2 + φ(12)

(
3− 2

3− 1

))
= 2.

Example 4.6. Consider the cyclic group G of order pk for some
prime p 
= 2 with signature (0; ph, pk, pk), where 1 ≤ h < k, acting on
a surface of genus (pk − pk−h)/2. Theorem 4.4 tells us that

T =
1

2

(
τ1(p

k, ph) + φ(ph)
)
=

1

2
φ(ph).

The last case to consider is the case where all of the periods are equal.
It follows from Theorem 2.7 that the periods must all be the order of
the group.

Theorem 4.7. Consider a cyclic group G of order m, and fix a
signature (0;m,m,m). Write m in its prime factorization:

m =

l∏
i=1

pki

i .

The number of nonequivalent generating vectors T with signature
(0;m,m,m) is

T =
3 + 2τ2(m) + φ(m)(

∏l
i=1(pi − 2)/(pi − 1))

6
,

where φ represents Euler’s phi-function.
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Proof. By Theorem 2.8, we know that T = |VG|/(6|Aut (G)|) +
|VG,i|/(3|Aut (G)|)+ |VG,j |/(2|Aut (G)|)+ |VG,i,j |/|Aut (G)|. Since G is
a cyclic group, we know that |Aut (G)| = φ(m). We only need to find
|VG|, |VG,i|, |VG,j | and |VG,i,j | to find T . We begin by finding when
i1, i2 or i3 can be extended to automorphisms. Since, for signatures
of this form, a vector where i2 or i3 extends to an automorphism is
equivalent to a vector where i1 extends to an automorphism, we will
first just consider i1. Choose a generator x ∈ G, and suppose we choose
a such that we have a generating vector (x, x−(a+1), xa). Further, let
us suppose that i1 does extend to an automorphism. That is, the map
that sends x → x−(a+1), x−(a+1) → x and xa → xa extends to an
automorphism. Observe that

xa = i1(x
a) = (i1(x))

a = (x−(a+1))a = x−a2−a,

which tells us that a2 + 2a ≡ 0 mod m. We know that gcd (a,m) = 1
since |xa| = m. So, m cannot divide a, but m must divide a + 2
since m divides a2 + 2a. Thus, a ≡ −2 mod m. Thus, the vector in
question is (x, x, x−2). Note that, in this case, j cannot extend to an
automorphism. This tells us that |VG,i| = 3φ(m) (since we now take
into account i2 and i3) and that |VG,i,j | = 0.

We now ask ourselves when j can extend to an automorphism. Choose
a generator x ∈ G, and suppose we choose a such that we have a
generating vector (x, x−(a+1), xa). Further, let us suppose that j does
extend to an automorphism. That is, the map that sends x → xa,
xa → x−(a+1) and x−(a+1) → x extends to an automorphism. Observe
that

x−(a+1) = j(xa) = (j(x))a = (xa)a = xa
2

,

which tells us that a2 + a + 1 ≡ 0 mod m. Note that any solution to
this congruence will be a value that is coprime to m, that is, any such
a will satisfy |xa| = m. Recall that the number of solutions for a is
τ2(m). So, |VG,j | = φ(m)τ2(m).

By Lemma 4.1, we know that |VG| + |VG,i| + |VG,j | + |VG,i,j | =

φ(m)φ(gcd (m,m,m))(
∏w

i=1(pi − 2)/(pi − 1)) = φ(m)2
∏l

i=1(pi − 2)/
(pi − 1). Solving for |VG|, we get that

|VG| = −3φ(m)− φ(m)τ2(m) + φ(m)2
l∏

i=1

pi − 2

pi − 1
.
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We now put all of the pieces together to see

T =
|VG|

6|Aut (G)| +
|VG,i|

3|Aut (G)| +
|VG,j |

2|Aut (G)| +
|VG,i,j |

|Aut (G)|

=
−3φ(m)− φ(m)τ2(m) + φ(m)2

∏l
i=1((pi − 2)/(pi − 1))

6φ(m)

+
3φ(m)

3φ(m)
+
φ(m)τ2(m)

2φ(m)
+

0

φ(m)

=
−3− τ2(m) + φ(m)

∏l
i=1((pi − 2)/(pi − 1))

6

+
6

6
+

3τ2(m)

6

=
3 + 2τ2(m) + φ(m)

∏l
i=1((pi − 2)/(pi − 1))

6
.

Example 4.8. Consider the cyclic groupG of order 21 with signature
(0; 21, 21, 21) acting on a surface of genus 10. Theorem 4.7 tells us that

T =
3 + 2τ2(m) + φ(m)

∏l
i=1((pi − 2)/(pi − 1))

6

=
3 + 4 + 12× (5/12)

6
= 2.

This was a somewhat simplistic example where, in each generating
vector, either i1, i2 or j extended to an automorphism. (The proof of
this was omitted.) This need not be the case. In fact, it is possible
that neither i1, i2, i3 nor j will extend to automorphisms for the vast
majority of generating vectors. The following is an example of this
situation.

Example 4.9. Consider the cyclic groupG of order 91 with signature
(0; 91, 91, 91) acting on a surface of genus 45. Theorem 4.7 tells us that

T =
3 + 2τ2(m) + φ(m)

∏l
i=1(pi − 2)/(pi − 1)

6

=
3 + 8 + 72× (55/72)

6
= 11.
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5. Examples and applications. The individual examples pre-
sented in Section 4 illustrate how our enumeration formulas can be
used for a specific group and signature. However, with each of these
examples, arguably, they could have been calculated by hand. There-
fore, the real power behind our enumeration formulas is that it allows
us to efficiently enumerate all possible actions of a specific group. The
following two examples illustrate such calculations.

Example 5.1. In Table 1 we list all ways in which the cyclic group
of order 315 can act as a quasiplatonic group on a compact oriented
surface. That is, we list each valid signature, along with the appropriate
genus and value of T .

Example 5.2. In Table 2 we list all ways in which the cyclic group
of order 360 can act as a quasiplatonic group on a compact oriented
surface. That is, we list each valid signature, along with the appropriate
genus and value of T .

TABLE 1. Topological actions for the cyclic group of order 315.

Genus Signature T Genus Signature T

105 (0; 3, 315, 315) 1 148 (0; 35, 45, 63) 1

124 (0; 5, 63, 315) 1 150 (0; 35, 45, 315) 3

126 (0; 5, 315, 315) 2 150 (0; 21, 315, 315) 5

132 (0; 7, 45, 315) 1 151 (0; 45, 63, 105) 2

135 (0; 7, 315, 315) 3 152 (0; 45, 63, 315) 1

136 (0; 9, 35, 315) 1 153 (0; 45, 105, 315) 6

139 (0; 9, 105, 315) 2 153 (0; 35, 315, 315) 8

140 (0; 9, 315, 315) 2 154 (0; 45, 315, 315) 5

140 (0; 15, 21, 315) 2 154 (0; 63, 105, 315) 10

145 (0; 15, 63, 315) 2 155 (0; 63, 315, 315) 8

147 (0; 21, 45, 315) 2 156 (0; 105, 315, 315) 15

147 (0; 15, 315, 315) 3 157 (0; 315, 315, 315) 8
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TABLE 2. Topological actions for the cyclic group of order 360.

Genus Signature T Genus Signature T

90 (0; 2, 360, 360) 1 171 (0; 20, 360, 360) 4

120 (0; 3, 360, 360) 1 172 (0; 40, 72, 90) 1

135 (0; 4, 360, 360) 2 172 (0; 30, 72, 360) 2

142 (0; 5, 72, 360) 1 172 (0; 40, 45, 360) 3

144 (0; 5, 360, 360) 2 172 (0; 24, 180, 360) 4

150 (0; 6, 360, 360) 1 173 (0; 45, 72, 120) 1

154 (0; 8, 45, 360) 1 173 (0; 40, 72, 180) 2

156 (0; 9, 40, 360) 1 174 (0; 45, 72, 360) 3

156 (0; 8, 90, 360) 1 174 (0; 40, 90, 360) 3

157 (0; 8, 180, 360) 2 174 (0; 36, 120, 360) 4

159 (0; 9, 120, 360) 2 174 (0; 30, 360, 360) 6

160 (0; 10, 72, 360) 1 175 (0; 60, 72, 360) 2

160 (0; 9, 360, 360) 2 175 (0; 36, 360, 360) 4

162 (0; 10, 360, 360) 2 175 (0; 45, 120, 360) 6

165 (0; 12, 360, 360) 2 175 (0; 40, 180, 360) 6

166 (0; 18, 40, 360) 1 176 (0; 72, 90, 360) 1

166 (0; 15, 72, 360) 2 176 (0; 45, 360, 360) 5

168 (0; 15, 360, 360) 3 176 (0; 72, 120, 180) 12

169 (0; 18, 120, 360) 2 177 (0; 90, 120, 360) 6

169 (0; 20, 72, 360) 2 177 (0; 72, 180, 360) 6

169 (0; 24, 45, 360) 2 177 (0; 60, 360, 360) 6

170 (0; 40, 45, 72) 1 178 (0; 90, 360, 360) 5

170 (0; 18, 360, 360) 2 178 (0; 120, 180, 360) 12

171 (0; 36, 40, 360) 2 179 (0; 180, 360, 360) 10

171 (0; 24, 90, 360) 2

Finally, as remarked in the introduction, our enumeration formulas
also count conjugacy classes of finite cyclic subgroups of the mapping
class group Mσ. Although, in general, determining when a given
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conjugacy class of Mσ defines a class of maximal finite subgroups is a
very difficult problem, in this case, the results of [4] provide us with
explicit conditions for when these actions are maximal. Specifically,
a generating vector corresponds to a maximal action precisely when
none of the permutations i1, i2, i3 or j extend to an automorphism of
G, and hence the set VG is precisely the set of all generating vectors
corresponding to maximal actions. Thus we have the following simple
consequence of our results.

Corollary 5.3. Suppose that σ = 1 + (M/2)(1− (1/n1) − (1/n2)−
(1/n3)), and let n be the number of occurrences of M in the signature
(0;n1, n2, n3). Then the number of conjugacy classes of maximal cyclic
subgroups of Mσ of order M with signature (0;n1, n2, n3) is equal to
|VG|/(n!φ(M)).
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