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AN INVERSION FORMULA OF RADON TRANSFORM
ON THE PRODUCT HEISENBERG GROUP

JIANXUN HE AND LIQUN WEN

ABSTRACT. Let H be the n-direct product of the Heisen-
berg groups Hi, and let P be the affine group of H. Then
P has a natural unitary representation on L?(H7). In this
article, we present the inversion of the Radon transform on
the product Heisenberg group by using inverse wavelet trans-
form. In addition, we characterize a subspace of L2(H7) such
that the inversion formula of the Radon transform holds in
the weak sense.

1. Introduction. Wavelet analysis has many applications in
pure and applied mathematics. The concept of continuous wavelet
transform is deeply related to the theory of square integrable group
representations, see [1]. In this viewpoint the theory of continuous
wavelet analysis on the Heisenberg group has been established, see
[4, 8]. It is known that the Radon transform on R" is a very useful
analysis tool. Recently, we find that a lot of authors deal with the
inversion formula of the Radon transform by using inverse wavelet
transforms. The first result in this area is due to Holschneider who
considered the classical Radon transform on the two-dimensional plane,
see [7]. Rubin [11-13] extended the result to k-dimensional Radon
transforms on R™ and totally geodesic Radon transforms on the sphere
and hyperbolic space. Later, He, Liu, Nessibi and Trimeche studied
analogous problems on the Heisenberg group, see [3, 9], and the other
cases, see [5, 6]. At the same time, we also find that Radon transforms
can be applied to estimate the regularity for solutions of nonlinear
Schrodinger equations, see [10]. So, in this paper, we introduce partial
Radon transforms on the product Heisenberg group and discuss the

2010 AMS Mathematics subject classification. Primary 43A85, Secondary

44A15.
Keywords and phrases. Wavelet transform, Radon transform, product Heisen-

berg group.
The work for this paper was supported by the National Natural Science Foun-

dation of China (Nos. 10671041, 10971039), and the Doctoral Program Foundation

of the Ministry of Education of China (No. 200810780002).
Received by the editors on April 24, 2009, and in revised form on July 20, 2009.

DOI:10.1216/RMJ-2012-42-2-597 Copyright (©2012 Rocky Mountain Mathematics Consortium

597



598 JIANXUN HE AND LIQUN WEN

inversion of the Radon transform on H} by using the inverse wavelet
transform, where H? = H; x H; X --- x Hj is the product Heisenberg
group with the manifold R x R™ x R™, and Hj is the real three-
dimensional Heisenberg group.

Let HY = {(z,y,t) : z,y,t € R"}. For (z,y,t), (z',y',t') € HY, the
multiplication law of HY is given by

L) (@)@, ) = @+, y+ ot +1 4+ 2(y2" — ),
where “+” denotes the usual addition in Euclidean space and (¢ + ¢’ +
2(yz' —2xy'))i = ti+t;+2(yiz;—x:y;). The translation operator I, . ¢
on HY is defined by
T(z, y, t) * (xlv yla tl) — (.’17, Y, t)(xlv yla t/)
=(z+2,y+y,t+t' +2(ya" —zy')).
Also we define the dilation operator T, on HY as follows:
T, : («',y,t") — (Vp's/py', pt'),
where p € RT = {z : z > 0}. Write
(1.2) P ={(z,y,t,p) : (z,y,t) € HY, p€ RT}.
Let (z,y,t,p), (',y',t,p) € P. Then the multiplication law of P is
given by
(x7 y, t7 p)(x/, y’? tl, p,)
= (z+pz'sy +/py's t+ pt' +2/p(yx’ — zy'), pp').

Then P is a locally compact nonunimodular Lie group. The left and
right Haar measures on P are, respectively, given by

dx dydtdp

dxdydtdp
dui(z,y,t,p) = w7 dpr(z,y,t,p) = ——,

where dz dy dt is the Haar measure of HY, which coincides with the
Lebesgue measure of R™ x R™ x R". Let f € L2(H}), (x,y,t,p) € P.
The unitary representation U of P on L?(HY) can be defined by

Uz, y,t,p)f(z',y',t")
=p "flo Vi —a),p VY —y),p Mt 2(y2’ — zy))).
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Let Zt = {0,1,2,...}, k € ZT, z € R. The Hermite polynomials
. (z) are defined by

2 d¥ e
(1) Aila) = (e ().
Thus, the normalized Hermite function is given by
(1.4) o(z) = (28 /7k!) 212" 54 (1),

It is well known that the family {¢x(z) : k € Z*} is an orthonormal
basis for L2(R). Geller [2] developed the theory of Fourier analysis
on the Heisenberg group. Now we state some preliminaries of Fourier
analysis on the product Heisenberg group. For A € R\ {0}, (z,y,t) €
H,, let m)(z,y,t) denote the Schrodinger representation of Hy which
acts on L%(R) by

(2, Y, 8)6(n) = e BTN G — ).

Putting A = {A = (A, Ae,...,An) : A #0, 5 =1,2,...,n}, A € A,
we define the operator IIy on HY by

(1.5) Ix(z,y,t) = ma, (21, Y1, t1)@Tx, (T2, Y2, t2) R+ - QTN (Try Yy T )-

Let £ = (kl,kg,... ,kn) S (Z+)n, A= ()\1,A2,... ,An) S A,
x = (z1,22,...,2n), 7 = (M,M2,--- ,Mn) € R". The n-dimensional
Hermite functions denoted by ®; are then obtained by taking tensor
products:

(1.6) Py (z) = H Pr; ().

It is easy to see that the family {®; : k € (Z7)"} is a complete
orthonormal basis for L?(R"™). Thus, II\(z,y,t) is the Schrédinger
representation of Hf which acts on L?(R™) by

n

(17)  Ta(z,y,t)®k(n) = [ et 2Romsvstadmvi g (n; — ;).
j=1
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The group Fourier transform of an L'-function f is the operator-valued
function on A which is defined by the Bochner-integral

(1.8) Fe= | Iy O,y g dedydt,

where X € A, ¢ € L>(R"). Let f,g € L*(H}). The Plancherel identity
is

1 ST
(1.9) otz = o | rEA)FODIA

where g(A)* is the adjoint of g(A), |A\| = [A1A2---An|. Specifically, if
f =g, then

1 R 1/2
110) ey = { o [ 1T

where || - ||gs denotes the Hilbert-Schmidt norm of operators. Let
S(H7) denote the Schwartz space on H}. For f € S(HY), then for all
(z,y,t) € HY, the Fourier inversion formula holds:

(L11)  flmyt) = W%/Atr(m(x,y,t)*f(x))mdA.

2. Wavelet transforms. In this section we will establish the theory
of continuous wavelet analysis on the product Heisenberg group HY.
For k € (Z*)", let P, be the orthogonal projection from L%(R") to the
one-dimensional subspace spanned by ®. Setting

(2.1) He = {f € L*(H}): ) = P}

we can obtain

(2.2) @ Hy.
For h € Hy, h # 0, if h satisfies the admissibility condition:

1
[ [0t 001
P 1

2 dxdydtdp
p2n+1 00,

112
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then we say that h is an admissible wavelet and write h € AWj.

Theorem 2.1. Let h € Hy. Then h is an admissible wavelet if there
exists a positive constant Cy,, such that for almost everywhere A € A,

(2.3) O = /R .

~ 2 4
h(p)\)HHS ?’) < +oo.

Proof. Since

[ (n U0t I gy (o6 oy dt = P ROVR ()",

we have

2dxdydtdp
/‘(h,U(x,y,t,p)hhz Hp)| T et

dp
_ (/ [ 1ROV ||Hs|AdA)
™ R+ n p

= tr (ROVRO) RN ) A d) ) 22
m R+ </n > p

L N > dp
-/ (/ n<h<m>h<px> B VRO Be) g A 1) 2

= ([ 10" (o [ ROV Brslal ar)

= ChHh”L?(Hf)‘

This is our desired result. O

Let h € AWy, f € Hy, be the continuous wavelet transform of f with
respect to h in Hj, defined by

(24) (th)(m’yvtap) = <f)U(l'7yat)p)h>L2(H;‘)-
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Theorem 2.2. Let f € H, NS(HY), h € AW, NS(HY}). Then for
all (¢',y',t') € HY, the following inversion is valid:

1
25 (@) =g [ [ Wip@se
1 dx dy dt dp

Uz, y,t,p)h(z',y',t") e
If h € AWy, f € Hy, then the above formula holds in the weak sense.

3. The subspaces S'y V(H}) and Sga. o(HF) of S(HY).
In [14], Strichartz gave the definition of Radon transform R on the
Heisenberg group and showed a fact that, even if a function f is
very well behaved, the Radon transform R(f) may not be sufficiently
deceasing at infinity. On the other hand, we can verify that if f # g
then R(f) # R(g). Thus we naturally hope to find a subspace of
Schwartz functions space on which the Radon transform is a bijection.
When one considers the problems of radial functions on the Heisenberg
group, the fundamental manifold is the Laguerre hypergroup K =
[0, +00) x R. Nessibi and Trimeéche [9] defined a subspace S, 2(K) of
Schwartz function space on which the Radon transform is a bijection.
He [3] gave another subspace Sg_(K) of S(K) which is equivalent to
S 2(K). Without loss of generality, we may assume that the number n
of Cartesian product H} is 2. We are now in a position to define
the Radon transforms R¢:2-0 (I = 1,2), and introduce subspaces
S(l2 D (H?) and Sza.2-n(HY). Our results are analogous to those
in [3]

We say that S (2 0)(HQ) a subspace of S(H?), consists of all functions
g in S(H?), satlsfylng

(1) Forall z,y € R*>, t; € R, j1 € Z™, thilgwy,)dtl—O

(2) Forall z,y € R?>, t; €R, jo € Z™, th%29£Cy7)dt2—0

)
)
(3) For all z,y € R?, (j1,52) € (Z1)?2 foRtjlt§2g(:v7y, t) dty dty = 0.
Th
1)

at is, S,%’O (H?) can be denoted by

(3.
S£220 H?) = {g € S(H}) : g satisfies (1), (2) and (3) defined above} .
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Similarly, 83" (H3) is defined by

)

2 S50 = {ge s [ Bt =0

for all z,y € R%,t; € R, js € Z+}.

Let ' = (0,uq), v/ = (0,v2), ' = (0,0). We define the Radon
transform R on H? by
(3.3)

RUD(£)(z,y, 1) :/ F(@,y, 1) (', 0, 1)) dug dvy

RXR

= / f(x*a y*a (tla to + 2(y2U2 - $2U2))) dUQ d’Ug,
RXR

where 2* = (z1,u2), ¥* = (y1,v2). RV is called the Radon transform
with respect to the center variable t5; here we call it the partial Radon
transform. Similarly, we may define the Radon transform with respect
to the center variable ¢;. Let u' = (ug,u2), v' = (ve,v2), t' = (0,0),
the Radon transform R(*?) on H? can be stated by

REO (1) (w30 = [ 1w )00, 8)) dus vy du o

3.4 *  x
(3:4) = 4f(ff? 2 y" (B + 2(y1ur — z101), b2
R
+ 2(y2U2 — $21)2))) duy dvy dus dvs,
where z* = (uy,u2), y* = (vi,v2). We shall introduce a subspace

Sr.2-1) (H2) of S(H?) such that the Radon transform R(:270 (1 = 1,2)
is a bijection.

Now, we write

FolF) (@9, (b1, Ao)) = /R Py, t)e 2 dt,
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Then we get

(RO N@r) ()

_ RV () (z,y, )L\ (2, y,t)®k(n — z) d dy dt
H}

= fS(f)(x*Jy*a(tla)\Z))
RXR
(/ e—2i)\2z2y2+4i)\znzy2—2i>\2(y2uz—z2vz)¢k2 (772 _ 1‘2) dzs dy2>
RXR

X </ ei)\ltl_%)\lwlyl—i_“)\lnlyl ¢k1 (171 - 1‘1) dCL‘l dyl dt1> dU2 d’l}g.
H;
Let $k2 denote the Fourier transform of ¢, on R. Then we have

—2iX 4\ —2iX -
/ P 2Z2y2+4ilan2ye —2iA2 (yaus m2U2)¢k2 (,,72 _ 172) dx2 dy2
RxR

— / e2iA272v2 —2iA2y2u2+2iA212y2
R

. (/ B (m2 — mg)e™ 22 (12 mr2) (v27w2) dm) dy2
R

— eiAgnz’Ug—Qi/\z’Ug(u_j—nz)

X / @(”\2(7}2 — yp))e?r2(2mv2) (U2 mm) gy
R

:|)\2‘—171_6—2i>\2v2u2+4i)\2172v2 ¢k2 (Uz _ 772)_

On the other hand, by the recursion formula of Hermite polynomials
we then obtain

@ (1, —n2) = (—1)*1®p (11, m2).
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Consequently,

(REDI) €0)(0)

= R(Ll)(f)(l'?yat)ﬂk(mv7yat)(bk(777m) dIdydt
Hi

= Fs(F)(@*, 5%, (t1, Aa) (| Ao] ~Tare 2ihevauattitavagy (4yy — 1))
RXR

X (/ eiA1t172i>\1z1y1+4i>\1n1y1 ¢k:1 (,,71 _ xl) dzy dy1 dt1> dus dvs
H;

— ‘)\2|717r/ f(fl;*, y*’ t)eiAQtZ72’L’)\2U2U2+4iA27]2’U2
Hi
« et —2iAiz1y1+4idiniy,
X Py (M — @1) Py (w2 — n2) da™dy*dt
= (=DM =lx o THF V) @R) ()
From the above discussion, we can get

~

Dol (RED(F)(N)@4) () = (— 1)l (F(N) D) ().
It should now be clear that
(3.5) RED(FA) = (—1)F2l x| x| L F(N).

For j > 0, we define the operator RV = RUDRMLD’  where

RL1) = I is the identity operator. And RV is the inverse operator
of R, Let Z be the set of all integers. Thus for every j € Z, the
operator R(:2)" has the definite meaning. It is easy to verify that for
[ € Hg,

—
~

(3.6) RADIN(N) = (=1)7F2l7d | xg |77 F(N).

Similarly, we have

—
~

(3.7) REO(F)(A) = (=1)! x|\ 20T F (),
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where |k| = k; + k. Using the Plancherel formula on R(:2-D’ | we can
define a subspace Sg’zfl)(H%) of S(H?) as follows:

(38) Spow () = {f € SED) : [ROY (1) 2 s
= [ el ) s A
(R+)2
< oo for all j € Z}
and
(39) Spen (B = { £ € SED : [R (1) 2 s
= [l RO s i
(R+)2
< +4oo for all j € Z}.
Our principal goal in this section is to show the following results:
85" (H}) = Sgeo(H}),  85YV(H]) = Sgan (HY).
Let m = (my,m2) € (Z1)2,

m lm!|
D} f(z,y,t°) = Wf(l'ayat”(z,y,to)v

|m|

Dy f(z,y,tz) = Wf(xayat”(z,y,tz)a

where tz = (t121,t222), 2 = (21,22) € R%, t° = (#9,19), and at least
one of 9, t3 equals to 0. Let g(z,y,t) € S(HZ) 9(z,y,A) denote the
Fourier transform of g(z,y,t) with respect to t, i.e.,

3o,y \) = / oz, y, )M,
R2

where A+t = A1t; + Aa2ta. We claim that g € S (2 0)(Hz) is equivalent to
DYg(z,y, N)|g(z,y,20) = 0 for all m € (Z1)?, where \0 = (A2, A\3) and
at least one of A}, A\ equals to 0.
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Theorem 3.1. Let f € S(H?). Then DI f(x,y,t°) = 0 for all
m = (my,ma) € (Z7)? if and only if f(x,y,t) = t]* t52g.(z,y,t), where
gr(m7y7t) € S(H%)} r= (7’1,7“2) € (Z+)2’ D;Emgr(xayato) = 0.

Proof. For convenience, Dy, (j = 1,2) is used to denote 0/(0t;).
Obviously,

1
f(I,y,t) = tl /) Dt1f(ma Y, (tlzlth)) d21 + f(m)yv (Ovtg))

Taking m = (0,0,...,0) in the condition D f(x,y,t°) = 0, we get
f(z,y,t%) = 0. Thus f(z,y,t) can be represented in the form:

1
f(xa y,t) = tlA Dtlf(xaya (tlzlatQ)) dz1.

Set g(1,0)(,y,1) = fol Dy, f(z,y, (t121,t2)) dz1. We shall prove that
9(1,0) € S(HY). In fact,

1
/ Dy, f(x,y, (t121,12)) dzy
0
1 ("
= t_/ Dt1f($ay7 (Z]_,tZ))dZ]_
1.J0

1 ° o0
= E |:/ Dt1f(x;y7 (217t2)) le 7/ Dtlf(l"y’ (21,t2))d21
0 t

== Dtlf(w7y7 (ZlatZ))dzl

t1

-of})

as |t| — +oo for all I € (Z*)?. This implies that gn o) € S(H?).
Similarly, we can get

1
f(xa yvt) = t2/ Dth(x,y, (t17t2z2)) dz27
0

where 9(0,1) (27, Y, t) = f()l thf(xa Y, (tla tZZZ)) dzg € S(H%) ObserVing
the following formula

1 1
f(2,y,t) = tits / / DY f(x,y, (t121, t222)) dzadza — f(z,y, (0,0))
0 0

+[f (2,9, (0,83)) + f(z,y,(11,0))]
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together with f(z,y,t%) = 0, we get
Lo
flz,y,t) = tltz/ / Dt( 7 )f(x,y, (t121,t222)) dzy dza.
o Jo
Write
Lo
g(l,l)(xa yat) = / / Dt( ' )f(waya (tlzlatQZQ)) dz1 dz;
o Jo

we shall show that g(1,1)(z,y,t) € S(H}). From the above discussion
we can see that

1 .1
/ / Dt(l’l)f(x,y, (t121,t222)) dz1 dze
o Jo

Lo an
= Dy f(z,y, (21, 22)) dz1 d22
tita Jo Jo
1 oo oo
= [/ / D:gl’l)f(l"aya (21, 22)) dz1 dzo
tita [ Jo Jo
N N
*/ / Dt( ' )f(ﬂvay, (21, 22)) dz1 dzo
o Jo
0 to
(1,1)
- / / D, f(x,ll, (21, Zz)) dz dzp
o Jo
_/ / Dt(l’l)f(-’”aya (21,22)) dz1 dZQ]
t1 to
B 1 t1 [e'e] (1’1)
- D, f(maya (21,22)) dz; dzy
tita [ Jo Jo

[e’e] to
+ / / D:gl’l)f(l", Y, (21, 22)) dz1 dzo
o Jo
/ Dgl’l)f(l'a Y, (21,22)) dz1 de]
t

as |t| — +oo for all [ € (Z1)2. Interchanging the differential operator
D™ and integral together with D" f(z,y,t’) = 0 for all m € (Z7)?2, we
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can prove that DI"g,(z,y,t°) = 0 for all m € (Z7)?%, where r = (ry,72),
r1,re € {0, 1}. Evidently, f(z,y,t%) = t]'t5? gT(ac y,t) can be shown in
the same way by induction, and D"g,(z,y,t°) = 0 for all m € (Z7)%.
The sufficiency is obvious. O

Theorem 3.2.
(3.10) SEY(H3) = Sgeen (HY).

Proof. Let f € S 20)(HQ) By

[ dowuian=o, [ doaynd=0
R R

together with [, t]'tJ>g(x,y,t) dt, dts = 0 for all (j1,j2) € (27)?%, we
can deduce that DTf(ac, y,\?) =0 for all m € (Z1)?%, where

Ty, A / flz,y, t)e dt.

Clearly, f(z,y,\) € Sg.0) (H2). By Theorem 2.2, we can get

ey, 2) = A A5G (2,9, 0)
for all k € (Z%)2. Taking the group Fourier transform for g(z,y,t)
on Hl, then we get f(A) = A[*A3%g,(\). Obviously, we have f(A\) =
>\§1>\§2§T (A) for all 7' € (ZT)2. By formula (1.10) we have

/Rz [FOOP A 727 Ao 72712 d = /R G NP dA = [lgo[[* < +o0

for all ¥ € (Z*)2, which implies f € Sz (H?). On the other
hand, if f € Sge.0 (HY), we can deduce that DY f(z,y,\°) = 0 for
all m € (Z7)? and z,y € R?. It follows that f € 8(20 (H?). Thus
Theorem 3.2 is proved. a

In the next section, we will show that R(>?) on S,Ezéo)(

)

bijection, as is the Radon transform R on S,E}Z’l)(Hf).

H?) is a
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4. Inversion of the radon transforms. In the above sections,
we investigate the theory of continuous wavelet transforms and define
the Radon transforms R(:2=1(] = 1,2). We also introduce subspaces
Sra2-1(H?) and S,Ef’;*l)(Hf). This section is devoted to the explicit
inversion of the Radon transform by using the inverse wavelet trans-
form. In addition, we characterize another subspace of L?(H?) such
that the inversion formula of Radon transform holds in the weak sense.

Let L = —8/(2 8t2)7 f S SR(I,I)(H%). Then

/ L(f)(.’l,‘, Y, t)ei)‘2t2dt2 = >\2f3(f)(w7 Y, tla )‘2)
R
Therefore,

(4.1) L) = A f (V).

By (3.5) and (4.1) we have

o — ~

(4.2) (LRAD(F)(N)Pe) (1) = (=1) =l (F(X) @x) ().

— ~

It is easy to see that (LR(LD f)2(\) = w2f()), thus R(l’l)il(f) =
2 LRVL(F). Also, let £ = (8/idt1)(8/idt;). Then R0 (f) =
1A LRZOL(f). Therefore we have

Theorem 4.1. (1) Let f € Sgeo(H2). Then RO (f) =
T LREO L),
(2) Let f € Span (H2). Then RV (f) = 7 2LRUV L(F).

Proof. We shall demonstrate part (1). Similar to (3.8) and (3.9), we
can define

(4.3)
Do (088) = {f € L2 w70 [ i bal 54 1) s

< oo for all j ez}
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and
(4.4
Voo () = {f € 20D 2574 [ phadal 5150 g

< 4o forall j € Z}.

It is not hard to show that R(*? is a bijection from L%, (H})
onto itself. In fact, let f € L2, (H}); by (3.7) together with

the Plancherel identity (1.10) we have R0 (f) € Lo (HD). If
REO(f) = R29(g), then for almost everywhere A € A,

0= REO(f — g)(A\) = (—)* 2271 FN) — GN),

which implies f = g. Thus R(>? is a bijection from L3, 2,0, (H}) onto

itself. Because Sg.0) (H}) = L%, o) (H}) NS(HY), so LREOL is well

defined on Sg(2.0)(H?), which completes the proof. o

Let hy(2,4,1) = h((z/y/7), (4/y/P), (t/0). Then

—

(45) ho() = p*h(p)).
Define an operator W by
(W) ()= [ 560 ()l
Then
(4.6) () 0 = FORCY"
By identities (4.1) and (4.5) together with (4.6), we can derive that
(W, ) () = TN = rap? (A"

Similarly, we have

—

(Wi, L)V = LIV, = Aap* FNA(pA)".
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Hence, we obtain

(4.7) (Wegn, ) (@,9,6) = p(Wa, L() (2,9, ).

Theorem 4.2. Let h € Sia,n(H3) N AWy, f € Sgan (H2). Then

(48)  (Warawrm,REVD) @,y,1) = 720* (Waf) (@,9,t, ).

Proof. 1t is easy to verify the commutative relation of L and R™M1),
ie., LRMY = RV L, Thus by (4.7) we have

(WLml,l)L(h)pR(l’l)(f)) (z,y,t) =p (WLR(Ll)(h)pLR(l’l)(f)) (z,y,1).

Using identities (4.1) and (4.2) together with (4.5), we obtain

<WLR(L1)L(h)pR(1’1)(f)> (A) =p (WLRUJ)(h)pLR(M)(f)) ()\)
= 20" F(Vh(pA).
On the other hand, we can deduce that
Waf(\) = P2 TNV R(pN)"
Thus our proposition is established. ]
We now state the following
Theorem 4.3. Let h € Sga.y(H?2) N AWy, f € Span (H?) N Hy,.

Then for all (x,y,t) € H}, we have

1 —
o w R(l,l) ro t/
7TZC'h /foRJr < LR(DL(R), (f)) (x Y, )

dz'dy'dt'd
U(xla yl> tla p)h(I, Y, t)Tp

(4'9) f(m’ Y, t) =
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And the inverse Radon transform ROV holds:

(4.10)
_ 1 ~
R(L:1) ! t) = / 778 "t
(f)(z,y,t) 20 fom( LR(I,I)L(h)pf> (', y',t)
dz'dy’ dt' dp
s

U('/L‘/, y/’ tl’ p)h(x7 y? t)

Generally, if f € L2, (H?) N Hy, then (4.9) and (4.10) hold in the

weak sense.

Proof. By using (2.5) and (4.8), we then obtain

1 —

o W R(lvl) ) l, I,tl

720y, /H§><R+< LR(DL(R), (f) (x y )

dz'dy’dt'dp

T
! dz'dy'dt'dp

o [ RO ey, T
Ch H2x R+ P

= f(xa yat)-

X U("Ll,7 y’? tl? p)h("r’ y? t)

Taking the inverse Radon transform RV ™" on f, we can get formula
(4.10) immediately. o

For the Radon transform R(9, we have the following inversion
formula.

Theorem 4.4. Let h € SR(z,o) (H%) n AWk, f S SR(z,o) (H%) N Hy.
Then for all (x,y,t) € H}, we have

1 ~
(411) f(iE, yat) = 7T4Ch /I-IZXRJF (WER(ZO)L(h)pR(Q’O)(f)) (mlaylatl)
1

dz'dy'dt'd
U(xla yl> tla p)h(I, Y, t)Tp
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And the inverse operator REO™ s the following:
(4.12)

2,0) ! o 1 s 1o
R( ) (f)(.’L‘,y7t) - 7T4Ch /foR* (WLR(2>0)E(h)pf> (I Y 7t)

dz'dy'dt'dp
P

Uy, t', p)h(z,y,t)

Generally, if f € L%(z,o) (H?) N Hy, then the above two formulae are
also valid in the weak sense.

For general n, let | be a positive integer satisfying 1 < [ < n; we
can define the Radon transforms R(*"~9 and the partial differential
operator L such that R(l*”_lrl = 7= 2(n=DLREm=D L on the subspace
Srn-1) (H?)

Finally, we conclude this section by exhibiting an analog of Theorems
4.3 and 4.4 for this case.

(4.13)
f@wt) = o [ (Wareenron,RO00) (@)
I m2(n=D Hy x R+ : (R)p »d
dz'dy’dt'dp
U(f',y',t',P)h(f,y,t)W
and
(4.14)
R(l,n—l)fl(f)(x y,t) = # (W P f) (:U' y' t/)
g m2(n=D ), Hy xR+ LRE=DL(R), 1

dz'dy'dt'dp

U(xlvyl7tlap)h(x7y7 t) p3n+l+1
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