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O-MINIMAL HOMOTOPY AND
GENERALIZED (CO)HOMOLOGY

ARTUR PIĘKOSZ

ABSTRACT. This article explains and extends semialge-
braic homotopy theory (developed by Delfs and Knebusch) to
o-minimal homotopy theory (over a field). The homotopy cat-
egory of definable CW-complexes is equivalent to the homo-
topy category of topological CW-complexes (with continuous
mappings). If the theory of the o-minimal expansion of a field
is bounded, then these categories are equivalent to the homo-
topy category of weakly definable spaces. Similar facts hold
for decreasing systems of spaces. As a result, generalized ho-
mology and cohomology theories on pointed weak polytopes
uniquely correspond (up to an isomorphism) to the known
topological generalized homology and cohomology theories on
pointed CW-complexes.

1. Introduction. In the 1980’s, Delfs, Knebusch and others de-
veloped “semialgebraic topology” in locally semialgebraic and weakly
semialgebraic spaces (see [7 10, 20]). In the survey paper [21], Kneb-
usch suggested that this theory may be generalized to the o-minimal
context. This program was partially undertaken first by Woerheide,
who constructed the o-minimal singular homology theory in [31], and
later by Edmundo, who developed and applied the singular homology
and cohomology theories over o-minimal structures (see for example
[13]). For homotopy theory, Berarducci and Otero worked with the
o-minimal fundamental group and transfer methods in o-minimal ge-
ometry ([5, 6]). During the period this paper was written, several
authors wrote about different types of homology and cohomology (see
[14, 15], for example).

2010 AMS Mathematics subject classification. Primary 03C64, 55N20, 55Q05.
Keywords and phrases. o-minimal structure, generalized topology, locally de-

finable space, weakly definable space, CW-complex, homotopy sets, generalized
homology, generalized cohomology.

Some parts of the work on this paper were done during my stay at the Fields
Institute during the Thematic Program on o-minimal Structures and Real Analytic
Geometry in 2009. This work supported by the European Research Training Net-
work RAAG (HPNR-CT-2001-00271) and by the European Commission (MSCF-
CT-2003-503674).

Received by the editors on October 31, 2008, and in revised form on Septem-
ber 27, 2010.

DOI:10.1216/RMJ-2013-43-2-573 Copyright c©2013 Rocky Mountain Mathematics Consortium

573



574 ARTUR PIĘKOSZ

Still the semialgebraic homotopy theory contained in [10, 20] was
not extended to the case of spaces over o-minimal expansions of fields.
For the question why, the author may only guess that people in the field
wanted to avoid generalized topology. (Notice the failure of Baro and
Otero [4] to give precise definitions and to present the theory clearly,
see below.)

The aim of extending a whole theory, not a single theorem or even
tens or hundreds of facts, may be sometimes achieved by careful choice
of the definitions and explaining the differences that appear. This can
be done in the case of the semialgebraic homotopy theory of Delfs and
Knebusch.

First, the spaces of our interest (with their morphisms) over each of
the considered structures form several categories that are best described
as full subcategories of some ambient category. The choice of a good
ambient category is very important. In [10] the task was done using
sheaf theory, but Knebusch in [20] has already simplified the definitions
by using what is called “function sheaves” (involving a simple set-
theoretic definition). Notice that the usual sheaf theory is not necessary
to understand locally semialgebraic spaces. Thus, the extension of the
theory should be done through extension of the basic definitions from
[20]. Another argument for this is the fact that locally definable spaces
do not suffice; we need to speak about weakly definable spaces to get
a satisfactory homotopy theory.

Second, some proofs of [10] need modification. The mapping spaces
from III.3 are specific for the semialgebraic case. This is modified
in the present paper. Moreover, Lemma II.4.3 from [10] (and related
facts) need to be modified since one needs to add the Third comparison
theorem (the o-minimal expansion case). This was done in [3] by the
use of “normal triangulations” from [2] (the problem appears on the
definable sets level).

And, third, we need to distinguish between theories that are bounded
(definition in the present paper) and others that are not bounded. The
theory RCF itself is bounded, and some proofs of [20] (related to IV.9-
10) do not work in the general setting of an o-minimal expansion of a
(real closed) field. The question arises if the corresponding facts are
true.
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After considering these remarks, one can see that the two volumes
[10, 20] are a source of thousands of facts and their proofs about locally
definable spaces and weakly definable spaces. It is usually done just
by changing the word “semialgebraic” into the word “definable.” The
intention of the author of the present paper is not to re-write about
600 pages with this simple change, but to give enough understanding
of the theory to the reader. Some examples and facts from [10, 20]
are restated to make this understanding easy. (The above remarks
apply to so-called “geometric” theory. The so-called “abstract” theory,
contained in Appendix A of [10], is not considered in the present paper.)

It is convenient to understand that the semialgebraic homotopy
theory of Delfs and Knebusch is basically the usual homotopy theory
re-done in the presence of the generalized topology. The constructions
of homotopy theory may be carried out in the semialgebraic context.
Thus, it is not surprising that these constructions may also be done in
the context of o-minimal expansions of fields. The use of the generalized
topology may be extended far beyond the above context (see [25, 26]
for details).

The author considers the main result of this paper to be the following:
the semialgebraic homotopy theory of Delfs and Knebusch is now ex-
plained and extended to the o-minimal homotopy theory (over a field).
The extension part includes the Comparison theorems (especially The-
orems 36 and 51), a definable version of the Whitehead theorem (Theo-
rem 55) and equivalence of the homotopy categories (Corollaries 38, 57,
60, 61). A majority of the examples and Theorems 9 and 10 contribute
to the explanation part. Of independent interest are: a characterization
of real analytic manifolds as locally definable manifolds (Theorem 21)
and the definable version of a Bertini or a Lefschetz theorem (Theorem
28), see [1].

As a result of the homotopy approach, deeper than the homology and
cohomology ones, we get the generalized homology and cohomology
theories (including the standard singular theories) for so-called pointed
weak polytopes, and these theories appear, if T is bounded, to be “the
same” as their topological counterparts.

The categories of locally and weakly definable spaces over o-minimal
expansions of real closed fields, introduced here, with their subspaces
(locally definable subsets and weakly definable subsets) are far gener-
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alizations of analytic-geometric categories of van den Dries and Miller
([12]). In particular, paracompact locally definable manifolds are gen-
eralizations of both definable manifolds over o-minimal expansions of
fields and real analytic manifolds.

For basic properties of o-minimal structures, see the book [11] and
the survey paper [12]. Assume that R is an o-minimal expansion of a
real closed field.

2. Spaces over o-minimal structures. As o-minimal structures
have natural topology, it is quite natural that algebraic topology for
such structures should be developed. (This paper deals only with
the case of o-minimal expansions of fields.) Unfortunately, there are
obstacles to the above when one is doing traditional topology: if R is
not (an expansion of) the (ordered) field of real numbers R, then R
is not locally compact and is totally disconnected. Moreover, even for
R, not every family of open definable sets has a definable union, and
continuous definable functions do not form a sheaf.

A good idea to overcome that in the case of o-minimal pure (ordered)
fields was given by Delfs and Knebusch in [10]: it is the concept of a
generalized topological space. This idea serves well also in our setting.

A generalized topological space is a set M together with a family of

subsets
◦
T (M) of M , called open sets, and a family of open families

CovM , called admissible (open coverings), such that:

(A1) ∅,M ∈
◦
T (M) (the empty set and the whole space are open);

(A2) if U1, U2 ∈
◦
T (M), then U1 ∪ U2, U1 ∩ U2 ∈

◦
T (M) (finite unions

and finite intersections of open sets are open);

(A3) if {Ui}i∈I ⊆
◦
T (M) and I is finite, then {Ui}i∈I ∈ CovM (finite

families of open sets are admissible);

(A4) if {Ui}i∈I ∈ CovM then ∪i∈IUi ∈
◦
T (M) (the union of an

admissible family is open);

(A5) if {Ui}i∈I ∈ CovM , V ⊆ ∪i∈IUi, and V ∈
◦
T (M), then

{V ∩ Ui}i∈I ∈ CovM (the traces of an admissible family on an open
subset of the union of the family form an admissible family);
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(A6) if {Ui}i∈I ∈ CovM and for each i ∈ I, there is {Vij}j∈Ji ∈ CovM
such that ∪j∈JiVij = Ui, then {Vij}i∈I,j∈Ji ∈ CovM (members of all
admissible coverings of members of an admissible family form together
an admissible family);

(A7) if {Ui}i∈I ⊆
◦
T (M), {Vj}j∈J ∈ CovM , ∪j∈JVj = ∪i∈IUi, and

for all j ∈ J there exists i ∈ I : Vj ⊆ Ui, then {Ui}i∈I ∈ CovM (a
coarsening, with the same union, of an admissible family is admissible);

(A8) if {Ui}i∈I ∈ CovM , V ⊆ ∪i∈IUi and V ∩ Ui ∈
◦
T (M) for each i,

then V ∈
◦
T (M) (if a subset of the union of an admissible family has

open traces with members of the family, then the subset is open).

Generalized topological spaces may be identified with certain Grothen-
dieck sites, where the underlying category is a full, closed on finite
(in particular: empty) products and coproducts subcategory of the
category of subsets P(M) of a given set M with inclusions as mor-
phisms, and the Grothendieck topology is subcanonical, contains all
finite jointly surjective families and satisfies some regularity condition.
(See [22] for the definition of a Grothendieck site. Considering such an
identification we should remember the ambient category P(M).) More
precisely, axioms (A1), (A2) and (A3) contain a stronger version of the
identity axiom of the Grothendieck topology. It is natural, since in
model theory and in geometry we love finite unions, finite intersections
and finite coverings. Axiom (A4) may be called co-subcanonicality. To-
gether with subcanonicality, it ensures that admissible coverings are
coverings in the traditional sense. (Subcanonicality is imposed by the
notation of [10]. Axiom (A4), weaker than (A8), justifies the nota-
tion CovM (U) of [10].) The next are: (A5) the stability axiom of the
Grothendieck topology, followed by the transitivity axiom (A6). Fi-
nally, (A7) is the saturation property of the Grothendieck topology
(usually the Grothendieck topology of a site is required to be satu-
rated), and the last axiom (A8) may be called the regularity axiom.
Both saturation and regularity have a smoothing character. Saturation
may be achieved by modifying any generalized topological space, and
regularity by modifying a locally definable space (see [10, I.1, pages 3,
9]). The reader should be warned that (in general) the closure operator
does not exist for generalized topology.
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A strictly continuous mapping between generalized topological spaces
is such a mapping that the preimage of an (open) admissible covering
is admissible, which implies that the preimage of an open set is open.
(So strictly continuous mappings may be seen as morphisms of sites.)
Inductive limits exist in the category GTS of generalized topological
spaces and their strictly continuous mappings (see [10, I.2]).

Generalized topological spaces help to introduce further notions of
interest that are generalizations of corresponding semialgebraic notions
(we follow here [20]).

A function sheaf of rings over R on a generalized topological space
M is a sheaf F of rings on M (here the sheaf property is assumed
only for admissible coverings) such that for each U open in M the
ring F (U) is a subring of the ring of all functions from U into R,
and the restrictions of the sheaf are the set-theoretical restrictions of
mappings. A function ringed space over R is a pair (M,OM ), whereM
is a generalized topological space and OM is a function sheaf of rings
over R. We will say about spaces (over R) for short. An open subspace
of a space over R is an open subset of its generalized topological space
together with the function sheaf of the space restricted to this open
set. A morphism f : (M,OM ) → (N,ON ) of function ringed spaces
over R is a strictly continuous mapping f :M → N such that for each
open subset V of N the set-theoretical substitution h �→ h ◦ f gives a
morphism of rings f#

V : ON (V ) → OM (f−1(V )). (We could express
this by saying that f# : ON → f∗OM is the morphism of sheaves of
rings on N over R induced by f . However, if we define for function
sheaves

(f∗OM )(V ) = {h : V → R | h ◦ f ∈ OM (f−1(V ))},

then each f#
V : ON (V ) → f∗OM (V ) becomes just an inclusion.)

Inductive limits exist in the category Space(R) of spaces over any R
and their morphisms (cf. [10, I.2] and [25]). Notice that our category of
spaces overR, being a generalization (by passing from the semialgebraic
to the general o-minimal case) of the category of spaces from [20], does
not use the general sheaf theory for generalized topological spaces (as
does [10]), but only a bit of a simpler “function sheaf theory.”

The following basic example is a very special case of a space over R
(cf. [11]).
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Fundamental Example 1. Each definable subset D of Rn has a
natural structure of a function ringed space over R. Its open sets in the
sense of the generalized topology are (relatively) open definable subsets,
admissible coverings are such open coverings that already finitely many
open sets cover the union, and on each open definable subset O ⊆ D
we take the ring DCD(O) of all continuous definable R-valued functions
on O. Definable sets will be identified with such function ringed spaces.
Notice that the topological closure of a definable set is definable, so
the topological closure operator restricted to the class of definable
subsets of a definable set D can be treated as the closure operator
in the generalized topological sense.

We start to reintroduce the theory of locally definable spaces by
generalizing the definitions from [10].

An affine definable space over R is a space over R isomorphic to a
definable subset of some Rn. (Notice that morphisms of affine defin-
able spaces are given by continuous definable maps between definable
subsets of affine spaces.)

The following example, not explicitly studied before, shows that
it is important to consider affine definable spaces as definable sets
“embedded” into their ambient affine spaces.

Example 2 (“Bad boy”). Consider the semialgebraic (that is defin-
able in the ordered field structure) space S1

angle overR on the underlying

subset S1 of R2 obtained by taking the generalized topology from the
usual affine definable circle S1 ⊆ R2 and declare the structure sheaf to
contain the continuous semialgebraic functions of the angle θ (having
period 2π). The two semialgebraic spaces are different. The usual cir-
cle S1 is an “affine model” of S1

angle: there exists an isomorphism of
semialgebraic spaces over R (whose formula is not semialgebraic, since
it involves a trigonometric function) transforming the “non-embedded
circle” S1

angle into the “embedded circle” S1.

A definable space over R is a space over R that has a finite open
covering by affine definable spaces. Definable spaces were introduced
by van den Dries in [11, Chapter 10]. They admit clear notions of
a definable subset and of an open subset. The definable subsets of a
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definable space form a Boolean algebra generated by the open definable
subsets; “definable” here means “constructible from the generalized
topology.” A locally definable space over R is a space over R that has
an admissible covering by affine definable open subspaces. (So definable
spaces are examples of locally definable spaces.) Each locally definable
space is an inductive limit of a directed system of definable spaces in
the category of spaces over a given R (cf. [10, I.2.3]). The dimension of
a locally definable space is defined as usual (cf. [10, page 37]), and may
be infinite. Morphisms of affine definable spaces, definable spaces and
locally definable spaces over R are their morphisms as spaces over R.
So affine definable spaces, definable spaces and locally definable spaces
form full subcategories ADS(R), DS(R), and LDS(R) of the category
Space(R) of spaces (over R).

A locally definable subset of a locally definable space is a subset having
definable intersections with all definable open subspaces. Such subsets
are also considered to be subspaces, the locally definable space of such
a set is formed as an inductive limit of definable subspaces of the
definable open spaces forming the ambient space (cf. [10, I.3, page
28]). A locally definable subset of a locally definable space is called
definable if as a subspace it is a definable space. (The definable subsets
of a definable space are exactly the definable subsets of these spaces as
locally definable ones.)

On locally definable spaces we often consider a topology in the
traditional sense, called the strong topology (cf. [10, page 31]), taking
the open sets from the generalized topology as the basis of the topology.
Nevertheless, we will usually work in the generalized topology. This
allows us, in many cases, to omit the word “definably” applied to
topological notions (as in “definably connected”). On a definable
space the generalized topology generates both the strong topology
and the definable (i.e., “constructible”) subsets. Similarly, the locally
definable subsets of a locally definable space are exactly the sets “locally
constructible” from the generalized topology, where “locally” means
“when restricted to an open definable subspace.” The closure operator
of the strong topology restricted to the class of locally definable subsets
may be treated as the closure operator of the generalized topology.

The following new example gives some understanding of the variety
of locally definable spaces even in the semialgebraic case. They are
obtained by “partial localization,” which generalizes passing to the
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“localization” Mloc of a locally complete locally semialgebraic space
M (see [10, I.2.6]).

Example 3. Consider any o-minimal expansion RS of the field
R. Take the admissible union (see [25]) of (embedded) real line open
intervals (−∞, n) over all natural n, which implies that this family is
assumed to be admissible. The space described is definable “on the left-
hand side,” but only locally definable “on the right-hand side.” The
definable subsets are the finite unions of intervals (of any kind) that
are bounded from above. The locally definable subsets are locally finite
unions of intervals that have only finitely many connected components
on the negative half-line. The structure sheaf consists of functions that
are continuously definable on each of the intervals (−∞, n). This space
will be called (RS)loc,+. Analogously we define the space (RS)loc,− to
be the admissible union of the family (−n,+∞), for n ∈ N. (By taking
the admissible union of the family (−n, n) for n ∈ N, we would get the
usual “localization” (RS)loc of the real line RS .)

As in [10], we have

Example 4 (cf. [10, I.2.4]. Any “direct (generalized) topological
sum” of definable spaces (in the category of spaces over a given R) is
a locally definable space.

We call a subset K of a generalized topological space M small if for
each admissible covering U of any open U , the set K ∩ U is covered
by finitely many members of U . (We say that U is essentially finite
on K in such a situation.) Just from the definitions, we get (as in the
semialgebraic case):

Facts 5. Each definable space is small. Each subset of a definable
space is also small. Every small open subspace of a locally definable
space is definable. Each small set of a locally definable space is
contained in a small open set. In particular “small open” means exactly
“definable open,” but “small” does not imply “definable.”

One can easily check that: any locally definable space is topologically
Hausdorff if and only if it is Hausdorff in the generalized topological
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sense. Similarly, a locally definable space is topologically regular if and
only if it is regular in the generalized topological sense: any single point,
assumed always to be closed, and any closed subspace not containing
the point can be separated by disjoint open subspaces.

Clearly, each affine definable space is regular. Of great importance
for the theory of definable spaces is the following:

Theorem 6 (Robson [28], van den Dries [11]). Each regular definable
space is affine.

Remark 7. Even if we define locally definable spaces with the use
of structure sheaves, a locally definable space is determined by its
generalized topology when we assume silently that the structure of
each affine subspace is understood, since it has an admissible covering
of regular small open subspaces, which are affine definable spaces.
The main purpose of introducing function ringed spaces was to define
morphisms.

A practical way of defining and denoting a locally definable space is

to write it as the admissible union (
a
∪) of its admissible covering by

open definable (often affine) subspaces, not just the union set (even if
considered with a topology). Such a notation is defined in [25] and
used in [26]. One can also just specify an admissible covering of the
space by known open subspaces.

The author considers an attempt to encode the generalized topology
under the notion of “equivalent atlases” a little bit risky. We have
the following important example, which is again obtained by the
“localization” process known from [10].

Example 8. Take an Archimedean R. Consider three locally
definable spaces X1, X2 and X3 on the same open interval (0, 1)
given, respectively, by admissible families of open definable sets U1 =
{(1/n, 1 − 1/n) : n ≥ 3}, U2 = {(0, 1)}, U3 = U1 ∪ U2. Then
X1 �= X2 = X3. Such a space X1 is the “localized” unit interval
(0, 1)loc.

We would have two non-equivalent atlases U1 and U2 that combine
to a third atlas U3, and the combined atlas U3 would be equivalent to
U2, but not equivalent to U1.
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Notice that the recent paper [4] by Baro and Otero can easily mislead
the reader. Their definition of a locally definable space is not equivalent
to that of [10]. They define a locally definable space as a set with a
concrete atlas, call some atlases equivalent (which is not studied later),
and in Theorems 3.9 and 3.10 say that a set with only a topology is
a locally definable space. The reader gets the impression that they
consider only the usual topology and do not see the essential use of
the generalized topology (see the proof of (iii) of their Proposition
2.9). Their notion of an “ld-homeomorphism” is never defined, and
the reader may wrongly guess that an ld-homeomorphism is just a
locally definable homeomorphism (see Remark 2.11). Their “locally
finite generalized simplicial complex” is given a locally definable space
structure “star by star,” so it is not necessarily “embedded” into the
ambient affine space. This may mislead the reader when reading their
version of the Triangulation theorem (Fact 2.10) and some proofs.
Their Example 3.1 is highly imprecise, since it depends upon the choice
of the covering of M by definable subsets Mi. The same symbol M
denotes both a locally definable space and just a subset of Rn (and
this is continued in their Example 3.3). Formula Fin(R) = R (see page
492) again suggests to the reader the nonexistence of the generalized
topology (never mentioned explicitly). It’s worth noting that, if R
does not have any saturation (as in the important case of the field
of real numbers R), then the usual topology does not determine the
generalized topology.

We will say that an object N of LDS(R) comes from Rk if the
underlying topological space of N is equal to the standard topological
space of Rk and for each x ∈ Rk both N and the affine space Rk induce
on an open box B containing x the same definable open subspace. The
following two original theorems show the variety of locally definable
spaces “living” on the same topological space.

Theorem 9. For each o-minimal expansion RS of the field of real
numbers R:

1) there are exactly four different objects of LDS(RS) that come from
R1

S and are admissible unions of embedded open intervals, namely: RS ,
(RS)loc, (RS)loc,+, (RS)loc,−; there are uncountably many objects of
LDS(RS) that come from R1

S and are not embedded;
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2) there are uncountably many different objects of LDS(RS) that come
from R2

S and are admissible unions of embedded open definable sets.

Proof. 1) Assume N is an object of LDS(RS) coming from R1
S . Each

open subset of N is a countable union of open intervals. Each open
definable set is a finite union of open intervals, since it has a finite
number of connected components. There is an admissible covering U
of the real line by open intervals that are affine definable spaces. If
such an interval is relatively compact, then it is an embedded subspace
of RS . On the other hand, there exists an uncountable family of non-
embedded infinite open intervals. Choose r > 0 and find a non-linear,
locally linear, strictly increasing function φr : (0,+∞) → (0,+∞)
approximating the function x �→ xr. By transporting the structure
of a locally definable space through such a mapping, we get a new
object of LDS(RS) coming from R1

S for each r.

If there are no infinite intervals in U , then the open family {(−n, n)}n∈N

is admissible, and N = (R)S)loc. If both +∞ and −∞ are ends of
embedded intervals from U , then N is a finite union of embedded inter-
vals; thus, it is isomorphic to the affine space RS . Similarly, the other
two cases of admissible unions of embedded intervals give the spaces
(RS)loc,+, (RS)loc,−.

2) Choose a slope a ∈ R, and consider the space Na defined by
the admissible covering {Ua,n}n∈N, where Ua,n = {(x, y) ∈ R2 : y <
ax + n} are embedded open definable sets. All Na, for a ∈ R, are
different objects of LDS(RS) coming from R2

S .

We remind the reader (from non-standard analysis) that each non-
ArchimedeanR is partitioned into many galaxies (two elements x, y ∈ R
are in the same galaxy if their “distance” |x−y| is bounded from above
by a natural number).

Theorem 10. For any o-minimal expansion R of a field not
isomorphic to R, there are already uncountably many different objects
of LDS(R) that come from the line R1 and are admissible unions of
embedded open intervals.

Proof. Case 1: R contains R. The set of galaxies of R is uncountable.
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For any galaxy G of R, take x ∈ G and consider the space NG

defined as the disjoint generalized topological union of the following:
all the galaxies G′ > G, treating each one as a locally definable space
(see Remark 14), and the space N ′

G given by the admissible covering
{(−∞, x+n)}n∈N, which is the union of all galaxies G′′ ≤ G “partially
localized” (only) at the end of G. All of NG are different objects of
LDS(R) and come from R1.

Case 2: R does not contain R. Consider a maximal archimedean
subfield Rar of R. This field embeds into R. There exist uncountably
many irrational cuts of R, determined by elements r ∈ R \ Rar. For
each such r, consider the space Nr over R defined by the admissible
covering

{(−∞, s)}s<r ∪ {(s,+∞)}s>r,

where s ∈ R. This space consists of two connected components given
by the conditions x < r and x > r. All of Nr, r ∈ R\Rar, are different
objects of LDS(R) and come from R1.

There exist more general sets that are called in [16, Definition 7.1 (a)],
“locally definable.” We will call them local subsets. (A subset Y of a
space X is a local subset if, for each point y only of Y , there is an open
definable neighborhood U of y in X such that U∩Y is definable.) They
can be given a locally definable space structure, but their properties
are not nice: they are closed only on finite intersection and are not
closed under complement or even finite union.

The locally definable space on such Y ⊆ X may be introduced by the
following admissible covering

UY = {Y ∩ Ui | Ui is a definable open subset

of X and Y ∩ Ui is definable}.

(The above definition does not depend on any arbitrary choice of an
admissible covering, contrary to Examples 3.1 and 3.3 of [4].)

Local subsets are not (as such) called subspaces! Their use often does
not recognize the space structure given above (even if they are definable
sets), since we mainly want to study “locally definable functions”
on them (see [16, Definition 7.1 (b)]). (Consider a function “locally
definable” if its domain and codomain are local subsets of some objects
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of LDS(R), and all function germs of this function at points of its
domain are definable. A function germ fx at x is called definable if
some definable neighborhood of x is mapped by f into a definable
neighborhood of f(x) and the obtained restriction of f is a definable
mapping.)

The following examples make the above considerations more clear.

Example 11. The semialgebraic set (−1, 1)R inherits an affine
semialgebraic space structure from R. Nevertheless, when speaking
about “locally semialgebraic functions” into R (in the sense of [16,
Definition 7.1 (b)]) we want to treat it as the “localized” open interval
(−1, 1)loc, which is not a semialgebraic space. Define, for example,
functions w : R → R and u : (−1, 1) → R by the formulas

w(x) =

{
x− 4k, x ∈ [4k − 1, 4k + 1), k ∈ Z,

2 + 4k − x, x ∈ [4k + 1, 4k + 3), k ∈ Z,

and

u(t) = w

(
t√

1− t2

)
.

Then u is “locally semialgebraic” (and not semialgebraic).

Example 12. Consider the semialgebraic set S = (−1, 1)2 ∪{(1, 1)}
in R2. The fact of being a “locally semialgebraic function” (in the
sense of [16, Definition 7.1 (b)]) on S (into R) does not reduce to
being a morphism of any locally (and even weakly) semialgebraic space
that can be formed by redefining the notion of an admissible covering
of the space S. In particular, each of the functions Fn : S → R
(n = 1, 2, 3, . . . ), where

Fn(x, y) =

{
0, y ≥ 1− (1/n),

w[(1 − (1/n)− y)/(1− x)], y < 1− (1/n),

is “locally semialgebraic” (function w is defined as in the previous
example).

In general, definable spaces and locally definable spaces do not behave
well enough for being used in homotopy theory. The right choice of
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assumptions (as in the semialgebraic case of [10]) are: regularity and a
new one called “paracompactness,” which is only a rough analogue of
the topological notion.

3. Regular paracompact locally definable spaces. One of
the reasons why we pass to the locally definable spaces is the need of
existence of covering mappings with infinite (for example, countable)
fibers.

The following example is a generalization of an example from [9].

Example 13 (cf. [9, 5.14]). The space Fin(R). We look for the
universal covering of the unit circle S1 ⊆ R2. We will soon see that
(as in topology) π1(S

1) = Z, so the universal covering should have
countable fibers. Let Fin(R) be the locally definable space introduced
by the admissible covering by open intervals {(−n, n)}n∈N in R. There
is a surjective semialgebraic (so definable) morphism e : [0, 1] → S1

that maps 0 and 1 to the distinguished point on S1 and is injective
elsewhere. Then the universal covering mapping p : Fin(R) → S1

defined by p(m+ x) = e(x), where m ∈ Z, x ∈ [0, 1], is a morphism of
locally definable spaces.

A family of subsets of a locally definable space is locally finite if each
open definable subset of the space meets only finitely many members
of the family.

A locally definable space is called paracompact if there is a locally
finite covering of the whole space by open definable subsets. (A locally
finite covering must be admissible, since “admissible” means: when
restricted to an open definable subspace, there is a finite subcovering.
Shortly: “admissible” means exactly “locally essentially finite”.)

Remark 14. The locally definable space Fin(R) given by the admissi-
ble covering {(−n, n) : n ∈ N} is paracompact for each R, since there
exists a locally finite covering giving the same space. (Notice that if R
contains R, then

a⋃
r∈R+

(−r, r) =
a⋃

n∈N

(−n, n).)

In the language of nonstandard analysis, we can say that each galaxy
may be considered to be a regular paracompact locally definable space.
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Direct (i.e., Cartesian) products preserve regularity and paracom-
pactness of locally definable spaces (cf. [10, I.4.2c) and I.4.4e)]). We
will denote the category of regular paracompact locally definable spaces
over R by RPLDS(R).

Example 15. The spaces from the proofs of Theorems 9 and 10 are
objects of RPLDS(R).

Remark 16. A connected (in the sense of generalized topology: the
space cannot be decomposed into two open disjoint nonempty sub-
spaces) regular paracompact locally definable space has a countable
admissible covering by definable open subsets (so-called Lindelöf prop-
erty in [10]). If it has finite dimension k, then it can be embedded
into the cartesian power Fin(R)2k+1. This holds by embedding into
a partially complete space, triangulation (see Theorems 26, 27 below)
and Theorem 3.2.9 from a book of Spanier [30] (see also [10, II.3.3]).

Topological Remark 17. The notion of paracompactness introduced
above differs from the topological one. Each definable space is paracom-
pact. There are Hausdorff definable (so paracompact) spaces which are
not regular. With the regularity assumption, each paracompact space
is normal and admits partition of unity. Paracompactness is inher-
ited by all subspaces and Cartesian products. The Lindelöf property
gives paracompactness only with the assumption that the closure of a
definable set is definable.

Fiber products exist in the category of locally definable spaces over
R (cf. [10, I.3.5]). A morphism f : M → N between locally definable
spaces is called proper if it is universally closed in the sense of the
generalized topology. This means that, for each morphism of locally
definable spaces g : N ′ → N , the induced morphism f ′ :M×NN

′ → N ′

in the pullback diagram is a closed mapping in the sense of the
generalized topological spaces (it maps closed subspaces onto closed
subspaces). If all restrictions of f to closed definable subspaces are
proper, then we call f partially proper.

A Hausdorff locally definable space M is called complete if the
morphism fromM to the one point space is proper. Each paracompact
complete space is affine definable (compare [10, I.5.10]). Moreover, M
is called locally complete if each point has a complete neighborhood.
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(Each locally complete locally definable space is regular, cf. [10, I.7,
page 75]). It is partially complete if every closed definable subspace is
complete. Every partially complete regular space is locally complete
(cf. [10, I.7.1 a)]).

Topological Remark 18. This notion of properness is analogical to a
notion from algebraic geometry. Partial completeness is the key notion.

Let M be a locally complete paracompact space. Take the family
◦
γc(M) of all such open definable subsets U of M that U is complete.
Introduce a new locally definable space Mloc, the localization or partial

completization of M , on the same underlying set taking
◦
γc(M) as an

admissible covering by small open subspaces (cf. [10, I.2.6]). The new
space is regular partially complete (not only locally complete) and the
identity mapping from Mloc to M is a morphism, but Mloc may not be
paracompact, see Warning-Example 24. Notice that localization leaves
the strong topology unchanged.

Topological Remark 19. Localization is similar to the process of
passing to k-spaces (they are exactly the compactly generated spaces if
Hausdorffness is assumed) in homotopy theory. (Complete spaces play
the role of compact spaces.) But notice that each topological locally
compact space is a k-space.

Remark 20. Only one of the four locally definable spaces mentioned
explicitly in the statement of Theorem 9 for each RS is partially
complete, namely (RS)loc.

A paracompact locally definable manifold of dimension n over R is
a Hausdorff locally definable space over R that has a locally finite
covering by definable open subsets that are isomorphic to (open balls
in) Rn. (Such a space is paracompact and locally complete, so regular,
cf. [10, I.7, page 75].) If additionally the transition maps are (definable)
Ck-diffeomorphisms (k = 1, . . . ,∞), then we get paracompact locally
definable Ck-manifolds. Notice that the differential structure of such
manifolds may be encoded by sheaves (in the sense of the strong
topology) of Ck functions. We get the following original result:
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Theorem 21. Paracompact (in the topological sense) analytic mani-
folds of dimension n are in bijective correspondence with partially com-
plete paracompact locally definable C∞-manifolds over Ran of the same
dimension.

Proof. A paracompact analytic manifold induces a paracompact locally
definable C∞-manifold over Ran. Each paracompact manifold (even
a topological one) is regular. We may assume (by shrinking the
covering of the manifold by chart domains if necessary) that the
analytic structure of the manifold is given by a locally finite atlas
consisting of charts whose domains and ranges are relatively compact
subanalytic sets, and the charts extend analytically beyond the closures
of chart domains. By taking a nice locally finite refinement, we
additionally can get the chart domains and chart ranges (analytically
and globally subanalytically) isomorphic to open balls in Rn. Now the
chart domains form a locally finite covering of the analytic manifold
that defines a paracompact locally definable manifold over Ran. The
transition maps (being analytic diffeomorphisms) are Ran-definable
C∞-diffeomorphisms of open, relatively compact, subanalytic subsets
of some Rn. Thus, we get a locally definable C∞-manifold. (Notice
that the relatively compact subanalytic sets are now the definable sets
and the subanalytic sets are now the locally definable sets.)

The so obtained locally definable space is partially complete.

Vice versa: A paracompact locally definable C∞-manifold over Ran

induces a Hausdorff (analytic) manifold with analytic, globally suban-
alytic transition maps and globally subanalytic chart ranges. We may
assume that the manifold is connected. Its locally finite atlas is count-
able (cf. [10, I.4.17]), so the manifold is a second countable topological
space, and finally a paracompact analytic manifold. All locally defin-
able subsets are now subanalytic (they are globally subanalytic in every
chart).

One-to-one correspondence: If the paracompact locally definable
manifold is partially complete, then the closure of a chart domain is
a closed definable set (cf. [10, I.4.6]) and a complete definable set,
which means it is a compact subanalytic set. Thus, chart domains
are relatively compact. “Locally definable” in the sense of locally
definable spaces means exactly “locally definable” in the topological
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sense. It follows that the definable subsets are exactly the relatively
compact subanalytic subsets, and the locally definable subsets are
exactly the subanalytic subsets of the paracompact analytic manifold
obtained. Notice that the strong topology does not change when we
pass from one type of a manifold to the other. So the structure of
the partially complete locally definable space is uniquely determined
(see Remark 7) by the analytic manifold. Both the structures of a C∞

locally definable manifold over Ran and the structure of an analytic
manifold do not change during the above operations (only a convenient
atlas was chosen).

Remark 22. A real function on a (paracompact) analytic manifold
Man is analytic if and only if it is a C∞ morphism from the correspond-
ing partially complete paracompact locally definable C∞-manifold (call
it Mldm) into Ran as an affine definable space. (See [12, 5.3].)

Analogously, for each expansion RS of the field R that is a reduct of
Ran, partially complete paracompact locally definable C∞-manifolds
over RS correspond uniquely to paracompact analytic manifolds of
some special kinds. Then the locally definable subsets in the sense
of a given locally definable manifold (as well as in the sense of its
“expansions,” see below) form nice “geometric categories.” This in
particular generalizes the analytic-geometric categories of van den Dries
and Miller [12].

The above phenomenon may be explained in the following way: the
analytic manifolds Rn (n ≥ 1), which model all analytic manifolds,
have a natural notion of smallness. A subset S ⊂ Rn is topologically
small if it is bounded or, equivalently, relatively compact. In the
corresponding partially complete paracompact locally definable C∞-
manifolds

Fin(Ran)
n = (Ran)

n
loc =

a⋃
k∈N

(−k, k)n = Fin((Ran)
n)

over Ran this means that S is a small subset in the sense of the
generalized topology (if S is subanalytic, then this means definable).
One could also use the notion of being relatively complete in this
context. It is partial completeness that gives analogy between the usual
topology and the generalized topology.
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Remark 23. The generalized topology of the spaceMldm of Remark 22
is “the subanalytic site” considered by microlocal analysts (see [19]).
More generally, the generalized topology of each paracompact locally
definable manifold may be considered as a “locally definable site.” It
is also possible to consider all subanalytic subsets of a real analytic
manifold as open sets of a generalized topological space, but then the
strong topology becomes discrete.

Warning-Example 24 (cf. [10, I.2.6]). (The space Rloc). Structure
R, as an affine definable space, is locally complete but not complete. For
such a space Rloc is introduced by the admissible covering {(−r, r) :
r ∈ R+}. This is a locally (even regular partially) complete space
which is not definable. If the cofinality of R is uncountable, then
Rloc is not paracompact! Here the morphisms from R to R are “the
continuous definable functions,” and the morphisms from Rloc to R
are “the continuous locally (in the sense of Rloc) definable functions.”
(The latter case includes some nontrivial periodic functions for an
Archimedean R.)

A series of topological facts have counterparts for regular paracom-
pact locally definable spaces.

Lemma 25 (cf. [9] and [10, Chapter I]). Let M be an object of
RPLDS(R). Then:

a) Tautness. The closure of a definable set is definable (cf. [10, I.4.6]);

b) Shrinking of coverings lemma. For each locally finite covering (Uλ)
of M by open locally definable sets, there is a covering (Vλ) of M by
open locally definable sets such that Vλ ⊆ Uλ (cf. [10, I.4.11]);

c) Partition of unity. For every locally finite covering (Uλ) of M
by open locally definable subsets there is a subordinate partition of
unity, i.e., there is a family of morphisms φλ : M → [0, 1] such that
suppφλ ⊆ Uλ and

∑
λ φλ = 1 on M (cf. [10, I.4.12]);

d) Tietze’s extension theorem. If A is a closed subspace of M and
f : A→ K is a morphism into a convex definable subset K of R, then
there exists a morphism g : M → K such that g | A = f (cf. [10,
I.4.13]);
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e) Urysohn’s lemma. If A,B are disjoint closed locally definable
subsets of M , then there is a morphism f :M → [0, 1] with f−1(0) = A
and f−1(1) = B (cf. [10, I.4.15]).

Each locally definable space M over R has a natural “base field
extension”M(S) over any elementary extension S of R (cf. [10, I.2.10])
and an “expansion”MR′ to a locally definable space over any o-minimal
expansion R′ of R. Analogously, we may speak about a base field
extension of a morphism.

The rules of conservation of the main properties under the base field
extension are the same as for the locally semialgebraic case:

a) the base field extensions of the family of the connected components
of a locally definable spaceM form the family of connected components
of M(S) (cf. [10, I.3.22 i)]);

b) if M is Hausdorff, then: the space M is definable if and only if
M(S) is definable, M is affine definable if and only if M(S) is affine
definable, M is paracompact if and only if M(S) is paracompact,
M is regular and paracompact if and only if M(S) is regular and
paracompact (cf. [10, B.1]);

c) if M is regular and paracompact, then: M is partially complete if
and only if M(S) is partially complete and M is complete if and only
if M(S) is complete (cf. [10, B.2]).

If we expand R to an o-minimal R′, then:

a) any locally definable space M is regular over R if and only if MR′

is a regular space over R′, since they have the same strong topologies;

b) a locally definable space M is connected over R if and only if
MR′ is connected over R′ (for an affine space: a clopen subset of a set
definable over R is definable over R; generally: apply an admissible
covering by affine subspaces “over R”);

c) a locally definable space M is Lindelöf over R if and only if MR′

is Lindelöf over R′: if M is Lindelöf, then MR′ is obviously Lindelöf; if
MR′ is Lindelöf, then each member of a countable admissible covering
V of MR′ by definable open subspaces is covered by a finite union of
elements of the admissible covering U ofM by definable open subspaces
that allowed to construct MR′ . Then U has a countable subcovering
U ′. (Up to this moment our proof goes like the proof of Proposition
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2.9 iii) in [4], but they do not care about admissibility.) The family U ′′

of finite unions of elements of U ′ is a countable coarsening of V , hence
is admissible in MR′ . Since “admissible” means “locally essentially
finite,” U ′′ is, in particular, admissible in M ;

d) if M is a Hausdorff locally definable space over R, then M is
paracompact over R if and only if MR′ is paracompact over R′: if
M is paracompact, then MR′ is obviously paracompact; if MR′ is
paracompact, then we can assume that it is connected. Then MR′

is Lindelöf (cf. [10, I.4.17]) and taut (i.e., the closure of a definable set
is definable, cf. [10, I.4.6]). Now, by c), space M is Lindelöf, and it
is taut by the construction of MR′ and considerations of Fundamental
Example 1, so M is paracompact (see [10, I.4.18] and [4, Proposition
2.9 iv)]).

4. Homotopies. Here basic definitions of homotopy theory are
reintroduced. The unit interval [0, 1] of R will be considered to be an
affine definable space over R.

Let M,N be objects of Space(R), and let f, g be morphisms from M
to N . A homotopy from f to g is a morphism H :M × [0, 1] → N such
that H(·, 0) = f and H(·, 1) = g. If H exists, then f and g are called
homotopic. If additionally H(x, t) is independent of t ∈ [0, 1] for each
x in a subspace A, then we say that f and g are homotopic relative
to A. A subspace A of a space M is called a retract of M if there is
a morphism r : M → A such that r | A = idA. Such r is called a
retraction. A subspace A of M is called a strong deformation retract
of M if there is a homotopy H : M × [0, 1] → M such that H0 is the
identity and H1 is a retraction from M to A. Then H is called strong
deformation retraction.

A system of spaces over R is any tuple (M,A1, . . . , Ak) where M is
a space over R and A1, . . . , Ak are subspaces of M . A closed pair
is a system (M,A) of a space with a closed subspace. A system
(A0, A1, . . . , Ak) is decreasing if Ai+1 is a subspace of Ai for i =
0, . . . , k − 1. A morphism of systems of spaces f : (M,A1, . . . , Ak) →
(N,B1, . . . , Bk) is a morphism of spaces f : M → N such that
f(Ai) ⊆ Bi for each i = 1, . . . , k. A homotopy between two morphisms
of systems of spaces f, g from (M,A1, . . . , Ak) to (N,B1, . . . , Bk) is a
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morphism

H : (M × [0, 1], A1 × [0, 1], . . . , Ak × [0, 1]) −→ (N,B1, . . . , Bk)

with H0 = f and H1 = g. The homotopy class of such a morphism f
will be denoted by [f ] and the set of all homotopy classes of morphisms
from (M,A1, . . . , Ak) to (N,B1, . . . , Bk) by

[(M,A1, . . . , Ak), (N,B1, . . . , Bk)].

If C is a closed subspace of M and h : C → N is a pregiven morphism
such that h(C∩Ai) ⊆ Bi, then we denote the sets of classes of homotopy
relative to C of mappings extending h by

[(M,A1, . . . , Ak), (N,B1, . . . , Bk)]
h.

Let us adopt the notation: I = [0, 1], ∂In = In \ (0, 1)n, and
Jn−1 = ∂In \ (In−1 × {0}). For every pointed space (M,x0) over R
and n ∈ N∗ we define the (absolute) homotopy groups as sets

πn(M,x0) = [(In, ∂In), (M,x0)]

where the multiplication [f ] · [g], for n ≥ 1, is the homotopy class of

(f ∗ g)(t1, t2, . . . , tn) =
{
f(2t1, t2, . . . , tn), 0 ≤ t1 ≤ 1

2

g(2t1 − 1, t2, . . . , tn),
1
2 ≤ t1 ≤ 1.

For n = 0 we get (only) a set π0(M,x0) of connected components of
M with the base point the connected component of x0. Also, as in
topology, we define relative homotopy groups

πn(M,A, x0) = [(In, ∂In, Jn−1), (M,A, x0)].

A morphism f : M → N is a homotopy equivalence if there is a
morphism g : N →M such that g ◦ f is homotopic to idM and f ◦ g is
homotopic to idN . We call f :M → N a weak homotopy equivalence if f
induces bijections in homotopy sets (π0(·)) and group isomorphisms in
all homotopy groups (πn(·), n ≥ 1). Analogously, we define homotopy
equivalences and weak homotopy equivalences for systems of spaces.
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The following operations, known from the usual homotopy theory,
may not be executable in the category of regular paracompact locally
definable spaces over a given R: the smash product of two pointed
spaces M,N , which is M ∧N =M ×N/M ∨N , where M ∨N denotes
the wedge product of such spaces; the reduced suspension SM of M ,
which is S1 ∧M ; the mapping cylinder Z(f) of f : M → N , which is
the space obtained as the quotient of (M×[0, 1])∪N by the equivalence
relation that identifies each point of the form (x, 1), x ∈M , with f(x);
the mapping cone of f , which is the mapping cylinder of f divided by
M × {0}; the cofiber C(f) of f : M → N , which is the “switched”
mapping cylinder (([0, 1]×M) ∪1×M,f N)/{0} ×M .

5. Comparison theorems for locally definable spaces. In this
section the two comparison theorems from [10] are extended, and the
third is added. The first steps to do this are embedding in a partially
complete space and triangulation.

Theorem 26 (Embedding into a partially complete space, cf. [10,
II.2.1]). Each regular paracompact locally definable space over R is
isomorphic to a dense locally definable subset of a partially complete
regular paracompact space over R.

We restate the triangulation theorem, keeping the notation from [10]
to avoid confusion.

Theorem 27 (Triangulation, cf. [10, II.4.4]). Let M be a regular
paracompact locally definable space over R. For a given locally finite
family A of locally definable subsets of M , there is a simultaneous
triangulation φ : X → M of M and A (i.e., an isomorphism from the
underlying set X, considered to be a locally definable space, of a strictly
locally finite geometric simplicial complex (X,Σ(X)) to M such that all
members of A are unions of images of open simplices from Σ(X)).

In particular, each object of RPLDS(R) is locally (pathwise) con-
nected and even locally contractible.

As an illustration of the methods available by triangulation, the
following Bertini or Lefschetz type theorem (compare [1, (39.7)]) is
proven. (See [24] for a topological version. Here the difficulty lies in
the possibility that two different points are of an infinitesimal distance,
and that a curve has an infinite velocity.)
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A subspace Δ of a locally definable space Y nowhere disconnects Y
if, for each connected open neighborhood W of any y ∈ Y , there is an
open neighborhood U ⊆W of y such that U \Δ is connected.

A morphism p : E → B in LDS(R) is a branched covering if there
is a closed, nowhere dense exceptional subspace Δ ⊆ B such that
p|p−1(B\Δ) : p−1(B \ Δ) → B \ Δ is a covering mapping (this means
that there is an admissible covering of B \Δ by open subspaces, each
of them well covered, analogically to the topological setting). If each
of the regular points b ∈ B \ Δ of the branched covering p : E → B
have the fiber of the same cardinality, then this cardinality is called the
degree of a branched covering p : E → B.

Theorem 28 (cf. [24, Theorem 1]). Let Y be a simply connected (this
assumes connected) object of RPLDS(R), Z a connected, paracompact
locally definable manifold over R of dimension at least 2 and π :
Y × Z → Y the canonical projection.

Assume that V ⊂ Y ×Z is a closed subspace such that the restriction
πV : V → Y is a branched covering of finite degree and an exceptional
set Δ of this branched covering nowhere disconnects Y . Put X =
(Y × Z) \ V , and L = {p} × Z, for some p ∈ Y \Δ.

If there is a morphism of locally definable spaces h : Y → Z over R
with the graph contained in X, then the inclusion i : L\V → X induces
an epimorphism in the fundamental groups i∗ : π1(L \ V ) → π1(X).

Lemma 29 (Straightening property, cf. [24, Lemma 3]). Every
paracompact locally definable manifold M over R has the following
straightening property:

For each set J ⊂ [0, 1] × M such that the natural projection β :
[0, 1]×M → [0, 1] restricted to J is a covering mapping of finite degree,
there exists an isomorphism, called the straightening isomorphism,
τ : [0, 1]×M → [0, 1]×M which satisfies the following three conditions:

1) β ◦ τ = β,

2) τ | {0} ×M = id,

3) τ(J) = [0, 1]× (α(J ∩ ({0} ×M))), where α : [0, 1]×M → M is
the natural projection.
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Proof. Special case. Assume M is a unit open ball in Rm. The
set J is a finite union of graphs of definable continuous mappings
γi : [0, 1]R → M (i = 1, . . . , n). We apply induction on the number n
of these graphs.

If n = 1, then obviously the straightening exists (compare [24,
Lemma 2]), and the isomorphism may be chosen to extend continuously
to the identity on the unit sphere.

If n > 1 and the lemma is true for n−1, then we can assume that the
first n− 1 graphs (of the functions γ1, . . . , γn−1) are already straight-
ened and that the distances between images of the corresponding map-
pings (points p1, . . . , pn−1) are not infinitesimals. Moreover, since the
distance from the value γn(t) of the last function γn to any of the
distinguished points has a positive lower bound, we can assume γn(t)
is always outside some closed balls centered at pi’s with radius larger
than some rational number. Now, we can cover the rest of the unit
ball by finitely many regions that are each isomorphic to the open unit
ball. Since the last function is definable, there are only finitely many
transitions from one region to another when t ∈ [0, 1]R. We have the
straightening inside each of the regions. By gluing such straightening
as in the proof of Lemma 3 of [24], we get the straightening of the
whole n-th mapping. Again, the straightening extends continuously to
the identity on the unit sphere.

General case. Again J is a finite union of graphs of definable functions
on [0, 1]R (by arguments similar to those of the usual topological
context). Since J is definable, it is contained in a finite union of open
sets each isomorphic to the open unit ball in Rm. The thesis of the
lemma extends by arguments similar to these of the special case.

Proof of Theorem 28. Clearly, X is a connected and locally simply
connected space. Let j : L\V ↪→ X \(Δ×Z) and k : X \(Δ×Z) ↪→ X
be the inclusions. Then the proof falls naturally into two parts.

Step 1. The induced mapping j∗ : π1(L \ V ) → π1(X \ (Δ × Z))
is an epimorphism. This step is analogous to Part 1 of the proof of
Theorem 1 in [24]. Here Lemma 29 is used.

Step 2. The mapping k∗ : π1(X \ (Δ × Z)) → π1(X) induced by k
is an epimorphism. Notice that (Δ× Z) ∩X nowhere disconnects X .
Let u = (f, g) be a loop in X at (p, h(p)). The set im (u) has an affine
open neighborhood W .



O-MINIMAL HOMOTOPY & GENERALIZED (CO)HOMOLOGY 599

We use a (locally finite) triangulation of Y ×Z (that is an isomorphism
φ : K → Y × Z for some strictly locally finite, not necessarily
closed, simplicial complex (K,Σ(K)), following the notation of [10]),
compatible with im(u),Δ× Z, V, L, h,W “over Q.”

There is ε ∈ Q such that the “distance” from φ−1(im(u)) to φ−1(V ∩
W ) in some ambient affine space is at least ε. Moreover, the “velocity”
of φ−1 ◦ u (existing almost everywhere) is bounded from above by
some rational number. Now since all the sets and functions considered
(appearing in the context of K) are piecewise linear over Q, the
Lebesgue number argument is available. By the use of the “distance”
function in the ambient affine space and the barycentric coordinates
for the chosen triangulation, we find a loop ũ = (f̃ , g̃) homotopic to u
rel{0, 1} with image in X \ (Δ× Z).

The following facts and theorems, whose proofs use the machinery
of good triangulations, are straightforward generalizations of the corre-
sponding semialgebraic versions from [10]:

Fact 30 (Canonical neighborhood retraction, cf. [10, III.1.1]). Let
M be an object of RPLDS(R) and A a closed subspace. There is
an open neighborhood U (in particular a subspace) of A and a strong
deformation retraction

H : U × [0, 1] −→ U

from U to A such that the restriction H |U × [0, 1] is a strong deforma-
tion retraction from U to A.

Fact 31 (Extension of morphisms, cf. [10, III.1.2]). Let M be an
object of RPLDS(R), A a closed subspace and U a neighborhood of A
from the previous theorem. Any morphism f : A → Z into a regular
paracompact locally definable space extends to a morphism f̃ : U → Z.
Moreover, if f̃1, f̃2 are extensions of f to U , then they are homotopic
in U relative to A.

Fact 32 (Homotopy extension property, cf. [10, III.1.4]). Let M
be an object of RPLDS(R). If A is a closed subspace of M , then
(A × [0, 1]) ∪ (M × {0}) is a strong deformation retract of M × [0, 1].
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In particular, the pair (M,A) has the following Homotopy extension
property: for each morphism g : M → Z into a regular paracompact
locally definable space Z and a homotopy F : A × [0, 1] → Z with
F0 = g | A, there exists a homotopy G : M × [0, 1] → Z with G0 = g
and G|A× [0, 1] = F .

Since our spaces may be triangulated, the method of simplicial
approximations ([10, III.2.5]) does a good job. In particular, the
method of well-cored systems and canonical retractions from [10, III.2]
gives the following.

Fact 33. Each object of RPLDS(R) is homotopy equivalent to
a partially complete one. A system (M,A1, . . . , Ak) of a regular
paracompact locally definable space with closed subspaces is homotopy
equivalent to an analogous system of partially complete spaces.

The following two main theorems from [10] generalize, but the
mapping spaces from III.3, which depend on the degrees of polynomials,
should be replaced with similar mapping spaces depending on concrete
formulas Ψ(x, y, z), with parameters z, of the language of the structure
R (one “mapping space” per each formula Ψ).

Let (M,A1, . . . , Ar) and (N,B1, . . . , Br) be systems of regular para-
compact locally definable spaces over R, where each Ai (i = 1, . . . , r)
is closed in M . Let h : C → N be a given morphism from a closed
subspace C ofM such that h(C ∩Ai) ⊆ Bi for each i = 1, . . . , r. Then
we have:

Theorem 34 (First comparison theorem, cf. [10, III.4.2]). Let R ≺ S
be an elementary extension. Then the “base field extension” functor
from R to S induces a bijection between the homotopy sets:

κ : [(M,A1, . . . , Ak), (N,B1, . . . , Bk)]
h

−→ [(M,A1, . . . , Ak), (N,B1, . . . , Bk)]
h(S).

Theorem 35 (Second comparison theorem, cf. [10, III.5.1]). Let
R be an o-minimal expansion of R. Then the “forgetful” functor
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RPLDS(R) → Top to the topological category induces a bijection
between the homotopy sets

λ : [(M,A1, . . . , Ak), (N,B1, . . . , Bk)]
h

−→ [(M,A1, . . . , Ak), (N,B1, . . . , Bk)]
h
top.

Moreover, a version of the proof of the First comparison theorem
gives:

Theorem 36 (Third comparison theorem). If R′ is an o-minimal ex-
pansion of R, then the “expansion” functor induces a bijection between
the homotopy sets

μ : [(M,A1, . . . , Ak), (N,B1, . . . , Bk)]
h
R

−→ [(M,A1, . . . , Ak)R′ , (N,B1, . . . , Bk)R′ ]hR′ .

Sketch of proof. Baro and Otero [3] have written a detailed proof
of this theorem in the case of systems of definable sets. They use a
natural tool of “normal triangulations” from [2] to get an applicable
version of II.4.3 from [10]. The theorem extends to the general case as
in [10].

Because of the locally finite character of the regular paracompact lo-
cally definable spaces, by inspection of the proof of the Triangulation
theorem ([10, II.4.4]), each such space has an isomorphic copy that
is built from sets definable without parameters glued together along
sets that are definable without parameters. It is possible to triangu-
late even “over the field of real algebraic numbers Q ” or “over the
field of rational numbers Q”. Moreover, if two 0-definable subsets of
Rn are isomorphic as definable spaces (i.e., definably homeomorphic),
then there is a 0-definable isomorphism between them (we may change
arbitrary parameters into 0-definable parameters in the defining for-
mula of an isomorphism).

By the (noncompact) o-minimal version of Hauptvermutung for struc-
ture R, we understand the following statement, which is a version of
[5, Question 1.3]:
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Given two semialgebraic (definable in the field structure of R) sets in
some Rn, if they are definably homeomorphic, then they are semialge-
braically homeomorphic.

In other words: if two affine semialgebraic spaces are isomorphic as
definable spaces, then they are isomorphic as semialgebraic spaces.

It follows from [29, Theorem 2.5] that this statement is true for every
R. Thus, the category of regular paracompact locally semialgebraic
spaces RPLSS(R) over (the underlying field of) R may be viewed as
a subcategory of RPLDS(R), but not as a full subcategory. Moreover,
by triangulation with vertices having coordinates in the field of real
algebraic numbers Q, we have the following fact:

Fact 37. Each regular paracompact locally definable space over R
is isomorphic to a regular paracompact locally semialgebraic space over
(the underlying field of) R.

Thus, by the Third comparison theorem, the homotopy categories
HRPLSS (R) and HRPLDS(R) are equivalent. Analogously, we get

Corollary 38. The homotopy categories of systems (M,A1, . . . , Ak)
of regular paracompact locally definable spaces with finitely many closed
subspaces and systems (M,A1 . . . , Ak) of regular paracompact locally
semialgebraic spaces with finitely many closed subspaces (over the
“same” R) are equivalent.

Proof. By the triangulation theorem (Theorem 27), every object of
the former category is isomorphic to an object of the later category.
Thus, the “expansion” functor is essentially surjective. By the Com-
parison theorem (Theorem 36), it is also full and faithful. This implies
that this functor is an equivalence of categories.

It follows that the homotopy theory for regular paracompact locally
definable spaces can, to a large extent, be transferred from the semialge-
braic homotopy theory and, eventually, from the topological homotopy
theory, as in [10].

Other important facts about regular paracompact locally definable
spaces will be developed in a more general setting of definable CW-
complexes and weakly definable spaces.
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6. Weakly definable spaces. In homotopy theory one needs to
use quotient spaces (e.g., mapping cylinders, mapping cones, cofibers,
smash products, reduced suspensions, CW-complexes), and this opera-
tion is not always executable in the category of locally definable spaces
(as in the semialgebraic case). That is why weakly definable spaces,
which are analogues of arbitrary Hausdorff topological spaces, need to
be introduced. We start here to re-develop the theory of Knebusch
from [20].

Let (M,OM ) be a space over R, and let K be a small subset of M .
We can induce a space on K in the following way:

i) open sets in K are the intersections of open sets on M with K,

ii) admissible coverings in K are such open coverings that some finite
subcovering already covers the union,

iii) a function h : V → R is a section of OK(V ) if it is a finite open
union of restrictions to K of sections of the sheaf OM . We call (K,OK)
a small subspace of (M,OM ).

A subset K of M is called closed definable in M if K is closed,
small and the space (K,OK) is a definable space. The collection of
closed definable subsets of M is denoted by γ(M). The set K is called
a polytope if it is a closed definable complete space. We denote the
collection of polytopes of M by γc(M).

A weakly definable space (over R) is a space M (over R) having a
family, indexed by a partially ordered set A, of regular closed definable
subsets (Mα)α∈A such that the following conditions hold:

WD1) M is the union of all Mα,

WD2) if α ≤ β then Mα is a (closed) subspace of Mβ,

WD3) for each α there is only a finite number of β such that β ≤ α,

WD4) the family (Mα) is strongly inverse directed, i.e., for each α, β
there is some γ such that γ ≤ α, γ ≤ β and Mγ =Mα ∩Mβ ,

WD5) the set of indices is directed: for each α, β there is γ with
γ ≥ α, γ ≥ β,

WD6) the space M is the inductive limit of the spaces (Mα), which
means the following:

a) a subset U of M is open if and only if each U ∩Mα is open in Mα,



604 ARTUR PIĘKOSZ

b) an open family (Uλ) is admissible if and only if for each α the
restricted family (Mα ∩ Uλ) is admissible in Mα,

c) a function h : U → R on some open U is a section of OM if and
only if all the restrictions h|U ∩Mα are sections of respective sheaves
OMα .

Such a family (Mα) is called an exhaustion of M .

A spaceM is called a weak polytope ifM has an exhaustion composed
of polytopes. Morphisms and isomorphisms of weakly definable spaces
are their morphisms and isomorphisms as spaces (we get the full
subcategory WDS(R) of Space(R)).

A weakly definable subset is such a subset X ⊆M that has definable
intersections with all members of some exhaustion (Mα), and is con-
sidered with the exhaustion (X ∩Mα); hence, it may be considered as
a subspace of M (cf. [20, IV.3]).

A subset X of M is definable if it is weakly definable and the space
(X,OX) is definable. A subset X of M is definable if and only if it is
weakly definable and is contained in a member of an exhaustion Mα

(cf. [20, IV.3.4]).

The strong topology on M is the topology that makes the topological
space M the respective inductive limit of the topological spaces Mα.
The unpleasant fact about the weakly definable spaces (in comparison
with the locally definable spaces) is that points may not have small
neighborhoods (see Example 41). Moreover, open sets from the gener-
alized topology may not form a basis of the strong topology (cf. [20,
Appendix C]).

The closure of a definable subset of M is always definable (cf. [20,
IV.3.6]), so the topological closure operator restricted to the class γ(M)
of definable subsets of M may be treated as the closure operator of
the generalized topology. The weakly definable subsets are “piecewise
constructible” from the generalized topology (compare [26]).

All weakly definable spaces are Hausdorff, actually even “normal,”
see [20, IV.3.12]. We can consider “expansions” and “base field
extensions” of weakly definable spaces (compare considerations in [20,
IV.2]) or morphisms (in the case of a base field extension) similar to the
operations defined for locally definable spaces. They do not depend on
the chosen exhaustion and preserve connectedness (cf. [20, IV.2, IV.3]).
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Remark 39. Assume that a weakly definable space M is also locally
definable. Then γ(M) is the family of all closed small subsets (as in
[10, page 57]), since closed small subsets are definable as subspaces.
We can speak about complete subspaces of M . It is easy to see that
complete subspaces are always closed. Thus, the family γc(M) contains
exactly the definable complete subspaces (as in [10, page 81]).

Fiber products exist in WDS(R) (cf. [20, IV.3.20]). So we (analo-
gously to the case of locally definable spaces) define proper and partially
proper mappings between weakly definable spaces as well as complete
and partially complete spaces. It appears that the complete spaces are
the polytopes, and the partially complete spaces are the weak polytopes
(cf. [20, IV.5]).

The following examples from [20] remain relevant in the case of an
o-minimal expansion of a real closed field.

Example 40 (cf. [20, IV.1.5]). The category RPLDS(R) is a full
subcategory of WDS(R). An exhaustion of an object M of RPLDS(R)
is given by all finite subcomplexes Y in X that are closed in X for some
triangulation φ : X →M .

Example 41 (cf. [20, IV.1.8 and IV.4.7-8]). An infinite wedge
of circles is a weak polytope but not a locally definable space. A
“countable comb” or “uncountable comb” is a weak polytope which
is not a locally definable space.

Warning-Example 42 (cf. [20, IV.4.7]). Consider the “countable
comb” from [20, IV.4.7]. This example shows that the topological
closure of a weakly definable subset may not be weakly definable.
Moreover, the naive “Arc sellecting lemma for weakly definable spaces”
does not hold.

On the other hand, the following examples did not appear explicitly
in [20].

Example 43. Consider an uncountable proper subfield F of R. Let
X be a subset of the unit square [0, 1]2 consisting of points that have at
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least one coordinate in F . This set has a natural exhaustion making X
into a weak polytope over R. This weak polytope is not locally simply
connected.

Example 44. An open interval of R is a definable space but not
a weak polytope, an infinite comb with such a “hand” is a weakly
definable space but not a weak polytope.

Gluing weakly definable spaces is possible: for a closed pair (M,A)
and a partially proper morphism f : A → N the quotient space of
M �N by an equivalence relation identifying each a ∈ A with f(a) is
a weakly definable space M ∪f N called the space obtained by gluing
M to N along A by f . Then the projection π : M �N → M ∪f N is
partially proper and strongly surjective, cf. [20, IV.8.6]. (A morphism
f :M → N is strongly surjective if each definable subset ofN is covered
by the image of a definable subset of M .)

A family A of subsets of a weakly definable space M will be called
piecewise finite if, for each D ∈ γ(M), the set D meets only finitely
many members of A. (Such families are called “partially finite” in
[20].)

A definable partition of a weakly definable space M is a piecewise
finite partition of M into a subset Σ of the family γ(M) of definable
subsets of M . An element τ of Σ is an immediate face of σ if
τ ∩ (σ \ σ) �= ∅. Then we write τ ≺ σ. A face of σ is an element
of some finite chain of immediate faces finishing with σ. (Each σ has
only finitely many immediate faces, even a finite number of faces, cf.
[20, V.1.7]).

A patch decomposition of M is a definable partition Σ of M such
that for each σ ∈ Σ there is a number n ∈ N such that any chain
τr ≺ τr−1 ≺ · · · ≺ τ0 = σ in Σ has length r ≤ n. The smallest such n is
called the height of σ and denoted by h(σ). A patch complex is a pair
(M,Σ(M)) consisting of a space M and a patch decomposition Σ(M)
of M . Elements of the patch decomposition are called patches.

Example 45 (cf. [20, V.1.4]). Each exhaustion gives a patch
decomposition of M .
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Instead of triangulations for RPLDS(R), we have available for
WDS(R) so called special patch decompositions. A special patch de-
composition is such a patch decomposition that for each σ ∈ Σ, the pair
(σ, σ) is isomorphic to the pair with the second element being a stan-
dard open simplex, and the first element this standard open simplex
with some added open proper faces.

Fact 46 (cf. [20, V.1.12]). Let M be an object of WDS(R), and let A
be a piecewise finite family of subspaces. Then there is a simultaneous
special patch decomposition of M and the family A.

A relative patch decomposition of a closed pair (M,A) is a patch
decomposition Σ of the space M \ A. Then we denote by Σ(n) the
union of all patches of height n, by Mn the union of A and all Σ(m)
with m ≤ n, M(n) the “direct (generalized) topological sum” of all
closures σ where σ ∈ Σ(n), and ∂M(n) the direct sum of all frontiers
∂σ = σ \ σ of σ ∈ Σ(n).

By ψn : M(n) → Mn, we denote the union of all inclusions σ → Mn

with σ ∈ Σ(n), and by φn : ∂M(n) → Mn−1 the restriction of ψn,
which is called the attaching map. Then, since φn is partially proper
(cf. [20, VI.2]), we can express Mn as M(n)∪φn Mn−1. The space Mn

is called n-chunk and M(n) is called n-belt. So each weakly definable
space is built up by gluing direct (generalized) topological sums of
definable spaces to the earlier constructed spaces in countably many
steps. In particular, definable versions of CW-complexes are among
weakly definable spaces (see below).

A family (Xλ)λ∈Λ from T (M), the class of weakly definable subsets of
M , is called admissible if each definable subspace B ofM is contained in
the union of finitely many elements of the family. (One could call such
families “piecewise essentially finite” or “partially essentially finite.”)
Thus definable partitions are exactly the admissible partitions into
definable subsets.

An admissible filtration of a space X is an admissible increasing
sequence of closed subspaces (Xn)n∈N covering X . For example: the
sequence (Mn)n∈N of chunks of M (for a given patch decomposition)
is an admissible filtration of M (cf. [20, VI.2]).

The next fact is very important in homotopy-theoretic considerations.
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Fact 47 (Composition of homotopies, cf. [20, V.5.1]). Let (Cn)n∈N

be an admissible filtration of space M . Assume (Gn : M × [0, 1] →
N)n∈N is a family of homotopies such that Gn+1(·, 0) = Gn(·, 1) and
Gn is constant on Cn. For any given strictly increasing sequence
0 = s0 < s1 < s2 < · · · with all sm less than 1, there is a homotopy
F :M × [0, 1] → N such that

F (x, t) = Gk+1

(
x,

t− sk
sk+1 − sk

)
, for (x, t) ∈ Cn × [sk, sk+1],

0 ≤ k ≤ n− 2,

and F (x, t) = Gn(x, 0) for (x, t) ∈ Cn × [sn−1, 1].

7. Comparison theorems for weakly definable spaces. Now,
with patch decompositions playing the role of triangulations, we get the
Comparison theorems for weakly definable spaces as in [20].

Fact 48 (Homotopy extension property, cf. [20, V.2.9]). Let (M,A)
be a closed pair of weakly definable spaces over R. Then (A× [0, 1]) ∪
(M × {0}) is a strong deformation retract of M × [0, 1]. In particular,
the pair (M,A) has the following Homotopy extension property:

For each morphism g :M → Z into a weakly definable space Z and a
homotopy F : A × [0, 1] → Z with F0 = g | A, there exists a homotopy
G :M × [0, 1] → Z with G0 = g and G | A× [0, 1] = F .

Let (M,A1, . . . , Ar) and (N,B1, . . . , Br) be systems of weakly defin-
able spaces over R where each Ai is closed in M . Let h : C → N
be a given morphism from a closed subspace C of M such that
h(C ∩ Ai) ⊆ Bi for each i = 1, . . . , r. Then we have:

Theorem 49 (First comparison theorem, cf. [20, V.5.2 i)]). For an
elementary extension R ≺ S the following map, induced by the “base
field extension” functor, is a bijection

κ : [(M,A1, . . . , Ar), (N,B1, . . . , Br)]
h

−→ [(M,A1, . . . , Ar), (N,B1, . . . , Br)]
h(S).

Theorem 50 (Second comparison theorem, cf. [20, V.5.2 ii)]). If
R = R as fields, then the following map to the topological homotopy
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sets, induced by the “forgetful” functor, is a bijection

λ : [(M,A1, . . . , Ar), (N,B1, . . . , Br)]
h

−→ [(M,A1, . . . , Ar), (N,B1, . . . , Br)]
h
top.

Again, a version of the proof of the First comparison theorem (so also
of a version of the proof of [20, V.5.2 i)]; we present the proof for the
convenience of the reader) gives:

Theorem 51 (Third comparison theorem). If R′ is an o-minimal
expansion of R, then the following map, induced by the “expansion”
functor, is a bijection

μ : [(M,A1, . . . , Ak), (N,B1, . . . , Bk)]
h
R

−→ [(M,A1, . . . , Ak)R′ , (N,B1, . . . , Bk)R′ ]hR′ .

Proof. It suffices to prove the surjectivity, and only the case k = 0.
We have a map f : M → N (over R′) extending h : C → N (over
R), and we seek for a mapping g : M → N (over R) such that g is
homotopic to f relative to C (the homotopies appearing in this proof
are allowed to be over R′).

We choose a relative patch decomposition (over R) of (M,C), and
will construct maps hn : Mn → N (over R), fn : M → N (over
R′) for n ≥ −1, and a homotopy Hn : M × [0, 1] → N relative to
Mn−1 such that: h−1 = h, hn|Mn−1 = hn−1, f−1 = f , fn|Mn = hn,
Hn(·, 0) = fn−1, Hn(·, 1) = fn. If we do this, we are done: we have a
map g : M → N with g|Mn = hn for each n. Composing, by Fact 47,
the homotopies (Hn)n≥0 along a sequence sn ∈ [0, 1) with s−1 = 0, we
obtain a homotopy G : M × [0, 1] → N relative to C from f to g as
desired.

We start with h−1 = h and f−1 = f . Assume that hi, fi and Hi are
given for i < n. Then we get a pushout diagram over R (see [20, page
149]) and we define:

kn = hn−1 ◦ φn : ∂M(n) −→ N (over R),

un = (fn−1|Mn) ◦ ψn : M(n) −→ N (over R′).
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Notice that un extends kn. By the Third comparison theorem for locally
definable spaces (Theorem 36) there is a map vn : M(n) → N over R
extending kn and a homotopy Fn : M(n) × [0, 1] → N relative to
∂M(n) from un to vn. The maps vn and hn−1 combine to a map
hn : Mn → N , with hn ◦ ψn = vn and h|Mn−1 = hn−1. The maps
Fn and Mn−1 × [0, 1] � (x, t) �→ hn−1(x) ∈ N combine (cf. [20,

IV.8.7.ii)]) to the homotopy H̃n : Mn × [0, 1] → N relative to Mn−1

from fn−1|Mn to hn. It can be extended (by Fact 48) to the homotopy
Hn : M × [0, 1] → N with Hn(·, 0) = fn−1. Put fn = Hn(·, 1). This
finishes the induction step and the proof of the theorem.

Again, the category of weakly semialgebraic spaces over (the under-
lying field of) R may be considered a (not full in general) subcategory
of WDS(R). But see the following important new example:

Warning-Example 52. Let Q be the square [0, 1]2R. Now form Q̃ in
the following way: for each definable subset A of Q, glue A × S1 to Q
by identifying A×{1} with A. If there are definable non-semialgebraic

sets in R2, then Q̃ as a weakly definable space is not isomorphic to (an
expansion of) a weakly semialgebraic space over R.

8. Definable CW-complexes. A relative definable CW-complex
(M,A) over R is a relative patch complex (M,A) satisfying the condi-
tions:

(CW1) immediate faces of patches have smaller dimensions than the
original patches in the patch decomposition of M \A,
(CW2) for each patch σ ∈ Σ(M,A) there is a morphism χσ : En → σ

(En denotes the unit closed ball of dimension n) that maps the open
ball isomorphically onto σ and the sphere onto ∂σ.

For A = ∅, we have an absolute definable CW-complex over R. All
definable CW-complexes are weak polytopes (absolute or relative, see
[20, V.7, page 165]). A system of definable CW-complexes is a system
of spaces (M,A1, . . . , Ak) such that each Ai is a closed subcomplex of
the definable CW-complex M (cf. [20, V.7, page 178]). Such a system
is decreasing if Ai is a (closed) subcomplex of Ai−1 for i = 1, . . . , k,
where A0 =M . As in the semialgebraic case, we have the following.
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Example 53. Each partially complete object of RPLDS(R) admits
a definable CW-complex structure over R, since it is isomorphic to a
closed (geometric) locally finite simplicial complex. (Compare consid-
erations of [10, II.4] and [20, V.7.1 ii)].)

Fact 33 and Example 53 give

Fact 54. Each object of RPLDS(R) is homotopy equivalent to
a definable CW-complex over R. Each system (M,A1, . . . , Ak) of
a regular paracompact locally definable space with closed subspaces is
homotopy equivalent to a system of definable CW-complexes.

The following version of the Whitehead theorem for definable CW-
complexes may be proved like its topological analogue (see [23, Theo-
rem 7.5.4]).

Theorem 55. Each weak homotopy equivalence between definable
CW-complexes is a homotopy equivalence. Similar facts hold for any
decreasing systems of definable CW-complexes.

Proof. The proof is analogous to the proofs of 7.5.2, 7.5.3 and 7.5.4
in [23]. The argument from the long exact homotopy sequence may be
proved as in [18] (compare [10, III.6.1] and [20, V.6.6]). The second
part of the thesis follows from the definable analogue of [20, V.2.13].

Using the above instead of Theorem V.6.10 of [20], we can both pass
to a reduct and eliminate parameters.

Theorem 56 (cf. [20, V.7.10]). Each definable CW-complex is
homotopy equivalent to an expansion of a base field extension of a
semialgebraic CW-complex over Q. Analogous facts hold for decreasing
systems of definable CW-complexes.

Proof. This follows from reasoning with relative CW-complexes
analogous to the proof of V.7.10 in [20] (instead of the case of an
elementary extension of real closed fields, we have the case of an o-
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minimal expansion of a real closed field). The construction of the
desired relative CW-complex “skeleton by skeleton” is similar. Since we
are dealing only with decreasing systems of definable CW-complexes,
the use of V.6.10 of [20] (whose role is the transition from finite unions
to any unions) may be replaced with the use of Theorem 55.

Moreover, combining the above with the Comparison theorems gives
an extension of [20, Remarks VI.1.3].

Corollary 57. The homotopy categories of topological CW-complexes,
semialgebraic CW-complexes over (the underlying field of) R, and de-
finable CW-complexes over R are equivalent. Similar facts hold for
decreasing systems of CW-complexes.

9. The case of bounded o-minimal theories. Let T be an
o-minimal complete theory extending RCF. We may assume that the
theory is already Skolemized, so every 0-definable function is in the
language and T has quantifier elimination. We can build models
of T using the definable closure operation in some huge model (or,
equivalently, using the notion of a generated substructure of a huge
model for the chosen rich language). Taking a “primitive extension”
generated by a single element t over a model R gives a new model R〈t〉
of T determined up to isomorphism by the type this single element
realizes over the former model R.

Such a T will be called bounded if the model P 〈t〉 has countable
cofinality, where P is the prime model of T and t realizes +∞ over
P . This condition can be expressed in the following way: there is a
(countable) sequence of 0-definable unary functions that is cofinal in
the set of all 0-definable unary functions at +∞ (this property does
not depend on a model of T : notice that P 〈t〉 is cofinal in R〈t〉, for any
model R of T , if t realizes +∞ over R). In particular, polynomially
bounded theories are bounded.

Each bounded theory T has the following property: each model R
has an elementary extension S such that both S and its “primitive
extension” S〈t〉, with t realizing +∞ over S, have countable cofinality.
(Take S = R〈t1〉, with t1 realizing +∞ over R). This allows, by the
First comparison theorem, to extend many facts about weakly definable
spaces over “nice” models to spaces over any model of T .
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The following example may be extracted from the proof of Theorem
IV.9.2 in [20]. It shows the importance of the boundedness assump-
tion. (The role of the boundedness assumption may also be seen by
considering Example IV.9.12 in [20].)

Example 58. Consider the standard closed m-dimensional simplex
with one open proper face removed (m ≥ 2), call this set A, as a
definable subset of Rm+1. We want to introduce a partially complete
space on the same set A. If R and R〈t〉 have countable cofinality, then
we can find a sequence of internal points tending to the barycenter of
the removed face, and we can use a “cofinal at 0+” sequence of unary
functions tending (uniformly and monotonically) to the zero function to
produce an increasing sequence (Pn)n∈N of polytopes covering our set
A and such that any polytope contained in A is contained in some Pn.
Then (Pn)n∈N is an exhaustion of a weak polytope with the underlying
set A. The old space and the new space on A have the same polytopes.
(Compare the proof of [20, Theorem IV.9.2.]) A similar construction
can be made if several open proper faces are removed.

By reasoning similar to that of [20, V.7.8], we get

Theorem 59 (CW-approximation, cf. [20, V.7.14]). If T is bounded,
then each decreasing system of weakly definable spaces (M0, . . .,Mr)
over R has a CW-approximation (that is, a morphism φ : (P0, . . ., Pr)
→ (M0, . . . ,Mr) from a decreasing system of definable CW-complexes
over R that is a homotopy equivalence of systems of spaces).

The methods to obtain this theorem include the use (as in [20, IV.9-
10]) of a so-called partially complete core P (M) of a weakly definable
space M , which is an analogue and generalization of the localization
Mloc for locally complete paracompact locally definable spaces M , and
a partially proper core pf of a morphism f :M → N of weakly definable
spaces. (Note that it is sensible to ask for a partially complete core
only if R has countable cofinality.) In particular, the Strong Whitehead
theorem (cf. [20, V.6.10]), proved by methods of [20, IV.9-10 and V.4.7,
V.4.13], guarantees the extension of relevant results to weakly definable
spaces. Thus, the homotopy category of decreasing systems of weakly
definable spaces over R is equivalent to its full (homotopy) subcategory
of decreasing systems of definable CW-complexes over R (one uses an
analogue of Theorem V.2.13 in [20]).
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The following corollary is an extension of Corollary 57 in the bounded
case.

Corollary 60. If T is bounded, then the homotopy categories of
weakly definable spaces (over any model R of T ) and of topological,
semialgebraic and definable CW-complexes are all equivalent. Similar
facts hold for decreasing systems of spaces.

Still the homotopy category of WDS(R) may possibly be richer in the
non-bounded case.

10. Generalized homology and cohomology theories. Now we
have the operation of taking the (reduced) suspension SM = S1 ∧M
on the category of pointed weak polytopes P∗(R) over R, and on its
homotopy category HP∗(R) (cf. [20, VI.1]). This allows us to define
analogues of so-called complete generalized homology and cohomology
theories, known from the usual homotopy theory, just as in [20, VI.2
and VI.3]. (Such theories do not necessarily satisfy the dimension
axiom.) Denote the category of Abelian groups by Ab. For a pair
(M,A) of pointed weak polytopes, M/A will denote the quotient space
of M by a closed space A, with the distinguished point being that
obtained from A.

A reduced cohomology theory k∗ over R is a sequence (kn)n∈Z of
contravariant functors kn : HP∗(R) → Ab together with natural
equivalences sn : kn+1 ◦ S � kn such that the following hold:

Exactness axiom. For each n ∈ Z and each pair of pointed weak
polytopes (M,A), the sequence

kn(M/A)
p∗
−→ kn(M)

i∗−→ kn(A)

is exact.

Wedge axiom. For each n ∈ Z and each family (Mλ)λ∈Λ of pointed
weak polytopes, the mapping

(iλ)
∗ : kn

(∨
λ

Mλ

)
−→

∏
λ

kn(Mλ)

is an isomorphism.

A reduced homology theory h∗ over R is a sequence (hn)n∈Z of co-
variant functors hn : HP∗(R) → Ab together with natural equivalences
sn : hn � hn+1 ◦ S such that the following hold:
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Exactness axiom. For each n ∈ Z and each pair of pointed weak
polytopes (M,A), the sequence

hn(A)
i∗−→ hn(M)

p∗−→ hn(M/A)

is exact.

Wedge axiom. For each n ∈ Z and each family (Mλ)λ∈Λ of pointed
weak polytopes, the mapping

(iλ)∗ :
⊕
λ

hn(Mλ) −→ hn

(∨
λ

Mλ

)

is an isomorphism.

If T is bounded, then these theories correspond uniquely (up to an
isomorphism) to topological theories (cf. [20, VI.2.12 and VI.3]). All
of these generalized homology and cohomology functors can be built
by using spectra for homology theories, or Ω-spectra for cohomology
theories as in [20, VI.8].

Similarly, unreduced generalized homology and cohomology theories
may be considered on the category HP(2, R) of pairs of weak poly-
topes. If T is bounded, then these theories are equivalent to respective
reduced theories, cf. [20, VI.4]; homology theories are extendable to
HWDS(2, R), and some difficulties appear for cohomology theories, cf.
[20, VI.5-6]. We get the following extension of Corollaries 57 and 60.

Corollary 61. If T is bounded, then, by the equivalence of respective
homotopy categories of topological pointed CW-complexes (with contin-
uous mappings) and of pointed weak polytopes, we get “the same” gen-
eralized homology and cohomology theories as the classical ones, known
from the usual topological homotopy theory.

11. Open problems. The following problems are still open:

1) Can the assumption of boundedness of T in Theorem 59 and later
be omitted? Is there a way of proving the Strong Whitehead theorem
(the analogue of [20, V.6.10]) without methods of [20, IV.9-10]?

2) Do the above considerations lead to a “(closed) model category”
(see [17, page 109], for the definition)? Such categories are desired in
(abstract) homotopy theory.
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